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Abstract. The availability of huge amounts of data (“big data”) is changing our 
attitude towards science, which is moving from specialized to massive experi-
ments and from very focused to very broad research questions. Models of all 
kinds, from analytic to numeric, from exact to stochastic, from simulative to 
predictive, from behavioral to ontological, from patterns to laws, enable mas-
sive data analysis and mining, often in real time. Scientific discovery in most 
cases stems from complex pipelines of data analysis and data mining methods 
on top of “big” experimental data, confronted and contrasted with state-of-art 
knowledge. In this setting, we propose mega-modelling as a new holistic data 
and model management system for the acquisition, composition, integration, 
management, querying and mining of data and models, capable of mastering the 
co-evolution of data and models and of supporting the creation of what-if 
analyses, predictive analytics and scenario explorations. 

1 Introduction 

The grand challenge of modern scientific data processing is the ability to use “big 
data” for knowledge discovery. Progress in key areas - such as social and economic 
resilience, health, transportation, energy management - depends on a strategic use of 
data, e.g., for understanding disease spreading or economic crises, for energy distribu-
tion policies which make the best use of resources, for on-line alerting systems that 
take into account traffic, road conditions, hazards, and so on. Decision makers are 
thrilled by the possibility of anticipating the impacts of different possible decisions, 
i.e., exploring various future scenarios at different degrees of detail, employing a 
variety of predictive methods (such as multi-level and micro-macro models, patterns, 
simulations and what-if analyses).  

As advocated by the visions of FuturICT [1], the FourthParadigm [2] and Haas et 
al. [3], this challenge cannot be addressed by simply deploying currently available 
technology; it entails a profound innovation of ICT research, by boosting a reformula-
tion of all core information technologies in terms of a global techno-social ecosystem, 
where ICT opens to the challenges of supporting the complexity of scientific compu-
tational models. We need modelling capabilities that leverage on the power of big 
data, e.g., conceiving what-if models and scenarios that realistically portray the  
outcomes of possible interventions or changes onto complex socio-economic phe-
nomena. Mastering such new scenarios requires establishing open platforms where 
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scientists and developers can integrate and compose deep models, big-data-driven 
analytics and agent-based simulations and create empirically validated, computation-
ally replicable modelling components.  

But, beyond and before technological platforms, we need a comprehensive theory 
blending simulation models, analytical models, ontological models and data-driven 
models into one picture. Modelling, as we know it today, is required to scale up to a 
higher level, that we call mega-modelling: a comprehensive theory and technology of 
model construction (with an emphasis on incremental approaches), model search, 
model fitness evaluation, model composition, model reuse and model evolution. We 
need entirely new model of models, namely algebras of objects representing patterns, 
rules, laws, equations, etc., which are either mined/induced from data, or based on 
deep mathematical findings or agent-based reasoning – an overarching algebra of data 
and models that allow us to devise a new holistic system for integrated data and 
model acquisition, integration, querying and mining, capable of mastering the com-
plexity of the knowledge discovery process. 

This paper aims at making a first step in the above direction, by introducing the 
concept of mega-modelling and then some abstractions for mega-model composition, 
attempting both a top-down definition and a bottom-up recognition of these abstrac-
tions in previous projects of the authors. The remainder of the paper is organized as 
follows. Section 2 traces the origin of this research, by positioning it relative to 
model-driven research in software engineering and to inductive data mining. Section 
3 provides a definition of mega-modules and a preliminary view on its composition 
abstractions. Section 4 introduces mega-schemas and patterns as fundamental ingredi-
ents of mega-modules. Finally, Section 5 provides some examples which trace, in 
existing work, the presence of mega-modules ancestors.  

