
P. Atzeni, D. Cheung, and R. Sudha (Eds.): ER 2012, LNCS 7532, pp. 1–15, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Mega-modeling for Big Data Analytics

Stefano Ceri1, Emanuele Della Valle1, Dino Pedreschi2, and Roberto Trasarti3

1 DEI, Politecnico di Milano, via Ponzio 34/5, 20133, Milano
2 Dipartimento di Informatica, Università di Pisa, Largo B. Pontecorvo, 3, 56127 Pisa

3 ISTI-CNR, Istituto di Scienze e Tecnologie dell’Informazione del CNR, Pisa

Abstract. The availability of huge amounts of data (“big data”) is changing our
attitude towards science, which is moving from specialized to massive experi-
ments and from very focused to very broad research questions. Models of all
kinds, from analytic to numeric, from exact to stochastic, from simulative to
predictive, from behavioral to ontological, from patterns to laws, enable mas-
sive data analysis and mining, often in real time. Scientific discovery in most
cases stems from complex pipelines of data analysis and data mining methods
on top of “big” experimental data, confronted and contrasted with state-of-art
knowledge. In this setting, we propose mega-modelling as a new holistic data
and model management system for the acquisition, composition, integration,
management, querying and mining of data and models, capable of mastering the
co-evolution of data and models and of supporting the creation of what-if
analyses, predictive analytics and scenario explorations.

1 Introduction

The grand challenge of modern scientific data processing is the ability to use “big
data” for knowledge discovery. Progress in key areas - such as social and economic
resilience, health, transportation, energy management - depends on a strategic use of
data, e.g., for understanding disease spreading or economic crises, for energy distribu-
tion policies which make the best use of resources, for on-line alerting systems that
take into account traffic, road conditions, hazards, and so on. Decision makers are
thrilled by the possibility of anticipating the impacts of different possible decisions,
i.e., exploring various future scenarios at different degrees of detail, employing a
variety of predictive methods (such as multi-level and micro-macro models, patterns,
simulations and what-if analyses).

As advocated by the visions of FuturICT [1], the FourthParadigm [2] and Haas et
al. [3], this challenge cannot be addressed by simply deploying currently available
technology; it entails a profound innovation of ICT research, by boosting a reformula-
tion of all core information technologies in terms of a global techno-social ecosystem,
where ICT opens to the challenges of supporting the complexity of scientific compu-
tational models. We need modelling capabilities that leverage on the power of big
data, e.g., conceiving what-if models and scenarios that realistically portray the
outcomes of possible interventions or changes onto complex socio-economic phe-
nomena. Mastering such new scenarios requires establishing open platforms where

2 S. Ceri et al.

scientists and developers can integrate and compose deep models, big-data-driven
analytics and agent-based simulations and create empirically validated, computation-
ally replicable modelling components.

But, beyond and before technological platforms, we need a comprehensive theory
blending simulation models, analytical models, ontological models and data-driven
models into one picture. Modelling, as we know it today, is required to scale up to a
higher level, that we call mega-modelling: a comprehensive theory and technology of
model construction (with an emphasis on incremental approaches), model search,
model fitness evaluation, model composition, model reuse and model evolution. We
need entirely new model of models, namely algebras of objects representing patterns,
rules, laws, equations, etc., which are either mined/induced from data, or based on
deep mathematical findings or agent-based reasoning – an overarching algebra of data
and models that allow us to devise a new holistic system for integrated data and
model acquisition, integration, querying and mining, capable of mastering the com-
plexity of the knowledge discovery process.

This paper aims at making a first step in the above direction, by introducing the
concept of mega-modelling and then some abstractions for mega-model composition,
attempting both a top-down definition and a bottom-up recognition of these abstrac-
tions in previous projects of the authors. The remainder of the paper is organized as
follows. Section 2 traces the origin of this research, by positioning it relative to
model-driven research in software engineering and to inductive data mining. Section
3 provides a definition of mega-modules and a preliminary view on its composition
abstractions. Section 4 introduces mega-schemas and patterns as fundamental ingredi-
ents of mega-modules. Finally, Section 5 provides some examples which trace, in
existing work, the presence of mega-modules ancestors.

