
Model Driven Grant Proposal Engineering

Dimitrios S. Kolovos, Nicholas Matragkas,
James R. Williams, and Richard F. Paige

Department of Computer Science, University of York,
Deramore Lane, York, YO10 5GH, UK

{dimitris.kolovos,nicholas.matragkas,
james.r.williams,richard.paige}@york.ac.uk

Abstract. We demonstrate the application of Model Driven Engineer-
ing techniques to support the development of research grant proposals. In
particular, we report on using model-to-text transformation and model
validation to enhance productivity and consistency in research proposal
writing, and present unanticipated opportunities that were revealed after
establishing an MDE infrastructure. We discuss the types of models and
the technologies used, reflect on our experiences, and assess the produc-
tivity benefits of our MDE solution through automated analysis of data
extracted from the version control repository of a successful grant pro-
posal; our evaluation indicates that the use of MDE techniques improved
productivity by at least 58%.

1 Introduction

The majority of experience reports in the field of Model Driven Engineering
come from adopters in the software development industry and typically involve
modelling and generating software. Here, we report on the use of Model Driven
Engineering techniques in the context of research grant proposal development.
Proposing and running collaborative research projects is one of the main ac-
tivities undertaken by academics, and in our experience, existing tooling and
processes for supporting some steps of this activity are sub-optimal. In this pa-
per, we describe how we used MDE techniques to automate some of the laborious
and error-prone steps of this activity, and report on the delivered productivity
benefits, which we have measured through automated analysis of data from the
version control repository of a successful proposal.

The rest of the paper is organised as follows. In Section 2, we outline the pro-
cess of developing grant proposals and highlight its laborious and error-prone
steps. In Section 3 we present how we applied Model Driven Engineering tech-
niques to automate these steps, and discuss some key decisions we had to make
along the way, and in Section 4 we present some measurements that demon-
strate the obtained productivity improvements, and reflect on our experiences.
In Section 5 we discuss related work and in Section 6 we conclude the paper.

J. Dingel et al. (Eds.): MODELS 2014, LNCS 8767, pp. 420–432, 2014.
© Springer International Publishing Switzerland 2014

Model Driven Grant Proposal Engineering 421

2 Background

Often, a research project commences with the formation of a consortium compris-
ing several academic and industrial partners, and is followed by the collaborative
development of a grant proposal that outlines the objectives, technical organisa-
tion, and management of the project. In particular, the technical work needs to
be decomposed into a number of work packages consisting of specific tasks and
deliverables. Multiple partners can contribute to each work package and each
partner can lead on the preparation and production of multiple deliverables.

Typically, proposal documents need to adhere to a template provided by the
funding body, which prescribes their structure and formatting. Often, such tem-
plates require different views of the same information that appears in multiple
places in the proposal (e.g. effort per work package, effort per partner, deliv-
erables per work package, project deliverables ordered by delivery date). As a
result, consistency of the proposal is an issue: if, for example, the effort asso-
ciated with producing all of the deliverables in a project does not match the
effort allocated to all partners in the project, there is a consistency problem
(and such problems may be reflected in the proposal’s review scores). To make
matters worse, the information that could lead to inconsistencies in the pro-
posal may change frequently during the core stages of development (e.g. the
effort allocated to a partner for a particular work package may change several
times during negotiations, or the deadline for a deliverable may be modified
several times). Changes to this kind of information may require some substan-
tial effort to implement in the proposal. For example, updating the due date of
a deliverable in a proposal under the European Commission’s 7th Framework
Programme1 template, requires updates in two separate tables (deliverables by
chronological order, project Gantt chart), and in the section of the proposal that
describes the deliverable itself. Similarly, modifying the effort of a partner in a
work package requires updates in two different tables (effort per partner, effort
for work package). In our experience, this information will change many times
during the life-cycle of the proposal, and maintaining these views in a consistent
state manually is both tedious and error-prone.