2 Scientific Pillars of Mega-Modelling  

The roots of mega-modelling can be traced to an article appeared in 1992 on “Mega-
programming” [4]; mega-programs represent large, autonomous computing systems 
whose interfaces are described through a data-centric approach and whose execution 
behaviour can be inspected. After about one decade, Bezivin et. al. in 2004 introduced 
the term mega-model to denote modelling large software components [5], thus paving 
the road to the school on Model-Driven Engineering (MDE) that developed thereafter 
[6]. Then, in this community, mega-modelling has been mostly used as a term for 
denoting the higher-order relationships between models (such as representationOf, 
conformsTo, isTransformedIn) [7], or, more recently, for tracing the dependencies 
between models during their evolution [8].  However, the innovative aspects of mega-
modelling go beyond classical model-driven software generation, as we associate to 
each mega-module the potential of expressing classes of computations on top of big 
data, thereby highlighting the computational nature of the modules and the support of 
dynamic aspects related to inspection, adaptation, and integration. This is the new and 
enhanced meaning that we give to mega-modules, by reconsidering them from the 
perspective of “big” data analytics.  
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In the database/data mining community, the idea of a unifying approach towards 
data analysis and mining has been around for several years, since the seminal paper 
on inductive databases and data mining as a querying process by Imielinski and 
Mannila  [9]; a fundamental aspect of the approach is the representation of data min-
ing activities through patterns, whereas patterns can be seamlessly integrated with 
data and can therefore be the subject of queries; such view attempts a conceptualiza-
tion and generalization of data mining. Yet, this idea has found concrete realizations 
only lately and partially; it is used in [10] and [11], where extracted data patterns are 
defined as views on top of data tables, and as such can be composed with domain-
specific data representing genetic information [10] or spatio-temporal trajectories 
expressing human mobility [11]. Shaping computational results through regular table 
formats has recently found another intriguing field of application in the context of 
social computations, where tabular formats have been elected to drive interactions 
with human crowds through crowd-sourcing [12] and crowd-searching [13]; the 
above models hint to a possible seamless extension of scientific computation to 
crowd-based computations.  

3 Mega-modules for Scientific Big Data Processing 

In the context of this paper, a mega-module is a software component capable of 
processing “big data” for analytical purposes. Every mega-module performs a well-
identified computation, which can be considered a unitary transformation from inputs 
to outputs. Inputs and outputs take the form of data and of patterns, where data are 
domain-specific both in terms of their schema end instances, while patterns are forms 
of data regularity or rules whose schema is domain-independent and whose content 
typically reflects collective or aggregated data properties; patterns may be extracted 
by data analysis algorithms, which may in turn be embodied within mega modules. 
Every mega-module can internally use data and patterns that are considered as inva-
riant in the context of the computation, whose extension can be either local (e.g., or-
ganization-specific) or global (e.g., stored in public databases or ontologies).  

 
Let us propose a running example inspired to mobility data mining in M-Atlas [11], 

where a mega-module uses positions of mobile users to infer how big masses of 
people move from regions to regions – thereby inferring how persons move at an 
aggregate level. Positions as detected by GPS systems in mobiles and reported in the 
territory with an associated timestamp represent the input data. Information about 
streets and roads can be considered as invariant. Moving points are recognized as 
trajectories, a known pattern featuring a starting point, an ending point, and a se-
quence of intermediate points. Trajectories are clustered and aggregated by the 
mega-module, whose output reports, in a compact way, the most significant “flock 
movements” of groups of people. 
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3.1 Phases of Mega-module Computations 

Every mega-module exhibits a format that consists of three distinct phases of infor-
mation processing, although such phases can vary significantly for their internal  
organization: data preparation, analysis, and evaluation. 

• The first phase, data preparation, consists of the processing of input data and 
patterns for the purpose of assembling input objects that will be the subjects of the 
analysis. The distinction between data and object is of semantic nature: data prepa-
ration typically assembles several elementary data in the input to generate a single 
object for the purpose of analysis. The aggregative process that builds a object can 
be driven by a variety of purposes – abstracting irrelevant differences, recognizing 
common features, aggregating over elementary items which satisfy given predi-
cates – thus, semantically interpreting and reconstructing data. The keywords for 
the preparation phase are: data sensing, acquisition, integration, transformation, 
semantic enrichment. 
In the running example, several observations of the positions of the same moving 
object are assembled into a single trajectory.  

