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Abstract Machine learning algorithms are designed to
resolveunknownbehaviors by extracting commonalities over
massive datasets. Unfortunately, learning such global behav-
iors can be inaccurate and slow for systems composed of
heterogeneous elements, which behave very differently, for
instance as it is the case for cyber-physical systems and
Internet of Things applications. Instead, to make smart deci-
sions, such systems have to continuously refine the behavior
on a per-element basis and compose these small learning
units together. However, combining and composing learned
behaviors fromdifferent elements is challenging and requires
domain knowledge. Therefore, there is a need to structure
and combine the learned behaviors and domain knowl-
edge together in a flexible way. In this paper we propose
to weave machine learning into domain modeling. More
specifically, we suggest to decompose machine learning into
reusable, chainable, and independently computable small
learning units, which we refer to as microlearning units.
These microlearning units are modeled together with and
at the same level as the domain data. We show, based on a
smart grid case study, that our approach can be significantly
more accurate than learning a global behavior, while the per-
formance is fast enough to be used for live learning.
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1 Introduction

In order to meet future needs, software systems need to
become increasingly intelligent. A prominent example is
cyber-physical systems (CPSs) and Internet of Things (IoT)
applications, where smart objects are able to autonomously
react to a wide range of different situations, in order to
minimize human intervention [34]. Advances in software,
embedded systems, sensors, and networking technologies
have led to a newgenerationof systemswith highly integrated
computational and physical capabilities, which nowadays
are playing an important role in controlling critical infras-
tructures, like the power grid. Such systems face many
predictable situations for which behavior can be already
defined at design time of the system. In order to react to crit-
ical overload situations, for example, the maximum allowed
load for customers can be restricted. This is called known
domain knowledge. In addition, intelligent systems have to
face events that are unpredictable at design time. For instance,
the electric consumption of a house depends on the number
of persons living there, their activities, weather conditions,
used devices, and so forth. Although such behavior is unpre-
dictable at design time, it is identifiable and a hypothesis
about it can be already formulated and solved later by observ-
ing past situations, once data become available. Sutcliffe et
al. [43] suggest to call this known unknown.

To make smart decisions, intelligent systems have to con-
tinuously refine behavior that is known at design time with
what can be learned only from live data to solve known
unknowns.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-017-0600-2&domain=pdf


T. Hartmann et al.

1.1 Coarse-grained versus fine-grained learning

We distinguish two different learning granularities, coarse-
grained and fine-grained. Coarse-grained learning means
extracting commonalities over massive datasets in order to
resolve unknown behaviors.

Fine-grained learning, on the other hand, means instead of
searching for commonalities over the whole dataset, to apply
learning algorithms only on specific elements of the dataset.
To decide which parts of the dataset should be taken into
consideration for which learning algorithm usually requires
domain knowledge, e.g., structured in form of domain mod-
els.

Nonetheless, nowadays the most common usage of
machine learning algorithms is to resolve unknown behav-
iors by extracting commonalities over massive datasets.
Peter Norvig describes machine learning and artificial intel-
ligence as “getting a computer to do the right thing when
you don’t know what that might be” [37]. Learning algo-
rithms can infer behavioral models based on past situations,
which represent the learned common behavior. However,
in cases where datasets are composed of independent and
heterogeneous entities, which behave very differently, find-
ing one coarse-grained common behavior can be difficult
or even inappropriate. This applies particularly for the
domain of CPSs and IoT. For example, considering the elec-
trical grid, the consumption of a factory follows a very
different pattern than the consumption of an apartment.
Searching for a coarse-grained, common behavior across
all of these entities (the whole or at least large parts of
the dataset) is not helpful. Coarse-grained learning alone,
which is based on the “law of large numbers,” can be
inaccurate for systems which are composed of heteroge-
neous elements which behave very differently. In addition,
in case of data changes, the whole learning process needs
to be fully recomputed, which often requires a lot of
time.

Instead, following a divide-and-conquer strategy, learn-
ing on finer granularities can be considerably more efficient
for such problems [13,48]. This principle is, for example,
also used in text sentiment [29], where a segmentation by
the domain of words can help to reduce complexity. Simi-
larly, multigranular representations [49] have been applied
to solve hierarchical or microarray-based [11] learning prob-
lems. Aggregating small learning units [39] has also been
successfully used to build probabilistic predictionmodels [8].
In accordance with the pedagogical concept [27], we refer
to small fine-grained learning units as “microlearning.” We
believe that microlearning is appropriate to solve the vari-
ous known unknown behavioral models in systems which
are composed of heterogeneous elements which behave very
diverse and can be significantly more accurate than coarse-
grained learning approaches.

1.2 Modeling ML versus domain modeling with ML

Applyingmicrolearning on systems, such as the electric grid,
can potentially lead to many fine-grained learning units.
Furthermore, they must be synchronized and composed to
express more complex behavioral models. Therefore, an
appropriate structure to model learning units and their rela-
tionships to domain knowledge is required. Frameworks like
TensorFlow [1], GraphLab [32], or Infer.NET [4] also divide
machine learning tasks into reusable pieces, structured with
a model. They propose a higher-level abstraction to model
the learning flow itself by structuring various reusable and
generic learning subtasks. These approaches focus solely on
modeling the learningflowwithout any relation to the domain
model. As a consequence, domain data and its structure are
expressed in different models than learning tasks, using dif-
ferent languages and tools, and lead to a separation of domain
data, knowledge, known unknowns, and associated learning
methods. This requires a complexmapping between learning
units and domain data. A similar conclusion has been drawn
by Vierhauser et al. [44] for monitoring system of systems.

To address this complexity, in this paper we propose to
weave micromachine learning seamlessly into data model-
ing. Specifically, our approach aims at:

– Decomposing and structuring complex learning tasks
with reusable, chainable, and independently computable
microlearning units to achieve a higher accuracy com-
pared to coarse-grained learning.

– Seamlessly integrating behavioral models which are
known at design time, behavioral models that need to
be learned at runtime, and domain models in a single
model expressed with one modeling language using the
same modeling concepts.

– Automating the mapping between the mathematical rep-
resentation expected by a specific machine learning
algorithm and the domain representation [4] and inde-
pendently updating microlearning units to be fast enough
to be used for live learning.

We take advantage of the modeled relationships between
domain data and behavioral models (learned or known at
design time), which implicitly define a fine-grained mapping
of learning units and domain data. This is a natural extension
of basic model-driven engineering approaches.

We implemented and integrated our approach into the
open-source framework GreyCat.1 GreyCat is an exten-
sion and the successor of the Kevoree modeling framework
KMF [14].2 Like EMF [5], KMF is a modeling frame-
work and code generation toolset for building object-oriented

1 http://greycat.ai/.
2 http://modeling.kevoree.org/.
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applications based on structured data models. It has been
specifically designed for the requirements of CPSs and IoT.

1.3 Motivating case study

Let us consider a concrete use case. We are working together
with Creos Luxembourg, the main electrical grid operator
in Luxembourg, on a smart grid project. A major challenge
in this project is to monitor and profile various data, e.g.,
consumption data, in order to be able to detect anomalies
and predict potential problems, like electric overload, before
they actually happen. The important smart grid entities for
the context of this paper are smart meters and concentrators.
Smart meters are installed at customers houses and contin-
uously measure electric consumption and regularly report
these values to concentrators, where the data are processed.
To which concentrator a meter sends its data depends on var-
ious conditions, e.g., distance or signal strength, and changes
frequently over time [19].