3 Model Driven Grant Proposal Engineering

In the spirit of MDE – that is, in the spirit of automating repetitive and error-
prone tasks through the use of models and automated model processing – and
in order to reduce the accidental complexity involved in developing grant pro-
posals, we decided to use MDE techniques to automatically generate different
views (tables, graphs, Gantt charts) of core proposal information. The generation
process would be based on an abstract model of important information, and as
a result the different views would be guaranteed to be consistent by construction.

1 http://cordis.europa.eu/fp7/home_en.html

http://cordis.europa.eu/fp7/home_en.html

422 D.S. Kolovos et al.

In this section we discuss our operating context, the approach we followed, and
the challenges and opportunities we encountered along the way.

3.1 Context

We focus on the process of developing proposals for EC-funded, ICT2-focused,
collaborative, targeted research projects (STREP), however, developing propos-
als for other types of collaborative projects and research funding bodies should
not be too dissimilar. Such proposals typically take between 3-6 months to pre-
pare and involve 6-9 partner organisations from academia and industry, each
participating with at least one representative in the proposal development phase.
Proposals themselves range from 70-120 pages in length, and include technical,
management and financial sections; technical and financial sections are most
likely to change frequently during proposal development, whereas management
sections tend to be reasonably stable. Partner representatives involved in the
preparation of such projects typically have a computer science background or
at least above-average computing skills. Our typical setup for collaborative de-
velopment of such proposals involves a Subversion version control repository to
which all partner representatives have read/write access, and which hosts the
proposal document, distributed across many smaller LATEX files in order to min-
imise merge conflicts.

3.2 Approach

Modelling To improve the internal consistency of the proposal and automate
the repetitive steps of the proposal development process, we followed a bottom-
up iterative approach in which we used an XML document to model the proposal
we were working on at the time. We chose plain XML instead of a rigorous
modelling framework, such as the Eclipse Modelling Framework [1], primarily
due to XML’s agility; using XML, we would be able to engage in exploratory
modelling without being constrained by a rigid metamodel, and we would also
not need to engage in metamodel-model co-evolution activities. On the other
hand, by choosing XML we would miss strong typing and built-in support for
cross-references between model elements – which we considered to be a fair trade-
off in the context. Another agile option would have been to use an annotated
general-purpose diagram [2] however, we considered XML to be more suitable as
we anticipated that the information we would need to capture in the proposal
model would have a predominantly hierarchical (as opposed to graph-based)
structure. After a few iterations, we converged to a first version of the XML
document that captured the work packages, tasks, deliverables, and milestones
of the project (see Figure 1 for a conceptual metamodel to which project models
conform to, and Listing 1.1 for a sanitised excerpt from a successful3 proposal).

2 Information & Communication Technology.
3 http://www.ossmeter.org

http://www.ossmeter.org

Model Driven Grant Proposal Engineering 423

1 <?xml version="1.0"?>
2 <project name="OSSMETER" duration="30"
3 title="Automated Measurement and Analysis of Open-Source

Software" >
4
5 <wp title="Requirements & Use Cases" leader="TOG" type="RTD">
6 <effort partner="TOG" months="6"/>
7 <effort partner="York" months="6"/>
8
9 <task title="Use Case Analysis"

10 start="1" end="6" partners="TOG, York, ..."/>
11 <deliverable title="Project Requirements"
12 due="6" nature="R" dissemination="PU" partner="TOG"/>
13 </wp>
14
15 <milestone title="Requirements and case studies completion"

month="6"/>
16 <milestone title="Project completion" month="30"/>
17
18 <partner id="York" name="University of York"
19 country="United Kingdom"/>
20 </project>

Listing 1.1. Sanitised excerpt of the model of the OSSMETER project

Fig. 1. Conceptual metamodel for project models

424 D.S. Kolovos et al.

Model-to-text Transformation Our next activity was to decide how to best
integrate any LATEX content that we would generate from the constructed pro-
posal model, with the hand-crafted parts of the proposal. We considered two
options. The first option was to mix generated and hand-crafted content and
rely on the M2T transformation engine’s capabilities to preserve hand-crafted
content upon re-generation. The second option was to keep generated and hand-
crafted content separate, by producing a single file that would contain a number
of auto-generated LATEX commands which we could then reference from the
hand-crafted LATEX files. The main advantage of the first option was that con-
tributors would not need to memorise any generated LATEX commands; the main
advantage of the second option was that we would enable contributors to use
the generated LATEX-commands in arbitrary locations in the proposal, without
needing to adapt the generator every time. Automated content assistance and
previewing facilities in modern LATEX editors partially compensate for the short-
comings of the second approach, so as illustrated in Figure 2, we chose to produce
a single LATEX file containing a set of generated commands, which could then be
imported by the main proposal file.