• The second phase, data analysis, consists of extracting computed objects from 
input data, possibly using the input patterns as references. Data analysis produces 
the response to a specific problem by performing the core scientific processing, 
and uses a variety of methods, ranging from mathematical to statistical models, 
from data mining to machine learning, from simulation to prediction, including 
crowd-sourcing as a way for asking social responses. The keywords for the analy-
sis phase are: mining, learning, modeling, simulation, forecast. 
In the running example, trajectories are assembled and reported as movements of 
groups of people (flocks).   

• The third phase, data evaluation, consists of preparing the output objects, which 
may in turn be presented as data and/or patterns. This phase consists of filtering or 
ranking computed objects based on their relevance, and possibly of a post-
processing so as to observe the result in the most suitable way for the mega-module 
enclosing environment or user. The keywords for the evaluation phase are: quality 
assessment, filtering, significance measurements, presentation, delivery, visualiza-
tion. 
In the running example, reported flocks have a population above a given threshold 
and connect specific portions of territory, e.g. recognized as regions in a map.  

In Fig. 1, we propose (on the left) a mega-module graphical element, which visually 
captures the characteristics of a mega-module as described above, and (on the right) 
we show how to represent the running example with such a graphical element. The 
partitioning of mega-module activity in three phases is used in defining its composi-
tional properties, as described next.  
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4 Data Management through Schemata and Patterns 

Data-intensiveness is the characteristic feature of big data analytics, therefore it is not 
surprising that data and patterns are given an essential role.  

4.1 Mega-schema 

We define a Scientific Data Experiment as a unitary data research experience over a 
scientific big data collection, where the experiment can possibly span through years, 
over different laboratories, involving a huge number of data sources, each with mas-
sive amount of data. Then, we make the assumption that all the data used in the input 
and output schemas of the experiment must be conformant to a unique mega-schema.  

Methodologically, the global schema design should be the first task in setting a 
scientific data experiment. This step should be heavily influenced by the agreed on-
tologies of the domain under study: schema names should reflect the agreed names as 
codified in the ontology. Ontology-driven schema design and annotation methods are 
already in use in many scientific communities, e.g. medicine and biology, and we 
advocate that a similar trend should take place in all cases of big data analytics.  

We do not make assumption on the specific mega-schema syntax – candidates are 
relational, XML, and RDF – and semantics – candidates are ER, XML Schema, and 
OWL. Establishing a mega-schema in a context of conflicting/pre-existing data and 
computing resources requires the availability of a variety of data conversion tools, due 
to the intrinsic heterogeneous nature of those resources; we assume the a-priori estab-
lishing of one mega-schema, forcing each data source to be conformant using a 
“global as view” (GAV) mapping, with the strong belief that such practice will result, 
in the long run, beneficial also in terms of the overall data conversion complexity. 

4.2 Patterns Organization  

Patterns describe data regularities, which are sometimes exposed at data definition 
and in most times inferred as result of data analysis and mining; their format is do-
main-independent, therefore the “schema” of patterns reflects the underlying structure 
of the discovery that the scientific experiment should produce, rather than its input 
and output data. We are henceforth assuming that there exists a finite number of pat-
tern structures capable of describing all the forms of regularity that are worth extract-
ing through a given scientific data experiment. We assume patterns to describe large 
numbers of Items, all with the same format; Items are structured objects with a sche-
ma, and can be typed (ItemType is a label of the type). Patterns can be described by 
means of type constructors with Items and numerical attributes expressing their prop-
erties (either exact or approximate).  Fig. 2 lists examples of patterns from a broad 
spectrum of problems, although at a very shallow level of details, as each pattern 
should be further specialized by considering the specific data analysis experiment.  
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CLASSIFICATION. The computation extracts classes from a population based on some classification 
algorithm operating upon its property, and then computes statistics – from simple frequencies up.  