For various tasks, like electric load prediction or detection
of suspicious consumption values, customers’ consumption
data need to be profiled independently and in real time. This is
challenging due to performance requirements but alsomainly
due to the large number of profiles, which need to be syn-
chronized for every new value. To model such scenarios,
we need to express a relation from a machine learning pro-
filer to the consumption of a customer. Since the connections
from smart meters to concentrators vary over time, a con-
centrator profiler depends on the profiles of the currently
connected meters. Coarse-grained, in this context, means
profiling on the concentrator level, while fine-grained means
profiling on a smart meter level and then combining the
profiles of the smart meters connected to one concentrator
together. Profiling on a concentrator level is often needed to
evaluate the electric load situation for a specific geographi-
cal region of the grid, and many operational decisions are
based on this. One coarse-grained profiler at the concen-
trator level will not take real-time connection changes and
their implications in predicting the electric load into account.
Coarse-grained profiling alone can be very inaccurate in such
cases.

Another example where microlearning and composing
complex learning from smaller units can be significantly
more accurate than coarse-grained learning are recom-
mender systems. In such systems, coarse-grained learning
is to recommend to the users of the same category or
user groups, the same products. Fine-grained learning cre-
ates one microlearning unit per user and/or per product.
Again, using only coarse-grained profiles for customers and
products can be very inaccurate, or generic. In case of rec-
ommender systems, microlearning can be even combined
with coarse-grained learning by using the coarse-grained
learning in cases where the user’s fine-grained learning

does not have enough information to recommend accu-
rately.

The bottom line is that microlearning units and combining
them to larger learning tasks are especially useful for systems
which are composed of multiple independent entities which
behave very differently. CPSs and IoT systems are domains
where these characteristics apply specifically.

We evaluate our approach on a concrete smart grid case
study and show that:

– Micromachine learning for such scenarios can be more
accurate than coarse-grained learning.

– The performance is fast enough to be used for live learn-
ing.

1.4 Remainder of this paper

The remainder of this paper is as follows. Section2 intro-
duces the necessary background. Section3 presents our
model-based micromachine learning approach. We discuss
the metamodel definition used in our approach and present
a modeling language to seamlessly model machine learning
and domain data. In Sect. 4 we evaluate our approach on a
smart grid case study, followed by a discussion in Sect. 5.
The related work is discussed in Sect. 6. A conclusion and
future work is presented in Sect. 7.

2 Background

In this section we introduce modeling and metamodeling
techniques and present an overview of machine learning and
metalearning techniques.

2.1 Modeling techniques

Modeling is a fundamental process in software engineering.
Over time different formalisms to model and reason about
systems have been developed and used for different pur-
poses [2,24,41]. For example, entity-relationship models [7]
are a general modeling concept for describing entities and the
relationships between them. They are widely used to model
schemas of relational databases. Ontologies, RDF [30], and
OWL [45] are other modeling approaches, which are mainly
used in the domain of the Semantic Web. Model-driven
engineering (MDE) [28] is probably one of the best known
modeling techniques. As an extension of MDE, an emerg-
ing paradigm called models@run.time [36] proposes to use
models both at design and runtime to support reasoning pro-
cesses, mainly for CPSs. Most of these approaches have in
common that they describe a domain using a set of concepts
(classes, types, elements), attributes (or properties), and the
relations between them.
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Closely related to modeling is the concept of metamod-
eling. A metamodel is an abstraction of the model itself. It
defines the properties of the model. A model conforms to its
metamodel, comparable to how a program conforms to the
grammar of the language it is written in. The meta object
facility (MOF) [33] proposed by the object management
group (OMG) is a popular language for defining metamod-
els. Specifying formal metainformation helps to make data
machine understandable.

To clarify the used terminology, Fig. 1 shows the relations
between a metamodel, model, and object graphs.

First, the domain is modeled using a metamodel, defined
in languages like EMF, UML, or other graphical or textual
domain specific languages. Then, one or several transfor-
mation or generation steps transform the metamodel into the
actual model, usually implemented in an object-oriented pro-
gramming language like Java, Scala, or C++. This model is
then used in the implementation of an application. During
runtime it can be interpreted as an object graph. In this paper
we use the terms runtime model and object graph synony-
mously. To refer to ametamodel we use the termsmetamodel
or domain model.

During runtime, application data are usually never static
but evolve over time. Nonetheless, for many tasks, like
machine learning, it is usually not enough to analyze only
the latest data. Different approaches to represent and tra-
verse temporal data have been suggested, e.g., [18,42].
Regardless of the concrete implementation (in the implemen-
tation of our framework we follow the approach presented
in [20,21]), for this paper we assume that our object
graphs evolve over time and that we can access historical
data.

2.2 Machine learning techniques

Machine learning (ML) is an evolution of pattern recognition
and computational learning theory in artificial intelligence.
It explores the construction and study of algorithms that can
learn from and make predictions on data. It uses algorithms
operating by building a mathematical model from example
inputs to make data-driven predictions or decisions, rather
than strictly static program instructions [46]. The essence of
ML is to create compact mathematical models that represent
abstract domain notions of profiles, tastes, correlations, and
patterns that (1)fit well the current observations of the domain
and (2) are able to extrapolate well to new observations [35].

Several categorizations of ML techniques are possible.
We can divide these techniques according to the nature of
the used learning: In supervised learning data have prede-
fined and well-known fields to serve as expected output of
the learning process, while in unsupervised learning input
data are not labeled and does not have a known field defined
as output. ML algorithms try to deduce structures present in
the input data to find hidden patterns. Many ML algorithms
require some parameters (called hyper-parameters) to con-
figure the learning process itself. In some situations, these
parameters can also be learned or adapted according to the
specific business domain. Thus, they are called metalearn-
ing parameters and the process of learning such parameters
is calledmetalearning. For the rest of the paper wewill refer
to such parameters simply as parameters.

Another categorization of ML techniques is according to
the frequency of learning: In online learning, for every new
observation of input/output, the learning algorithm is exe-
cuted and its state is updated incrementally with each new
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Fig. 1 Relations between a metamodel, model, and object graphs
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observation. This is also known as live, incremental, or on-
the-fly ML. We speak of offline learning or batch learning
when a whole dataset or several observations are sent in “one
shot” to the learning algorithm. The learning technique is
trained using a small batch or a subset of observations sim-
ilar to the requested input. This type offers a case-based or
context-based reasoning because the learning is tailored for
the requested input.

Finally, a ML module can be composed by combining
several ML submodules. This is usually called ensemble
methods. It is often used to create a strong ML model from
multiple weaker ML models that are independently trained.
The results of the weaker models can be combined in many
ways (voting, averaging, linear combination) to improve the
overall learning. Random forests are a powerful example of
these techniques, where the global ML module is composed
of several decision trees, each trained on a subset of data and
features. Neural networks are another example, where the
global network is composed by several neurons, and each
can be seen as an independent learning unit.

A generic modeling framework for ML should be flexible
enough tomodel any of theseML types. This principle served
as a guideline for the development of our framework.

3 Weaving microlearning and domain modeling

In this section we first discuss the objectives of our approach.
Then we present the metamodel definition (meta–meta
model) which we use for the implementation of our approach
and detail what exactly microlearning units are. Next, we
present the syntax and semantic of our modeling language
and show concrete examples of its usage. This section ends
with presenting important implementation details.

3.1 Objective: domain modeling with ML

In order to weave micro-ML into domain modeling we need
to extendmodeling languages tomodel learned attributes and
relations and “default” ones seamlessly together. It requires
modeling languages to allow to specify in a fine-grained
way what should be learned, how (algorithm, parameters)
something should be learned, and from what (attributes, rela-
tions, learned attributes, learned relations) something should
be learned. To be appropriate for live learning, these fine-
grained learning units need to be independently computable
and updateable.