Fig. 2. Overview of the organisation of our MDE solution

In terms of the actual M2T transformation that would generate the LATEX
commands file, we chose to implement it using the Epsilon Generation Language
[3], both because of prior familiarity with it but also because it provides built-in
support for consuming plain XML documents in an elegant manner [4]. For ex-
ample, the excerpt of the M2T transformation4 presented in Listing 1.2, iterates
through all work package (wp) elements in theXMLdocument presented in Listing
1.1 (t wp.all in line 2) and then through their task children (wp.c task in line 5) to
generate a LATEX command (workPackageAndTaskList in line 1) that

4 The complete M2T transformation is 529 lines long.

Model Driven Grant Proposal Engineering 425

presents the project’s work packages and tasks5. The executable content of anEGL

template is contained within the [% %] tags (e.g. lines 3, 5, 7, 8), text-emitting

instructions are contained within the [%= %] tags (e.g. [%=wp.a title%] in line

4), and everything outside these tags is treated as static text.

1 \newcommand{\workPackageAndTaskList} {
2 \begin{itemize}

3 [%for (wp in t wp.all) { %]

4 \item \textbf{ [%=wp.getId()%] [%=wp.a title%] }

5 [%for (task in wp.c task) { %]

6 \subitem Task [%=task.getId()%] [%=task.a title%]

7 [%}%]
8 [%}%]
9 \end{itemize}

10 }

Listing 1.2. Excerpt of the proposal model to LATEX M2T transformation

Having generated a consistent set of commands, we could now import them
from the main proposal LATEX document and use them in arbitrary places. Listing
1.3 illustrates an excerpt of the main proposal document that uses generated
LATEX commands (i.e. projectDuration, projectName, workPackageAndTaskList,
numberOfMilestonesAsWord).

1 \subsubsection{Project Planning - Timeline and Effort
Distribution}

2 \label{sec:projectPlanning}
3
4 The project duration will be \projectDuration months.
5
6 The \projectName project will be articulated in the following

work packages:
7
8 \workPackageAndTaskList
9

10 We foresee \textbf{\numberOfMilestonesAsWord milestones} ...

Listing 1.3. Excerpt of the main proposal document that uses generated
LATEX commands

Model Validation Our next step was to define validation constraints for
project models. We chose to express these constraints using the Epsilon Vali-
dation Language [5], for similar reasons to the ones discussed above. In Listing
1.4 we demonstrate two of the defined constraints that are evaluated for all task

5 Naming conventions such as the use of t and c prefixes in Epsilon’s XML integration
driver are discussed in detail in [4].

426 D.S. Kolovos et al.

elements (context t task in line 1) of the proposal model. The first constraint
(EndAfterStart in line 3), checks that the start date of a task always precedes
its end date (line 4), and produces an appropriate error message if this condition
is not met (line 5). Similarly, the second constraint (constraint WithinThePro-
ject in line 8) checks that the end date of the task does not extend beyond the
project completion date (line 9). To present any identified problems to the con-
tributors of the proposal, unsatisfied constraints produce a new LATEX command
(generatedWarnings), which is then imported from the main proposal document.