2 Scientific Pillars of Mega-Modelling

The roots of mega-modelling can be traced to an article appeared in 1992 on “Mega-
programming” [4]; mega-programs represent large, autonomous computing systems
whose interfaces are described through a data-centric approach and whose execution
behaviour can be inspected. After about one decade, Bezivin et. al. in 2004 introduced
the term mega-model to denote modelling large software components [5], thus paving
the road to the school on Model-Driven Engineering (MDE) that developed thereafter
[6]. Then, in this community, mega-modelling has been mostly used as a term for
denoting the higher-order relationships between models (such as representationOf,
conformsTo, isTransformedIn) [7], or, more recently, for tracing the dependencies
between models during their evolution [8]. However, the innovative aspects of mega-
modelling go beyond classical model-driven software generation, as we associate to
each mega-module the potential of expressing classes of computations on top of big
data, thereby highlighting the computational nature of the modules and the support of
dynamic aspects related to inspection, adaptation, and integration. This is the new and
enhanced meaning that we give to mega-modules, by reconsidering them from the
perspective of “big” data analytics.

 Mega-modeling for Big Data Analytics 3

In the database/data mining community, the idea of a unifying approach towards
data analysis and mining has been around for several years, since the seminal paper
on inductive databases and data mining as a querying process by Imielinski and
Mannila [9]; a fundamental aspect of the approach is the representation of data min-
ing activities through patterns, whereas patterns can be seamlessly integrated with
data and can therefore be the subject of queries; such view attempts a conceptualiza-
tion and generalization of data mining. Yet, this idea has found concrete realizations
only lately and partially; it is used in [10] and [11], where extracted data patterns are
defined as views on top of data tables, and as such can be composed with domain-
specific data representing genetic information [10] or spatio-temporal trajectories
expressing human mobility [11]. Shaping computational results through regular table
formats has recently found another intriguing field of application in the context of
social computations, where tabular formats have been elected to drive interactions
with human crowds through crowd-sourcing [12] and crowd-searching [13]; the
above models hint to a possible seamless extension of scientific computation to
crowd-based computations.

3 Mega-modules for Scientific Big Data Processing

In the context of this paper, a mega-module is a software component capable of
processing “big data” for analytical purposes. Every mega-module performs a well-
identified computation, which can be considered a unitary transformation from inputs
to outputs. Inputs and outputs take the form of data and of patterns, where data are
domain-specific both in terms of their schema end instances, while patterns are forms
of data regularity or rules whose schema is domain-independent and whose content
typically reflects collective or aggregated data properties; patterns may be extracted
by data analysis algorithms, which may in turn be embodied within mega modules.
Every mega-module can internally use data and patterns that are considered as inva-
riant in the context of the computation, whose extension can be either local (e.g., or-
ganization-specific) or global (e.g., stored in public databases or ontologies).

Let us propose a running example inspired to mobility data mining in M-Atlas [11],

where a mega-module uses positions of mobile users to infer how big masses of
people move from regions to regions – thereby inferring how persons move at an
aggregate level. Positions as detected by GPS systems in mobiles and reported in the
territory with an associated timestamp represent the input data. Information about
streets and roads can be considered as invariant. Moving points are recognized as
trajectories, a known pattern featuring a starting point, an ending point, and a se-
quence of intermediate points. Trajectories are clustered and aggregated by the
mega-module, whose output reports, in a compact way, the most significant “flock
movements” of groups of people.

4 S. Ceri et al.

3.1 Phases of Mega-module Computations

Every mega-module exhibits a format that consists of three distinct phases of infor-
mation processing, although such phases can vary significantly for their internal
organization: data preparation, analysis, and evaluation.