We use a meta–meta model to define this weaving.
A meta–meta model specifies the concepts which can be
expressed in a concrete metamodel, i.e., it specifies what can
be expressed in metamodels conforming to it. This allows
domain modes to express learning problems. Based on this,

we can define a concrete modeling language providing the
necessary constructs to weave ML into domain modeling.

3.2 Meta–meta model

Wefirst specify themetamodel definition (meta–metamodel)
underlying our approach. This definition, shown in Fig. 2,
is inspired by MOF/EMOF and extended with concepts to
express machine learning directly in the domain modeling
language. Section3.4 describes the modeling language we
built around this meta–meta model and defines the syntax
and formal semantic of the language.

Elements related to ML are depicted in the figure in light
gray. We focus on these elements since other parts comply
with standardmetamodel definitions, like EMOForMOF.As
can be seen in the figure, we define metamodels consisting of
an arbitrary number of metaclasses and enums. Metaclasses
in turn have an arbitrary number of properties. Properties
are attributes, relations, or what we call “specified proper-
ties.” Specified properties are either “learned properties”
or “derived properties.” Learned properties are relations or
attributes which will be learned by a specific machine learn-
ing algorithm.A concrete learning algorithm can be specified
with the “specification” “using.” Parameters for the learning
algorithm can be defined with the specification “parameter.”
The “feature” specification allows to access properties from
other metaclasses or enums.

Derived properties are similar to learned properties; how-
ever, derived properties do not have a state associated, i.e.,
they do not need to be trained but simply compute a value.
The value of a derived attribute is calculated from the val-
ues of attributes of other metaclasses, whereas the value of a
learned attribute depends on a state and past executions, i.e.,
on learning. As we will see in Sect. 3.6, this is reflected by
the fact that for derived properties we only generate so-called
“infer” methods, whereas for learned properties we generate
“learn” and “infer” methods.

3.3 Microlearning units

The core elements of our approach are microlearning units.
As explained in Sect. 1 we use the term “microlearning
unit” to refer to small fine-grained learning units. These
units are designed to decompose and structure complex
learning tasks with reusable, chainable, and independently
computable elements. Figure3 illustrates a concrete example
of a microlearning unit and set it into relation to the meta and
instance levels. In the top left of the figure we see the defini-
tion of a SmartMeter metaclass. Besides two attributes,
activeEnergy and reactiveEnergy, one derived
property named aboveThreshold and one learned prop-
erty,whichwenamedpowerProbabilities, are defined.
As will be detailed in Sect. 3.6, specifying the learned
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Fig. 2 Meta–meta model
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Fig. 3 Schematic representation of a microlearning unit

property powerProbabilities results in automatically
generating the necessary code for the mapping between the
internal representation of a machine learning algorithm and
domain models. The machine learning algorithm will be
“weaved” inside the metamodel instances, in this case of
SmartMeter instances. As illustrated, the microlearning
unit is an instance of a learning algorithm, contained in an
object and related to a state. It is also related to the instance of
the SmartMeter class, or more specifically to the learned
attribute. In fact, every instance of a SmartMeter class has
its own (automatically generated) instance of amicrolearning
unit.

As can be seen in the figure, ML (via learned proper-
ties) can be seamlessly integrated and mixed with domain

modeling. Section3.4 presents our proposed modeling lan-
guage and details how this can be defined within the concrete
syntax of this language. The resultant ability to seamlessly
define relationships from learned properties to domain prop-
erties and to other learned properties—and vice versa from
domain properties to learned properties—enables composi-
tion, reusability, and independent computability/updates of
microlearning units. An additional advantage of independent
microlearning units is that they can be computed in a dis-
tributed way. Basically, every learning unit can be computed
on a separate machine. Such distribution strategy relies on
a shared model state, as for example presented in [22]. The
computation can then be triggered in a bulk-synchronous par-
allel (BSP) way [15] over this shared state.
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Our approach is built in a way that the same learning
models can be used in several tasks without the need to
duplicate it. For example, in the smart metering domain,
the electricity consumption profile of a user can be used to:
predict the electrical load, classify users according to their
profile, or to detect suspicious consumption behavior. The
possibility to compose microlearning units allows a segre-
gation of learning concerns. In case an application requires
a combination of different ML techniques, it is not neces-
sary to mash traditional algorithms for each step together.
Instead, independentmicrolearning units can be composed in
a divide-and-conquer manner to solve more complex learn-
ing problems. This is shown in more detail in Sect. 3.5. In
addition, the learning algorithm itself is encapsulated and
the mapping between the domain model and the data rep-
resentation expected by the respective learning algorithm is
automatically generated. In this way, the learning algorithm
can be easily changed without the need to change the inter-
face for the domain application.

The possibility to derive attributes from others, allows to
create richer models. In fact, ensemble methods in the ML
domain, derive strongerMLmodels fromweakerMLmodels
by combining the results of the smaller units. In our frame-
work, we enable ensemble methods from several learned
attributes (learnt through different weaker ML models) by
creating a derived attributed that combines their results.

The smart meter profiler is a representative example for
microlearning. The profiler works on a specific smart meter
instance, instead of profiling, lets say, all smart meters. In
addition, this learning unit can be reused and composed. For
example, a concentrator profiler can be defined as an aggrega-
tion of all smartmeter profilers of the smartmeters connected
to the concentrator. By defining microlearning units in a
metamodel, the relationships between domain classes and
microlearning units are explicitly defined and can be used
to infer for which changes a microlearning unit needs to be
recomputed.

Even though our approach promotes microlearning, there
are nonetheless scenarios where it is helpful to also learn
coarse-grained behavior, e.g., the consumption profile of all
customers. Therefore, we allow to specify a scope for learned
properties. The default scope is called local and means
that the learning unit operates on an per instance level. For
coarse-grained learning we offer a global scope, which
means that the learning unit operates on a per class level, i.e.,
on all instances of the specified class.

3.4 Modeling language

In this section we introduce our modeling language to enable
a seamless definition of domain data, its structure, and associ-
ated learning units. The following definitions intend to avoid
ambiguities and to formally specify the capabilities and lim-

its of our proposed language. The language is inspired by the
state of the art in metamodeling languages (e.g., UML [38],
SysML [16], EMF Ecore [5]). The semantic of the language
follows the one of UML class diagrams extended by the
concept of microlearning units. Many modeling languages,
like UML, are graphical. Advantages of graphical modeling
languages are usually a flatter learning curve and better read-
ability compared to textual modeling languages. On the other
hand, textual modeling languages are often faster to work
with, especially for experts. Also, editors and programming
environments are easier to develop and less resource hun-
gry for textual languages. A recent study of Ottensooser et
al. [40] showed that complex processes and dependencies are
more efficient to express in a textual syntax than a graphical
one. For these reasons we decided to first implement a textual
modeling language. For future work we plan to propose an
additional graphical modeling language.

In the following we first present the syntax and grammar
of the language followed by a definition of its semantic. The
purpose of this formalization is to clearly detail the capabil-
ities and limits of our proposed language, i.e., to formally
define what can be expressed with it. Then, we illustrate by
means of the concrete smart grid use case how this language
can be used to express different combinations of machine
learning and domain modeling.

3.4.1 Syntax

The syntax of our textual modeling language is inspired by
Emfatic [9] and is an extension of the language defined
in [14]. Listing 1 shows its formal grammar. The parts in
bold show the language extensions.