1 context t_task {
2
3 constraint EndAfterStart {
4 check : self.i_end > self.i_start
5 message : "Task " + self.getId() + " ends before it

starts"
6 }
7
8 constraint WithinTheProject {
9 check : self.i_end <= t_project.all.first().i_duration

10 message : "Task " + self.getId() + " ends after the end
of the project"

11 }
12 }

Listing 1.4. Validation constraints for PropoGen models

Deployment To enable other contributors to invoke our MDE solution locally,
we had to develop and distribute a standalone runnable application. In the in-
terest of simplicity, we developed a self-contained executable Java bundle (JAR)
on which users could drag-and-drop their project model to invoke the validation
constraints and M2T transformation discussed above. The JAR had to include
a complete copy of the EGL/EVL execution engines as well as the actual trans-
formation and validation constraints.

On a side-note, attempting to bundle the Epsilon execution engines into a
self-contained JAR file was as useful exercise in itself as collecting and packaging
all required dependencies turned out to be quite challenging. As a result of this
exercise, Epsilon now provides pre-bundled standalone JAR files6 that developers
can use in their standalone (i.e. non-Eclipse-based) Java or Android applications
with minimal effort.

3.3 Unexpected Opportunities

As discussed above, our initial motivation for modelling project proposals was
so that we could eventually generate LATEX content that was tedious and error-
prone to maintain manually. However, after developing the LATEX M2T transfor-
mation discussed above, we realised that we could now also produce interesting

6 http://www.eclipse.org/epsilon/download/

http://www.eclipse.org/epsilon/download/

Model Driven Grant Proposal Engineering 427

visualisations for quality assessment purposes from the same model. For exam-
ple, we developed an additional M2T transformation that generates tree-map
charts such as the one displayed in Figure 3, which visualises the distribution
of effort across different work packages of the project, and Sankey charts, such
as the one illustrated in Figure 4 which visualises the contributions of different
work packages to the milestones of the project – both of which we have found
to be extremely useful for establishing confidence in the balance of the project:
one aspect that evaluators tend to study is whether the work/effort/contribu-
tion balance is well distributed across partners, themes and work packages (and
hence both risk and workload are suitably mitigated and managed).

Fig. 3. Tree map visualising the distribution of effort per work package

WP1

WP2

WP3

WP4

WP5

WP7

WP8

M1

WP6

M2

M3

M4

M5

Fig. 4. Sankey diagram visualising how work packages contribute to project milestones

428 D.S. Kolovos et al.

4 Evaluation

In this section we assess the productivity benefits delivered by the XML to
LATEX M2T transformation by analysing data from a recent project proposal
that was developed between August 2012 - January 2013. In particular, we mea-
sure the number of added, removed and deleted lines of text across consecutive
versions of the model and the generated LATEX commands file, using the svn diff
and diffstat tools as displayed in Listing 1.5. The rationale for doing this is that
in the absence of the M2T transformation, we would have needed to perform the
same changes to the LATEX commands file manually.

#<file>: the file to diff
#<r1>: older revision number of the <file>
#<r2>: newer revision number of the <file>
svn diff -r <r1>:<r2> <file> | diffstat - m

Listing 1.5. Bash command used to calculate the number of changes between
consecutive revisions of the XML model and the generated LATEX commands file

Table 1 presents the obtained measurements. The first column of the table
displays the SVN revision numbers for the two files, the second and third columns
display the number of changes in the XML model and LATEX command file with
respect to their previous revision in the repository, and the last column displays
the difference of these two values. A plotted version of the data displayed in
Table 1, appears in Figure 5.

Table 1. Changes in the XML model and generated LATEX command file by revision

Revision Changes (XML model) Changes (generated LATEX) Difference

3558 30 38 8

3595 1 46 45

3645 12 29 17

3646 1 3 2

3649 7 13 6

3675 2 5 3

3913 2 21 19

3914 2 9 7

3922 2 8 6

3991 16 31 15

3992 2 6 4

4019 16 75 59

4044 39 43 4

4045 2 5 3

4065 1 2 1

4075 11 39 28

4088 5 15 10

4091 28 42 14

Total 179 430 251

Model Driven Grant Proposal Engineering 429

Fig. 5. Plotted data from Table 1

The obtained measurements demonstrate that the M2T transformation de-
livered a productivity improvement of ∼58% over the lifecycle of the proposal.
The latest version of the model for that proposal comprised 256 lines of XML
(13,194 bytes) while the generated LATEX command file comprised 676 lines of
dense text (56,694 bytes). Although we do not have hard supporting evidence, it
is reasonable to assume that it is also significantly easier and faster to locate and
update information in the XML document instead of the LATEX command file,
which has a potential to further amplify the productivity improvement figure
obtained above.