Data:  Population(Item) 
Pattern:  Class(Name, AggrStats) 

CLUSTERING. The computation operates upon a collection and extracts its clusters, where each clus-
ter has a name, an extent consisting of its elements, possibly a centroid element, and then statistics – 
from cardinalities up. 

Data:  Collection(Item) 
Pattern: Cluster(Name, Extent: [Item], CentroidItem, AggrStats)    

STREAMING. The computation aggregates data from a stream, by aggregating those items of a given 
type and within a given time interval, typically the most recent, and then computing aggregate properties. 

Data:  Stream(TimeStamp, Item) 
Pattern: StreamStats(ItemType, TimeInterval, AggrStats) 

STREAMING WITH WINDOWS. The computation aggregates data from a stream which is subdi-
vided in windows, by aggregating within each window those items of a given type and then computing 
aggregate properties. 

Data:  Stream(Window, StartTimeStamp, EndTimeStamp, Content:[Item]) 
Pattern:  WindowedStats(Window, ItemType, AggrStats) 

TREE. Classical computations provide the descendants or ancestors of a given node, or classify a new 
node relative to an existing hierarchical taxonomy, e.g. by showing the path from the root to the node 
which is most similar to the new node. 

Data:  Tree (Item, Descendent, ChildItem) 
Pattern: Descendants(Item, To: [Item]) 
  Ancestors(Item, From: [Item]) 
  Classify (Item, Path[Item]) 

GRAPH. Classical computations provide a decomposition of a graph into components by minimizing 
the edges which interconnect nodes of different components, or find the “friend” nodes which are at a 
given “nearness” from a given node. 

Data:  Graph(FromItem, ToItem) 
Pattern: Components(Name, Components: [Node]) 
  Friends(FromItem, NearnessLevel, To: [Item]) 

DISTANCE-GRAPH. If the graph includes a label expressing node distances, a classic computation 
find the shortest path between any two items, exptessed as a sequence of nodes connecting them and a 
totaldistance. 

Data:  D-Graph(FromItem, ToItem, Distance) 
Pattern: ShortPath(OriginItem, DestinationItem, Path: [Item], TotalDistance) 

ASSOCIATION RULES. A classical data mining problem is to find items which appear together with-
in a basket; an association rule has an head and a body describing item sets, and then statistical proper-
ties of support and confidence defining the rule’s interest. 

Data  Basket(Item) 
Pattern:  Rule(Head:[Item], Body:[Item], Support, Confidence) 

MOVING POINTS. When a system accumulates indications of positions from individuals, a classical 
computation is the reconstruction of the trajectories, i.e. the sequence of locations which are traversed 
by the same item from an initial location to a final location.  

Data:  Point(Item, Time, Location) 
Pattern: Trajectory(Item, FromLocation, ToLocation, Steps:[Location], StepCount: Number) 

FLOCKS. When a system accumulates multiple trajectories, another classical computation is the combin-
ing of trajectories together to recognize flocks, i.e. movements of groups of individuals across regions. 

Data:  Trajectory(Item, FromLocation, ToLocation, Steps:[Location], StepCount: Number) 
Pattern: Flock(FlockName, FromRegion, ToRegion, Objects: [Items], ObjectCount: Number) 

Fig. 2. Examples of patterns from a broad spectrum of problems 
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5 Examples  
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processed in real-time by the INDUCTIVE MATERIALIZER and by the CONTINUOUS 

TREND ANALYZER. The former transform the data in a matrix (users x restaurants) 
and incrementally maintain its inductive materialization using the internal knowledge 
about restaurant categories. The latter incrementally identifies the top restaurants in 
the week, month, quarter, etc. Whenever a user ask BOTTARI for a recommendation, 
a SPARQL query is sent to three Mega-modules: SEMANTIC GEO-SPATIAL QUERY 