Listing 1 Grammar of our modeling language

metaModel ::= (class | enum)*
enum ::= ’enum’ ID ’{’ ID (’,’ ID)* ’}’
class ::= ’class’ ID parent? ’{’ property* ’}’
property ::= annot* ( ’att’ | ’rel’ ) ID : ID spec?
parent ::= ’extends’ ID (’,’ ID)*
annot ::= ( ’learned’ | ’derived’ | ’global’ )
spec ::= ’{’ (feature | using | param )* ’}’
param ::= ’with’ ID ( STRING | NUMBER )
feature ::= ’from’ STRING
using ::= ’using’ STRING

This grammar basically reflects the classic structure
of object-oriented programs. Multiplicities of relationships
(indicated by the keyword rel) are by default unbounded,
i.e., too many. Explicit multiplicities can be defined using
the with clause, e.g., with maxBound * or with
minBounds 1. Metamodels are specified as a list of
metaclasses (and enums). Classes, Enums and their
Properties are defined similar to Emfatic. To distinguish
static, learned, and derived properties, we introduce anno-
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tations for attribute and relation definitions. In addition to
this, a specification block can optionally refine the behavior
expected from the corresponding property. A specification
can contain statements to declare the algorithm to use, fea-
ture extraction functions, and metaparameters to configure
the used algorithms. Feature extraction statements are using
string literals where a OCL-like notation is used to navigate
to reachable properties.

3.4.2 Semantic

Our modeling language follows the formal descriptive
semantic and axioms of UML class diagrams, as defined
in [50]. We first present the necessary formalism of UML
class diagrams and then extend this formalism to include
axioms for weaving learned and derived properties into our
language. The semantic is defined with respect to the syntax
of our language, defined in Sect. 3.4.1.

Definition 1 Let {C1,C2, . . . ,Cn} be the set of concrete
metaclasses in the metamodel, we have ∀x (C1(x)∨C2(x)∨
· · · ∨ Cn(x)) is an axiom

In this definition we state that any object x should be at least
(inheritance) an instance of one of the metaclasses defined
in the metamodel. Additionally, given an object x all meta-
classes verifying C(x) should be linked by a relationship
of inheritance following classical UML semantics and as
defined in [50]. This inheritance model is not described here
for sake of simplicity and to keep the emphasis on learning
aspects. In the syntax of our language, the definition of a
metaclass starts either with the keyword class or enum.

Definition 2 For each meta-attribute att of type T in C , we
have: ∀x, y C(x) ∧ (att (x, y) → T (y)) is an axiom

In the second definition, we are stating that if x is an instance
of a metaclass C , which has a certain meta-attribute att of
type T , the value y of this meta-attribute should always be
of type T . Attributes are defined using the keyword att in
the syntax of our proposed language.

Definition 3 For each relationship rel from metaclass C1 to
another metaclass C2, we have:
∀x, y (C1(x) ∧ rel(x, y)) → C2(y) is an axiom

In this definition, if a metaclass C1 has a relationship rel to a
metaclassC2, and x is an instance ofC1, having a relation rel
to y, this implies that y should be an instance of C2. In the
syntax of our proposed language, relationships are defined
using the keyword rel.

Definition 4 For each relationship rel from metaclass C1 to
C2, if ‘e1..e2′ is its multiplicity value, we have:
∀x C1(x) → (e1 ≤ ||y|rel(x, y)|| ≤ e2) is an axiom.

Similarly, for each meta-attribute att in C1, if ′e1..e2′ is its
multiplicity value, we have:
∀x C1(x) → (e1 ≤ ||y|att (C1, x) = y|| ≤ e2) is an axiom

In Definition 4, we state that an attribute or a relationship can
have minimum and maximum bounds defined in the meta-
model, and any instance of the metaclass should have its
attributes and relationships respecting these bounds.

Following the same approach, we extend the classical
UML definition of metaclass, by adding two new kinds of
properties: learned and derived attributes and relations. In
particular, a metalearned attribute learnedatt , in a meta-
class C , is a typed attribute of a type T that represents a
known unknown in the business domain. It is learned using a
machine learning hypothesis. This hypothesis can be cre-
ated from a parameterized ML algorithm, its parameters,
a set of features extracted from the business domain, and
a past learned state that represents the best fitted model
of the learning algorithm to domain data. A metaderived
attribute derivedatt , is very similar to the learnedatt with
the only difference that the deriving algorithm does not
depend on a past state but only on extracted features. In
other terms, a metaderived attribute, has a type T , a set
of extracted features, a deriving parameterized algorithm
and its parameters. The same definition applies for learned
and derived relations that behave in the same manner than
attributes with only a different result type (e.g., collection
of nodes as output). In the syntax of our proposed language,
derived/learned attributes and relationships are defined with
the keywords derived att, derived rel, learned
att, and learned rel.

A step called feature selection in the metamodeling of
Cx is required in order to specify the dependencies needed in
order to learn learnedatt or derive derivedatt . The feature
selection can be done only over meta-attributes reachable
within the host metaclass Cx . We define this reachability
function by the following:

Definition 5 reach : (metaClass ×meta Att) �→ boolean
reach(Cx , a) = att (Cx , a) ∨ learnedatt (Cx , a) ∨
derivedatt (Cx , a)
∨(∃Cy |rel(Cx ,Cy) ∧ reach(Cy, a))

In this definition, ameta-attribute a is considered as reach-
able from a metaclass Cx , either if it is a meta-attribute,
metalearned attribute, or metaderived attribute within the
metaclass Cx itself, or if Cx has a relationship to another
class Cy , which contains a or it can be reachable from there,
using recursively another relationship.

Definition 6 Let F be the set of features to extract in order
to learn learnedatt in a metaclass C , we have:
∀ f ∈ F, ( f ! = learnedatt) ∧ reach(C, f ) is an axiom.
Similarly, in order to derive derivedatt , we have:
∀ f ∈ F, ( f ! = derivedatt) ∧ reach(C, f ) is an axiom.
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In other words, a metalearned or derived attribute can
extract their features from the meta-attributes defined within
the metaclass C (except itself to avoid circular reasoning) or
reachable from its relationships in a recursive way.

Definition 7 To summarize, a metalearned attribute
learnedatt has a type T , a set of feature extractions F , a
parameterized learning algorithm algp1,...,pn , a set of param-
eters p1, . . . , pn , and an learned state L S.
Moreover, we have: ∀x, y C(x) ∧ (learnedatt (x, y) →
T (y))
∧ y = algp1,...,pn (eval(F), L S) is an axiom.

Similarly, a metaderived attribute derivedatt has a type
T , a set of feature extractions F , a parameterized learning
algorithm algp1,...,pn , a set of parameters p1, . . . , pn .
We have: ∀x, y C(x) ∧ (derivedatt (x, y) → T (y))
∧ y = algp1,...,pn (eval(F)) is an axiom

In Definition 7, we present that the metalearned or derived
attribute is typed in the same manner of classical meta-
attributes (Definition 2), and the type has to be always
respected. By extension, learned and derived relations fol-
low strictly the same definition than learned and derived
attributes and therefore will not be repeated here. Moreover,
the learned attribute is calculated by executing the param-
eterized learning algorithm over the extracted features and
the learned state. For the derived attribute, it is calculated by
executing the parameterized deriving algorithm over only the
extracted features. Both learned and derived properties are
considered as specified properties, because they require some
specifications (features, parameters, algorithm), in order to
be calculated. This is depicted in our meta–meta model in
Fig. 2. Finally, at an instance level, an object state is com-
posed by the state of its classical attributes, relationships,
and the states of each of its learned attributes.

As our model has a temporal dimension, every meta-
attribute has a time dimension, and by extension, the learned
state has as well a temporal dimension. All meta-attributes,
relationships, states, and parameters are replaced by their
temporal representation (For example: att �→ att (t)). For
feature extraction, it is possible to extract the same attributes
but coming from different points in time as long as the
attributes are reachable.