4.1 Reflection

Compared to 3-layer metamodelling architectures such as EMF, plain XML is
clearly sub-optimal from a technical point of view for capturing interconnected
models as it lacks features such as support for cross-references and types. In a
non-collaborative environment, we would have most likely used EMF to capture
grant proposal models, as this would have also simplified the subsequent model-
to-LATEX transformation.

However, if we were to use EMF in a collaborative environment, we would
have needed to implement and distribute standalone language-specific editors
(i.e. Eclipse RCP applications) to all partners involved. As RCP applications
are platform-specific, we would have needed to export and distribute several
permutations of the editor for different operating systems. Moreover, with every
change of the metamodel, we would have needed to distribute a new version of
the editor application (and most likely deal with the confusion that multiple
versions of the same editor can cause).

By choosing to model projects using plain XML, we eliminated the need
for developing, maintaining and distributing specialised editors. Despite having
some initial concerns about requiring partners to edit XML directly, providing a
comprehensive first version of the XML document appears to have been sufficient

430 D.S. Kolovos et al.

even for non-technical partners as we have never – over the last 3 years and 5
grant proposals – received any clarification requests.

Another option we considered early in the design process was to use an off-the-
shelf project management tool (e.g. Microsoft Project, ProjectLibre7) instead of
XML for modelling grant proposals. We decided to use XML instead so that we
could have finer control over the structure and organisation of our models.

5 Related Work

There is anecdotal evidence to suggest that several bespoke solutions with com-
parable functionality have been developed and are currently in operation both in
academia and industry. This is unsurprising given the size of the domain (over
16,000 proposals were submitted in response to the European Commission’s
Horizon 2020 calls in April 2014 alone8). However, to the best of our knowledge,
there is no published work that reports on the organisation, architecture and
evaluation of such systems, nor of the specific use cases that such systems aim
to support.

In a wider context, several approaches have been proposed for automatically
generating system reports, documents and manuals from models in different do-
mains. Hyperdoc [6], is a toolkit that provides support for automated generation
of manuals for interactive systems (e.g. VCR players) from state-machine mod-
els. Hyperdoc applies graph analysis techniques in order to identify the shortest
path between pairs of states and provide efficient instructions to the end-user of
the product. In [7], the authors present an approach for generating manuals for
families (product lines) of industrial automation systems, using the DOPLER
variability modelling tool, DocBook as the target document format, and XSLT
for model transformation. In [8], the authors demonstrate how system documents
and reports can be generated using a model-based approach from SysML view-
points and views. In a different domain, in [9], the authors demonstrate how
multimedia presentations can be specified at a high level of abstraction using
XML, and then compiled using XSLT transformations into concrete artefacts
targeting different delivery platforms. XSLT and XML are also used to support
processing of highly structured documents with signing requirements (e.g., to
comply with security policies and governance requirements) in [10], though no
explicit metamodel is used in this work.

In [11], the authors provide a systematic review of 34 approaches for gener-
ating requirements documents from software engineering models such as UML,
user-interface, and goal models and identify a number of best practices including
support for 1) bidirectional traceability, 2) structural correspondence between
the models and the generated documents, 3) generation of documents in a mod-
ifiable format, 4) incremental synchronisation when models change and 5) tai-
loring the generated document according to its target readership. The approach

7 http://www.projectlibre.org
8 http://www.sciencebusiness.net/news/76612/Record-numbers-apply
-for-Horizon-2020-first-round-funding (Last accessed: July 1, 2014)

http://www.projectlibre.org
http://www.sciencebusiness.net/news/76612/Record-numbers-apply-for-Horizon-2020-first-round-funding
http://www.sciencebusiness.net/news/76612/Record-numbers-apply-for-Horizon-2020-first-round-funding

Model Driven Grant Proposal Engineering 431

proposed in this paper is consistent with best practices 2-5 and provides some
support for traceability – mainly from the document back to the project model
through the generation of LATEX commands with human-readable identifiers (e.g.
\workPackageOneTitle).