• The first phase, data preparation, consists of the processing of input data and
patterns for the purpose of assembling input objects that will be the subjects of the
analysis. The distinction between data and object is of semantic nature: data prepa-
ration typically assembles several elementary data in the input to generate a single
object for the purpose of analysis. The aggregative process that builds a object can
be driven by a variety of purposes – abstracting irrelevant differences, recognizing
common features, aggregating over elementary items which satisfy given predi-
cates – thus, semantically interpreting and reconstructing data. The keywords for
the preparation phase are: data sensing, acquisition, integration, transformation,
semantic enrichment.
In the running example, several observations of the positions of the same moving
object are assembled into a single trajectory.

• The second phase, data analysis, consists of extracting computed objects from
input data, possibly using the input patterns as references. Data analysis produces
the response to a specific problem by performing the core scientific processing,
and uses a variety of methods, ranging from mathematical to statistical models,
from data mining to machine learning, from simulation to prediction, including
crowd-sourcing as a way for asking social responses. The keywords for the analy-
sis phase are: mining, learning, modeling, simulation, forecast.
In the running example, trajectories are assembled and reported as movements of
groups of people (flocks).

• The third phase, data evaluation, consists of preparing the output objects, which
may in turn be presented as data and/or patterns. This phase consists of filtering or
ranking computed objects based on their relevance, and possibly of a post-
processing so as to observe the result in the most suitable way for the mega-module
enclosing environment or user. The keywords for the evaluation phase are: quality
assessment, filtering, significance measurements, presentation, delivery, visualiza-
tion.
In the running example, reported flocks have a population above a given threshold
and connect specific portions of territory, e.g. recognized as regions in a map.

In Fig. 1, we propose (on the left) a mega-module graphical element, which visually
captures the characteristics of a mega-module as described above, and (on the right)
we show how to represent the running example with such a graphical element. The
partitioning of mega-module activity in three phases is used in defining its composi-
tional properties, as described next.

Fig. 1. Visual presentat

The presence of the three
within a mega-module, u
modules should provide to
tion, provides a view on ob
after analysis, provides a vi

A mega-module inspecti
ing its execution; this in tur
execution, to estimate comp
regard the data and pattern
ecution as the mega-modu
the enclosing environment
lowering confidence levels
or on the expected completi
terminate the mega-module

3.2 Composition Abstr

Composition abstractions a
of creating sophisticated a
classical ways of assemblin
tion induces a hierarchical
and one or more enclosed
big data as top-down recur
tions. Below, we present a
likely incomplete, and furth

General-Purpose Compos
arbitrary mega-modules and
through pipelines and parall

Pipeline decomposition. Th
a pipeline that occurs whe
module feed the input of an
line can be abstracted by si
of the first one and the eva
and, then, compounding th
evaluation-preparation-anal
phase; this generalizes to n-

Mega-modeling for Big Data Analytics

tion of a generic mega-module and of the running example

e phases allows us to define two standard inspection po
sed for asynchronous control and feedback that me
their enclosing environment. The first one, after prepa

bjects abstracted/reconstructed from data; the second o
iew of the objects resulting from the analysis.
ion consists in extracting its controls asynchronously, d
rn allows the enclosing environment to trace mega-mod
pletion time, and to anticipate the quality of its results.
s that may be exchanged by a mega-module during its

ule controls. A mega-module should expose command
that may alter its behavior, for instance by rising or

during analysis based on the quality of intermediate res
ion time. It should also be possible to suspend, resume,

e computation.

ractions

are the means of combining mega-modules to the purp
analytical processes. Composition abstractions reflect
ng modules into higher order computations. Every abstr
l decomposition, singling out an enclosing mega-mod
mega-modules; our goal is to describe computations o

rsive applications of a well-designed collection of abstr
n initial set of abstractions; they are orthogonal, but m

her investigation is needed to consolidate them.

sition Abstractions. The first three abstractions apply
d characterize classical ways of partitioning computatio
lel control and by fragmenting computations.

he simplest form of control is
en the output of one mega-
nother mega-module. A pipe-
ingling out the prepare phase
luation phase of the last one,

he internal chain of analysis-
lysis as a two-step analysis
-step pipelines.