3.5 Model learning patterns

Similarly to howmodeling methodologies have led to design
patterns to solve common problems, in this subsection we
describe patterns to weave machine learning into models.
We describe how our language can be used on the concrete
smart grid use case with different combinations of machine
learning and domainmodeling. The section starts with a sim-
ple domain model, then explains different combinations of

domain data and learning, and ends with a more complex
example on how different learnings can be composed.

3.5.1 Weaving learned attributes into domain classes

Let’s start with a simple example. Listing 2 shows the def-
inition of a class SmartMeter. It contains two attributes
activeEnergy and reactiveEnergy and a relation to
a customer. These are the typical domain attributes defin-
ing a SmartMeter class.

In this class we define a learned attribute anomaly that
automatically detects abnormal behavior, based on profil-
ing active and reactive energy. To do so, we specify to use a
Gaussian anomaly detection algorithm as learning algorithm.
Based on this definition, the code generator of GreyCat gen-
erates the SmartMeter domain class—including features
like persistence—andweaves thenecessarymachine learning
code into it. A template of the underlying Gaussian mixture
model algorithm is implemented in GreyCat and used by
the generator to weave the machine learning code into the
domain class. In this example, the attribute anomaly can
be seamlessly accessed from all SmartMeter instances. In
fact, the attribute can be used similar to “normal” ones (i.e.,
not learned ones), however instead of the default getter and
setter methods, the generated API offers a train and an
infer method. This example shows how learned attributes
can be seamlessly woven into domain classes.

Listing 2 Meta model of a smart meter with anomaly detec-
tion

class SmartMeter {
att activeEnergy: Double
att reactiveEnergy: Double
rel customer: Customer
learned att anomaly: Boolean {
from"activeEnergy"
from "reactiveEnergy"
using "GaussianAnomalyDetection"

}
}

3.5.2 Defining a learning scope for coarse-grained
learning in domain models

Listing 3 shows an example of a power classification prob-
lem. In this listing, first an enumeration Consumption
Type with three categories of consumption types (low,
medium and high) is defined. Then, we extend the class
SmartMeter to add a global classify attribute which
classifies users according to their consumption behaviors.
It learns from activeEnergy, reactiveEnergy, and
nbResidents.
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This example shows coarse-grained learning, where all
instances of a domain class contribute to one learning unit.
It demonstrates that attribute extractions cannot only hap-
pen at the level of attributes of the current instance but
also to any reachable attribute from the relation of the cur-
rent instance. In this example, the attribute nbResidents,
which is the number of residentswithin the household of each
customer, is extracted from a concrete Customer instance
of a concrete SmartMeter instance. Moreover, it shows
how to specify the machine learning hyper-parameters (here
the learning rate and regularization rate) within the learned
attribute using the keyword with.With this definition,Grey-
Cat generates, besides the enum ConsumptionType, a
domain class SmartMeter. As in the previous example,
the machine learning code for the linear classification is
directly woven into the generated domain class. Again, a
template of a linear classification algorithm is integrated in
GreyCat and used by the generator to generate the concrete
code.

Listing 3 Meta model of a power classifier

enum ConsumptionType { LOW , MEDIUM , HIGH }
class SmartMeter{

[...]
global learned att classify: ConsumptionType {
from "customer.nbResidents"
from "activeEnergy"
from "reactiveEnergy"
with learningRate 0.001
with regularizationRate 0.003
using "LinearClassifier "

}
}

3.5.3 Modeling relations between learning units and
domain classes

Listing4 shows themetaclass of aSmartMeterProfiler.
In a first step we define that such profilers have relation-
ships to SmartMeter instances and vice versa. Then,
we extract several attributes from this relationship. For
instance, we get the hour of the day (with a GreyCat
built-in function Hour(date)), the active and reactive
energy and calculate the square value. Attribute extrac-
tions can be any mathematical operations over the attributes
that are reachable from the relationships defined within the
class. In this example, the profiler learns the probabilities
of the different power consumptions, hourly based, using
a Gaussian mixture model algorithm [23]. For this sce-
nario, GreyCat generates the domain classes SmartMeter
and SmartMeterProfiler. The machine learning code,
based on a template implementation of a Gaussian mixture
model algorithm, is injected into the generated code. The

SmartMeterProfiler is generated as a regular domain
class (with a learned attribute).

Listing 4 Meta model of a smart meter profiler

class SmartMeterProfiler {
rel smartMeter : SmartMeter
learned at t powerProbabilities : Double[] {
from "Hour (smartMeter . time)"
from "smartMeter . activeEnergy^2"
from "smartMeter . reactiveEnergy^2"
using "GaussianMixtureModel"

}
}

class SmartMeter {
[ . . . ]
rel profile : SmartMeterProfiler

}

3.5.4 Decomposing complex learning tasks into several
microlearning units

For the last example,we showhow to use domain information
to derive an advanced profiler at the concentrator level using
the fine-grained profilers at the smart meters. First, we define
a class Concentrator that contains relations to the con-
nected smart meters. Then, we define a Concentrator
Profiler with a relation to an Concentrator and
vice versa. Inside this profiler, we derive an attribute
powerProbabilities using the keyword derived
and using an aggregation function that combines the
probabilities from the fine-grained profiles. This exam-
ple shows how fine-grained machine learning units can
be combined to larger ML units. Similar to the previ-
ous examples, GreyCat generates, based on this defini-
tion, two domain classes: Concentrator and Concent
ratorProfiler.

Listing 5 Meta model of a concentrator and its profiler

class Concentrator {
rel connectedSmartMeters : SmartMeter
rel profile :ConcentratorProfiler

}

class ConcentratorProfiler {
rel concentrator : Concentrator
derived at t powerProbabilities : Double[] {
from concentrator . connectedSmartMeters . profile
using "aggregation"

}
}
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3.5.5 Coarse-grained learning

As discussed, our approach also allows coarse-grained learn-
ing. The following example shows how coarse-grained
learning can be expressed with our proposed language. A
class ConcentratorProfiler is used to profile the
consumption values of all connected smart meters using
a GaussianMixtureModel algorithm. This example is
similar to the previous one but instead of aggregating the
fine-grained learned profiles of the individual smart meters
(fine-grained learning), in this example we directly profile
the consumption values of the smart meters connected to a
concentrator in a coarse-grained manner.

Listing 6 Meta model of a coarse-grained consumption pro-
filer

class Concentrator {
rel connectedSmartMeters : SmartMeter
rel profile :ConcentratorProfiler

}

class ConcentratorProfiler {
rel concentrator : Concentrator
learned at t powerProbabilities : Double[] {
from "Hour(concentrator .connectedSmartMeters . time)"
from "concentrator . connectedSmartMeters . activeEnergy^2"
from "concentrator . connectedSmartMeters . reactiveEnergy^2"
using "GaussianMixtureModel"

}
}

3.6 Framework implementation details

Our approach is implemented as a full modeling environ-
ment integrated into IntelliJ IDE.3 The development process
with our framework follows default MDE approaches, start-
ing with a metamodel definition. The complete LL grammar
of our extended modeling language is available as open-
source.4 Therefore, our framework contains a code generator
based on Apache Velocity5 to generate APIs for object-
oriented languages. Currently, our generator targets Java and
TypeScript.