6 Conclusions

In this paper we have presented how we have applied MDE techniques to auto-
mate repetitive and error-prone tasks in the context of the collaborative develop-
ment of grant proposals. We have demonstrated how grant proposals can be mod-
elled and validated at a high level of abstraction and how model-to-text trans-
formation can then be used to produce correct-by-construction LATEX macros
automating the most tedious and error-prone parts of the process. We regard
this application as highly successful and an essential asset for our work on col-
laborative research projects. Indeed, we have shared this MDE application with
partners and colleagues elsewhere, who now use it as part of their proposal de-
velopment activities.

Acknowledgements. This researchwas part supported by the EPSRC, through
the Large-Scale Complex IT Systems project (EP/F001096/1) and by the EU,
through the OSSMETER FP7 STREP project (#318736) and the MONDO FP7
STREP project (#611125).

References

1. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework. Addison-Wesley (2008)

2. Kolovos, D.S., Matragkas, N.D., Rodriguez, H.H., Paige, R.F.: Programmatic mud-
dle management. In: XM@MoDELS, pp. 2–10 (2013)

3. Rose, L.M., Paige, R.F., Kolovos, D.S., Polack, F.A.C.: The Epsilon Generation
Language (EGL). In: Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA 2008.
LNCS, vol. 5095, pp. 1–16. Springer, Heidelberg (2008)

4. Kolovos, D.S., Rose, L.M., Matragkas, N., Williams, J., Paige, R.F.: A Lightweight
Approach for Managing XML Documents with MDE Languages. In: Proc. 8th
European Conference on Modeling Foundations and Applications, Copenhagen,
Denmark (July 2012)

5. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: On the Evolution of OCL for Capturing
Structural Constraints in Modelling Languages. In: Abrial, J.-R., Glässer, U. (eds.)
Büorger Festschrift. LNCS, vol. 5115, pp. 204–218. Springer, Heidelberg (2009)

6. Thimbleby, H.: Combining systems and manuals. In: Proc. Human-Computer In-
teraction, HCI 1993, vol. VIII, pp. 479–488. University Press, BCS (1993)

7. Rabiser, R., Heider, W., Elsner, C., Lehofer, M., Grünbacher, P., Schwanninger,
C.: A flexible approach for generating product-specific documents in product lines.
In: Bosch, J., Lee, J. (eds.) SPLC 2010. LNCS, vol. 6287, pp. 47–61. Springer,
Heidelberg (2010)

432 D.S. Kolovos et al.

8. Delp, C., Lam, D., Fosse, E., Lee, C.-Y.: Model based document and report gen-
eration for systems engineering. In: 2013 IEEE Aerospace Conference, pp. 1–11
(March 2013)

9. Villard, L., Roisin, C., Layäıda, N.: An xml-based multimedia document processing
model for content adaptation. In: King, P., Munson, E.V. (eds.) DDEP-PODDP
2000. LNCS, vol. 2023, pp. 104–119. Springer, Heidelberg (2004)

10. Brooke, P.J., Paige, R.F., Power, C.: Document-centric xml workflows with frag-
ment digital signatures. Softw., Pract. Exper. 40(8), 655–672 (2010)

11. Nicolás, J., Toval, A.: On the generation of requirements specifications from soft-
ware engineering models: A systematic literature review. Inf. Softw. Technol. 51(9),
1291–1307 (2009)

	Model Driven Grant Proposal Engineering
	1 Introduction
	2 Background
	3 Model Driven Grant Proposal Engineering
	3.1 Context
	3.2 Approach
	3.3 Unexpected Opportunities

	4 Evaluation
	4.1 Reflection

	5 Related Work
	6 Conclusions
	References