ENGINE, which returns a list of restaurants that matches the semantic criterion re-
quested by the user (e.g., traditional cuisine) ordered by distance from the user; the 
QUERY ANSWERING ON INDUCTIVE MATERIALIZATION, which uses the patterns identi-
fied by the INDUCTIVE MATERIALIZER to return a list of restaurants order by the prob-
ability that the user likes them; and the CONTINUOUS TREND ANALYZER, which return 
a list of restaurants ordered by number of positive ratings in a given time window 
(e.g., the last week). A RANK AGGREGATOR mega-module combines the lists and 
returns the recommendations to BOTTARI interface. 

5.2 Mega-modelling of a Proactive Car-Pooling Service 

A more complex analytical process is depicted in Fig. 4, which supports the intelli-
gent, proactive car-pooling system of [22]. At the level of each individual mobile 
users, trajectories corresponding to actual trips are reconstructed, and then clustered to 
find the (systematic) routines of the user, e.g., her home-work-home commutes or 
frequent trips for bring-get activities, such as bringing kids to school. For each cluster 
a typical representative trip is extracted through a parallel decomposition, and a con-
cept-drift mechanism is used to monitor when user’s routine change, e.g., as a result 
of moving or the arrival of a new-born baby. The individual routines are, then, aggre-
gated at collective level, according to two different purposes: to find the patterns of 
systematic mobility and study the city access paths (bottom right), and to find best 
matches among pairs of commuters with systematic routines, that can be put in con-
tact for car-pooling. In our study over the city of Pisa, we found that there is a car-
pooling potential of 67% (i.e., every routine has a 67% chance of being served from a 
matching routine of another user, see [22]), showing that car-pooling systems based 
on big data analytics have potentially a high impact in reducing systematic traffic. 

5.3 Drift Control 

The mega-model in Fig. 5 depicts a system that leverage the analysis of tourist routes 
in an area of interest for the twofold purpose of understanding aggregated touristic 
behavior and recommending popular routes to individual tourists. Trajectories record-
ing tourist visits are reconstructed at the individual level and then aggregated;  
trajectory pattern mining is then used to discover the frequently followed routes. The 
discovered patterns are delivered both to the tourism authorities for analytical purpos-
es and to the individual tourists in form of recommended popular routes. A concept-
drift composition is used to monitor the validity of the discovered patterns against the 
incoming stream of tourist trajectories, as well as the emergence of novel patterns. 
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 Mega-modeling for Big Data Analytics 13 

5.4 Component-Based Graph Decomposition  

An example of component-based graph decomposition is depicted in Fig. 6, based on 
the idea of discovering the geographical borders delimiting the real mobility basins 
dictated by the big data of human mobility [23].  

 
 

 

Fig. 6. The Mega-modeling of a micro-macro decomposition of mobility analysis 

The key mega-module here is the border computation, illustrated in Fig. 7. Starting 
from a given zoning of the territory, tessellated into census zones, the preparation 
phase constructs a network whose nodes are the zones and the weighted edges  
between any two zones represent the number of travels originating in the first and 
ending in the second. The analysis phase consists in discovering densely connected 
sub-graphs in this network by means of a community detection method, thus hig-
hlighting groups of zones that are highly connected by many travels compared to the 
lower connectivity among different modules. The evaluation phase consists in map-
ping these modules back to geography, and drawing appropriate borders to delimit the 
different modules. The borders mega-module is a means to highlight a hierarchical 
structure in a large network, thus separating a micro level (within each separate mod-
ule) and a macro-level (where each module is abstracted to a node and the links 
among different modules are considered). The mega-modeling of Fig. 6 then exploit 
this decomposition for a parallel (or map-reduce) computation over the separate  
modules of mobility analysis, such as origin-destination flow matrices or more  
sophisticated pattern mining, as in previous examples. 
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