The generated classes can be compared to what is gener-
ated by frameworks like EMF. In the following, we focus
on the ML extensions. According to what is defined in
the metamodel, our code generator “weaves” the concrete
machine learning algorithms into the generated classes and
also generates the necessary code to map from a domain
representation (domain objects and types) to the inter-
nal mathematical representation expected by the learning

3 https://www.jetbrains.com/idea/.
4 https://github.com/kevoree-modeling/dsl.
5 http://velocity.apache.org/.

algorithm (double arrays, matrices, etc.) and vice versa. Var-
ious machine learning algorithms can be integrated in our
framework. Currently, we implemented the following algo-
rithms:

– Regression Live linear regression
– Classification Live decision trees, Naive Bayesian mod-
els, Gaussian Bayesian models

– Clustering KNN,StreamKM++
– Profiling Gaussian Mixture Models (Simple and Multi-
nomial)

For every derived property our generator adds an infer
method to the generated class, which contains the code
to compute the property according to its metamodel def-
inition. Similar, for every learned property our generator
adds an infer to read the state of the learning unit and
a train method to trigger the injected learning algo-
rithm.

Since our framework targets CPSs and IoT applications it
has a strong focus on performance. Thus, we do not rely on
in-memory models but instead on a specialized graph stor-
age. This has been developed to handle the high volatility of
learning unit states.

Since relationships betweendomain classes andmicrolearn-
ing units are explicitly defined, they can be used during
runtime to infer forwhich changes amicrolearning unit needs
to be recomputed. This is realized using change listeners and
an asynchronous message bus. As a result, our framework
supports fully independent updates of learning units. Lever-
aging the underlying shared graph storage model this can
even be done in a distributed manner.

4 Evaluation

In this section we evaluate our approach based on two key
performance indicators: (1) Can micromachine learning be
more accurate than coarse-grained learning and (2) is the
performance of using micromachine learning fast enough to
be used for live learning.

4.1 Setup

We evaluate our approach on the smart grid use case
introduced in Sect. 1. We implemented a prediction engine
for customers’ consumption behavior using our modeling
framework. This engine predicts the consumption behav-
ior based on live measurements coming from smart meters.
We implemented this evaluation twice, once with a clas-
sical coarse-grained approach and another time with our
microlearning-based approach. The goal is to demonstrate
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Fig. 4 Coarse-grained profiling (top) versus microlearning profiling (bottom)

that our microlearning-based approach can be more accurate
while remaining fast enough to be used for live learning.

For our evaluation we consider 2 concentrators and 300
smart meters. We use publicly available smart meter data
from households in London.6 The reason why we use pub-
licly available data instead of data from our industrial partner
Creos is that these data are confidential what would pro-
hibit to publish these data for reproducibility. Our evaluation
is based on 7,131,766 power records, from where we use
6,389,194 records for training and 742,572 records for test-
ing. The used training period is 15/08/2012 to 21/11/2013
and the testing period from 21/11/2013 to 08/01/2014.

For the first evaluation, we use a coarse-grained profiler on
the concentrators. All smart meters send their data regularly
to concentrators where the sum of all connected smart meters
is profiled. In a second evaluation we use our microlearning-
based approach and use one individual profiler for every
smart meter and define an additional profiler for every con-
centrator, which learn from the individual profilers of the
connected smart meters. As learning algorithm we use in
both cases Gaussian mixture models, with 12 components,
profiling the consumption over a 24 h period, resulting in 2-h
resolution (24/12 = 2). We train the profilers for both cases
during the training period, then we use them in the testing
period to estimate/predict the power consumptions for this
period.

We simulate regular reconfigurations of the electric grid,
i.e., we change the connections from smart meters to concen-
trators. This scenario is inspired by the characteristics of a
typical real-world smart grid topology, as described in [19].
Every hour we randomly change the connections from smart

6 http://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-
london-households.

meters to concentrators. At any given point in time, each
concentrator has between 50 and 200 connected meters.

We performed all evaluations on an Intel Core i7 2620M
CPU with 16 GB of RAM and Java version 1.8.0_73. All
evaluations are available at GitHub.7

We use the traditional holdout method, where the dataset
is separated into a training set and a testing set, instead of
a k-fold cross-validation method. When it comes to time-
series, the seasonal effect can introduce a bias when splitting
the dataset in equivalent sets, required by the k-fold cross-
validation method [12]. Moreover, in our evaluation we want
to demonstrate the accuracy of modeling with microlearning
units rather than evaluating the efficiency of the ML algo-
rithm itself.

4.2 Accuracy

First, we compare the coarse-grained profiling to the
microlearning approach to predict the power consumption
over the testing set. Figure4 shows the results of this eval-
uation. In both plots, the blue curve represents the testing
dataset, i.e., the real power consumption that has to be pre-
dicted.

The coarse-grained profiler is not affected by the topol-
ogy changes. In fact, the profiler at the concentrator level has
learned an average consumption that is always replayedwith-
out considering the connected smartmeters. This explains the
periodic, repetitive aspect of the prediction curve.

In contrary, the microlearning approach defines a pro-
filer on the concentrator as a composition of the profilers
of all connected smart meters, as shown in the metamodel
in Listing 6. In case the topology changes, e.g., a smart
meter disconnects, the concentrator profiler (composed of

7 https://github.com/kevoree-modeling/experiments.
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Fig. 5 Average prediction error
and confidence intervals (in
Watt per hours, Wh)
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several smart meter profilers) will no longer rely on the
profiler of the disconnected smart meter. As depicted in
Fig. 4, for the micromachine learning profiling, the plotted
curve is significantly closer to the curve of the real testing
set than the coarse-grained learning. Although, both uses
the same profiling algorithm: a Gaussian mixture model.
For readability reasons we only display the first 12days
of predictions. Prediction curves in case of microlearning
are very close (even hard to distinguish) to the real testing
set.

We plot the histogram of the prediction errors for both,
coarse-grained and microlearning in Fig. 6. It shows the
distribution of the prediction error of both cases. Overall,
microlearning leads to an average error of 3770 Wh, while
coarse-grained learning leads to an average error of 6854
Wh. In other words, the error between the prediction and
real measurement is divided by two. Knowing that the aver-
age power consumption overall the testing set is 24,702 Wh,
we deduce that themicrolearning profiling has an accuracy of
85%, while coarse-grained learning has an accuracy of 72%.
The accuracy is calculated by (1−avgError/avgPower).
Figure5 depicts the average prediction error and associ-
ated confidence interval for both methods: fine-grained and
coarse-grained. We can observe that the confidence intervals
are around 12kWh for the fine-gained method and, respec-
tively, 21kWh for the coarse-grained approach. Based on
these results, we can conclude that microlearning can be sig-
nificantly more accurate than coarse-grained learning.

A noticeable result is that the same algorithm can lead to
a better accuracy when used at a smaller level and combined
with the domain knowledge. Therefore, we argue that this
decision is very important and motivate by itself the reason
whywe focus this contribution on offeringmodeling abstrac-
tions for this purpose.

4.3 Performance

In terms of performance, Table1 shows the time needed in
seconds to load the data, versus the time needed to perform
the live profiling for different numbers of users and power
records. For instance, for 5000 users and their 150 million
power records, it takes 1927s to load and parse the whole
dataset from disk (around 32min, knowing that the dataset
is around 11 GB large). However, only 564s are spent for
profiling (less than 10min).

Another observation that can be deduced from Table1 is
that both loading and training time are linear with the num-
ber of records loaded (O(n) complexity). A considerable
performance increase can be achieved by distributing and
parallelizing the computation, especially using microlearn-
ing where every profile can be computed independently. We
decided to present results without the usage of a distributed
storage backend (e.g., HBase8). This would pollute computa-
tion times due to networking and caching effects. However,
our results allow to meet the performance requirements of
case studies like the smart grid. Indeed, during these eval-
uations our modeling framework ingest more than 60,000
values per seconds on a single computer. This is comparable
to data processing frameworks like Hadoop [6]. Moreover,
fine-grained machine learning units can be computed inde-
pendently and can therefore be easily processed in parallel.
In fact, every learning unit can naturally be computed in an
own process.

4.4 General applicability of the presented approach and
modeling language

In this section, we show the general applicability of our
approach and how it can be applied to different domains.

8 https://hbase.apache.org/.
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Fig. 6 Power prediction error
histograms

Table 1 Loading time and
profiling time in seconds

Number of users Number of records Loading data time in s Profiling time in s

10 283,115 4.28 1.36

50 1,763,332 21.94 7.20

100 3,652,549 44.80 14.44

500 17,637,808 213.80 67.12

1000 33,367,665 414.82 128.53

5000 149,505,358 1927.21 564.61

Scalability test over 5000 users and 150 millions power records

Therefore, we discuss examples from different domains and
show how they can be modeled using our approach and
proposed modeling language. This shows the benefits of a
seamless integration of machine learning into domain mod-
eling.

Let us take recommender systems as a first additional
example outside the smart grid domain. In recommender sys-
tems, the goal is to monitor prior actions of users in order
to recommend potential future actions. Applied to sales, for
instance, this can be translated into potential next items to
sell or next movies to watch. Different types of recommender
systems exist [25]. Some recommender systems cluster users
to similar behaviors and thus recommend the items to buy
according to what other users of the same behavior group
already bought. These system are known as user-user rec-
ommender systems [25].Other recommender systems cluster
items according to their similarities or complementarity and
thus suggest to a user to buy the items that are usually
bought together. These systems are known as item-item rec-
ommender systems [25]. Other systems ask users about their
preferences and from these preferences they recommend the
most suitable products. These systems are known as user-
item recommender [25].

With our proposed modeling language and approach, we
can integrate these 3 types within the same model, thus
allowing system designers to change from one type of rec-

ommendation system to another—or even have all 3 types
of recommendations at the same time, at a minimum cost
(by learning the profiles once, and reusing many times). For
instance, instead of going to a coarse-grained recommender
system by grouping users or items together, we can go to a
more fine-grained approach, by attaching a profile to every
user and to every product. These profiles represent an abstract
mathematical notion of taste in a N-dimensional space in
which we can quickly compare users or items together.
Moreover, these profiles can be updated in live after every
purchase. Then, in order to achieve a user-user recommender
system, we can create a derived clustering algorithm that
compares and groups userswith similar profiles together. The
same can be done for the item-item recommender systems
by clustering the products with the same profiles together. A
user-item recommender system can be achieved by a derived
algorithm that fast search for products that match a user pro-
file with an item profile. This way, wemanage to separate the
different concepts in different layers that are reusable. More-
over, we can reuse business knowledge in machine learning
(for instance by not recommending past items already bought
if the learning algorithmhas access to the historical purchases
of the users), and vice versa, by taking business decisions
based onmachine learning results (recommending new prod-
uct to sell). Listing 7 shows an example metamodel of such
a recommender system.
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Listing 7 Meta model of a recommender system

enum Category { ELECTRONIC, BOOKS, MUSIC, MOVIES, . . . }
class Index{
rel users : User
rel products : Product

}

class User {
at t userId : Long
at t name: String
[ . . . ]
rel purchasedProducts : Product
rel profile : UserProfiler with maxBound 1

}
class Product {
at t productId : Long
rel category : Category with minBound 1 with maxBound 1
at t price : Double
[ . . . ]
rel purchasedBy: Customer

rel profile : ProductProfiler with maxBound 1
}
class UserProfiler {
rel user : User
learned rel userProfile : TasteProfile {
from"user . purchasedProducts"
using "IncrementalSVD"

}
}
class ProductProfiler {
rel product : Product
learned rel productProfile : TasteProfile {
from "product . category"
from "product . price"
using "IncrementalSVD"

}
}
class TasteProfile {
at t svdVector : double[]

}

class UserUserRecommender {
rel index: Index
derived rel similarUsers : User {
from index . users . profile
using "ClusteringAlg"

}
}
class ItemItemRecommender {
rel index: Index
derived rel similarItems : Item {
from index . items . profile
using "ClusteringAlg"

}
}
class UserItemRecommender {
rel index: Index
rel currentUser : User
derived rel directRecommender: Item{
from currentUser . profile
from index . items . profile
using "SimilarityAlg"

}
}

A second example is the domain of transportation systems.
The goal is to optimize the public transportation by sug-
gesting to people different transportation alternatives. Again,
in this domain, machine learning can be modeled by fine-
grained profilers and recommender systems can be built on
top of these profilers. For instance, in [47] the authors create
profiles for each of the following:

– price of taxi fare per distance unit according to the hour
of the day

– traffic on different road segments
– parking place availabilities

Each of these profiles can be modeled as a completely
independent, fine-grained, and reusable learning unit in our
modeling language. A recommender system can calculate
the recommendation by deriving the information from these
different learning units. Moreover, the advantage of our
framework is that the business domain knowledge is at the
same level as the learned knowledge. For instance, a learn-
ing unit can depend directly on the bus or train schedules,
if they are known in advance. Listing 8 shows an example
metamodel of how such transportation recommender system
could be modeled in our proposed approach.

Listing 8 Meta model of a transportation recommender sys-
tem

enum Transportation {CAR, TAXI, BUS, TRAIN, BICYCLE, WALKING}

class Index {
rel users : User
rel taxis : Taxi}//end of class

class User {
at t userId : Long
at t name: String
at t GPSLongitude: double
at t GPSLatitude: double
rel preferredTransportationMeans : Transportation
rel userProfile : PositionProfiler}//end of class

class Taxi {
at t taxiId : Long
at t name: String
at t GPSLongitude: double
at t GPSLatitude: double
at t pricePerKm: double
rel taxiProfile : PositionProfiler}//end of class

class PositionProfiler {
rel user : User
learned at t userProfile : double[] {

from "user .GPSLongitude"
from "user .GPSLatitude"
using "GaussianMixtureModel"}}//end of class

class TaxisPriceProfilers {
rel index: Index
derived at t averageTaxiPrice : double {

from index . taxis .pricePerKm
using "Averaging"}}//end of class
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class RoadSegment {
at t roadId : Long
at t gpsLongituteStart : double
at t gpsLongituteEnd: double
at t gpsLatitudeStart : double
at t gpsLatitudeEnd: double
at t currentTraffic : int
learned at t roadTrafficProfile : double[] {

from "currentTraffic"
using "GaussianMixtureModel"}}//end of class

class Parking {
at t parkingId : Long
at t parkingName: String
at t currentEmptyPlaces : int
learned at t emptyPlaceProfile : double[] {

from "currentEmptyPlaces"
using "GaussianMixtureModel"}}//end of class

class BusLine {
at t busLineId : Long
at t busLineName: String
at t busSchedule: double[]}//end of class

class TrainLine {
at t trainLineId : Long
at t trainLineName: String
at t trainSchedule : double[]}//end of class

class Map {
rel roads : RoadSegment
rel busLines : BusLine
rel trainLines : TrainLine
rel parkings : Parking}//end of class

class TransportationRecommender {
rel user : User
rel taxiPriceProfiler : TaxisPriceProfilers
rel map: Map
derived at t recommendation: Transportation {

from user . userProfile
from taxiPriceProfiler . averageTaxiPrice
from map. roads . roadTrafficProfile
from map. trainLines . trainSchedule
from map.busLines .busSchedule
from map. parkings . emptyPlaceProfile
using "customTransportationAlgorithm"}}//end of class

4.5 Threats to validity

We decided to evaluate our approach on an end-to-end real-
world case study. Despite that we showed the usefulness of
the approach for other domains, one threat to validity remains
that the evaluation case studymight be especially appropriate
for the presented solution. Additional case studies need to be
considered to better estimate the general applicability of the
presented approach. Nonetheless, the evaluated case study
is representative for the domains targeted by our approach.
Another threat to validity might be the sampling rate of the
smart meter measurements of the used case study, which
could affect the error rate, e.g., missing peaks due to aver-
aging intervals. However, the used sampling rate is already
comparatively low with respect to the used dataset. There-
fore, this risk is rather low.

5 Discussion

Weaving machine learning into domain modeling opens
up interesting possibilities in the intersection of metalearn-
ing and metamodeling. Metalearning is about learning the
parameters of the learning class itself and adapting these
parameters to the specific business domainwhere the learning
is applied to. The following points are considered as typical
metalearning problems:

– Changing the inference algorithm.
– Adding or removing more input attributes.
– Modifying the math expression of an attribute.
– Changing learning parameters (for ex. learning rate).
– Chaining or composing several learning units.

Such changes can be introduced during the execution
of the system, reflecting a new domain knowledge that
have to be injected. Therefore, considering that we model
learning parameters, this makes it necessary to enable
metaclass changes at runtime. This feature is enabled
in our modeling framework. However, changing learn-
ing algorithms or parameters can occur more often than
classical metamodel changes. This opens up the reflec-
tion on new research directions about frequent metamodel
updates.

We developed our modeling framework for microlearn-
ing. Nonetheless, as discussed, we support fine-grained but
also coarse-grained learning. However, our framework—
and approach—is clearly designed for microlearning and is
therefore mainly useful for systems which are composed
of several elements which behave differently. Examples
for such systems are CPSs, IoT, and recommender sys-
tems. For systems dealing mainly with large datasets of
“flat data,” i.e., unstructured data without complex relation-
ships between, our model-based microlearning approach is
less beneficial. Instead, our approach is mostly beneficial
for systems dealing with complex structured and highly
interconnected domain data which have to continuously
refine behavioral models that are known at design time with
what can be learned only from live data to solve known
unknowns. A current restriction of our approach is that it
considers only known unknowns, i.e., it is necessary to
know what is unknown and what can be learned. More-
over, our approach focuses on live learning scenarios where
only small learning units, which individually are fast to
recompute, have to be updated. While this is especially use-
ful in cases where only few microlearning units i.e., only
parts of the model need to be updated, it is less beneficial
for cases where the whole model needs to be recomputed.
In such cases, batch learning methods can be more effi-
cient.
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6 Related work

TensorFlow [1] is an interface for expressing machine learn-
ing algorithms and an execution engine to execute these
on a wide range of devices from phones to large clus-
ters. A TensorFlow computation is represented as a directed
graph.Nodes in the graph representmathematical operations,
called ops, while the edges represent multidimensional data
arrays, called tensors. An op takes zero or more tensors, per-
forms computations, and produces zero or more tensors. Two
phases are distinguished inTensorFlow.Aconstruction phase
where the graph is assembled and an execution phase which
uses a session to execute ops in the graph. TensorFlow is used
withinGoogle for awide variety of projects, both for research
and for use in Google’s products. Similar to our approach,
TensorFlow allows to model ML at a higher level of abstrac-
tion. However, unlike in our approach ML is expressed in its
own model aside from the domain model and not connected
to it. TensorFlow is adapted for image and video recognition,
whereas our approach is adapted for learning from frequently
changing domain data.

GraphLab [32] goes in a similar direction than Tensor-
Flow. Low et al.propose an approach for designing and
implementing efficient and provably correct parallel ML
algorithms. They suggest to use a data graph abstraction to
encode the computational structure as well as the data depen-
dencies of the problem. Vertices in this model correspond
to functions which receive information on inbound edges
and output results to outbound edges. Data are exchanged
along edges between vertices. GraphLab aims at finding a
balance between low-level and high-level abstractions. In
contrary to low-level abstractions GraphLab manages syn-
chronization, data races, and deadlocks and maintains data
consistency. On the other side, unlike high-level abstrac-
tions GraphLab allows to express complex computational
dependencies using the data graph abstraction. In Low et
al. [31] present a distributed implementation of theGraphLab
abstraction. Like TensorFlow, GraphLab is an interface for
expressing ML algorithms and an execution engine. While
there are similarities, like the idea thatML algorithms should
be expressed with a higher-level abstraction, our approach
focuses on weaving ML algorithms into domain modeling.
This allows to use results from learning algorithms in the
same manner than other domain data.

In [4] Bishop proposes a model-based approach for ML.
He introduces a modeling language for specifying ML prob-
lems and the corresponding ML code is then generated
automatically from this model. As amotivation Bishop states
the possibility to create highly tailored models for specific
scenarios, as well as for rapid prototyping and comparison of
a range of alternative models. With Infer.NET he presents a
framework for running Bayesian inference in graphical mod-
els. Similar to Bishop we propose to express ML problems

in terms of a modeling language and automate the mapping
of a domain problem to the specific representation needed by
a concrete ML algorithm. While Bishop suggests to specify
ML problems in separate models with a dedicated modeling
language, our approach extends domain modeling languages
with the capability to specify ML problems together with
domain models using the same modeling language. This
allows to decompose learning into many small learning units
which can be seamlessly used together with domain data.

Domingos et al. [10] propose an approach for incremental
learning methods based on Hoeffding bounds. They suggest
to build decision trees on top of this concept and show that
these can be learned in constant memory and time per exam-
ple, while being very close to the trees of conventional batch
learners. With massive online analysis (MOA) [3] Bifet et
al. present an implementation and a plugin for WEKA [17]
based on Hoeffding trees. Our contribution is a methodology
to weave micro-ML into data modeling to support applica-
tions which need online analysis of massive data streams.

Hido et al. [26] present a computational framework for
online and distributed ML. There key concept is to share
only models rather than data between distributed servers.
They propose an analytics platform, called Jubatus, which
aims at achieving high throughput for online training and
prediction. Jubatus focuses on real-time big data analytics for
rapid decisions and actions. It supports a large number ofML
algorithms, e.g., classification, regression, and nearest neigh-
bor. Jubatus only shares local models, which are smaller than
datasets. These models are gradually merged. Jubatus, like
our approach, allows independent and incremental computa-
tions. However, Jubatus does not aim at combining domain
modeling andML, neither does it allow to decompose a com-
plex learning task into small independent units, which can be
composed.

7 Conclusion and future work

Coarse-grained learned behavioral models do not meet the
emerging need for combining and composing learnt behav-
iors at a fine-grained level, for instance for CPSs and IoT
systems, which are composed of several elements which
are diverse in live behaviors. In this paper we proposed
an approach to seamlessly integrate micromachine learning
units into domain modeling, expressed in a single type of
model, based on onemodeling language. This allows to auto-
mate the mapping between the mathematical representation
expected by a specific machine learning algorithm and the
domain representation. We showed that by decomposing and
structuring complex learning tasks with reusable, chainable,
and independently computable microlearning units the accu-
racy compared to coarse-grained learning can be significantly
improved. We demonstrated that the ability to independently
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compute and updatemicrolearning unitsmakes this approach
fast enough to be used for live learning. Besides simplifying
the usage (flatter learning curve), a graphical language can
be more intuitive for many users, especially for nondevelop-
ers. We are also working on integrating additional machine
learning algorithms in our framework to make it applicable
for a broader range of problems. For example, for stream
clustering, we are planning to include and experiment with
algorithms like cluStream, clusTree, DenStream, D-Stream,
and CobWeb. In addition, we are experimenting with adding
GPU support for the computation of ML algorithms to our
framework to investigate the advantages and disadvantages
of it for different use cases.
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