5

oints
ega-
ara-
one,

dur-
dule
We
ex-
s to
r by
ults
and

pose
the

rac-
dule
over
rac-

most

y to
ons,

6 S. Ceri et al.

Parallel decomposition. Th
parallel flow, which occur
preparation can feed two or
ities, each of which can
module. Each analysis acti
preparation and evaluation
dination abstraction entail
several different mega-mo
context of an enclosing m
During the evaluation phase
internal mega-module are c
variety of possible mechani
be put in one-to-one corresp

Map-reduce decomposition
of computation over big dat
zation, that consists of solv
large data sets by parallel
problems, typically over po
The most popular paralleliz
[14], consists of a mappin
portions of the computation
each generating a local resu
a global result from the loc
occur during data preparat
format that exposes input o
occur during data analysis
computed result objects, wh
and presentation to users.
computations by understand
reduce components.

Specific Composition Abs
abstractions that we have r
tems.

What-if control. A classical
explore many alternative so
different choices of initial
rameters. Essentially, this c
of iteration driven by an
repeat a mega-module unde
of input data and patterns,
is obtained, which possess
quality, precision or statisti
a decision tree. Many poss

he next form of control is a
rs when the input data after
r more distinct analysis activ-

be embodied by a mega-
ivity may itself require local
; therefore the parallel coor-
ls the parallel execution of
dules, with their own preparation and evaluation, in

mega-module with one prepare and one evaluation pha
e of the enclosing mega-modules, results objects from e
composed to generate global result objects, according t
isms, e.g. they can be sorted into a list of result objects,
pondence and then returned identically or composed.

n. The most important aspect
ta is the support of paralleli-
ing a complex problem over
execution of less complex

ortions of the initial data set.
zation paradigm, map-reduce
ng abstractions that assigns
n to distinct processing units,
ult, and a reduction abstraction that is capable of comput
al results. In terms of mega-modeling, the map part sho

tion and should manipulate input data and patterns int
objects suitable for parallelization; the reduce part sho
s and produce global output objects from independen
hile the evaluation is responsible of result post-process
The ability of algorithm designers consists of express
ding how they can be twisted to expose both their map

stractions. The following are special cases of composit
recognized as typical analytical processes in existing s

l way of mining big data is to
olutions that would occur for
setting of models and/or pa-
control abstraction is a form
analytical goal, allowing to

er different parameterizations
until a final analytical result
ses a desired level of, e.g.,
ical significance; the preparation phase can be modeled
sible instances of this “what-if” iteration control may

the
ase.

each
to a
can

ting
ould
to a
ould
ntly
sing
sing
and

tion
sys-

d by
y be

envisage, pertaining to m
terns/models studied, e.g.,
(agent-based) simulation.

Drift control. Many mega-
based upon the validity of
Thus, if the assumptions ce
module itself must be inv
corrected or abandoned. F
predictor used by a bank fo
become obsolete as an eff
that impact household inco
“drifting” describes the pr
assumptions under which a
from data. A mega-modul
paired to an associated drif
as input. The controller nor
has occurred, then it interac

Component-based graph
mega-module computation
representing (large) networ
makes parallelization diffic
has modular structure of
sub-networks) with high in
ty and relatively low inter
then a natural parallelizatio
mapping of each sub-netw
results using one additiona
field of network science ha
social networks, exhibit a n
into tightly knit communit
while different communitie
ture that account for the sm
hops away from each other
gles to form (two persons s
friends of each other) [18,1
ent domains (social, web-r
components or communitie
has flourished [21]. Treati
sub-problem in a paralleliza
disregarded or considered
objects to be assembled an
also a way of separating a m
meso- or macro-scale analy
as a node in a higher level n

Mega-modeling for Big Data Analytics

many existing alternatives for exploring a space of p
in machine learning, data mining, statistical physics

-module computations are
f underlying assumptions.
ease to be valid, the mega-
validated, and then either
For instance, a credit risk
or granting mortgages may
fect of an economic crisis
omes. The phenomenon of
rogressive invalidation of
a model has been learned
le M, which is potentially subject to drifting, should
ft-control mega-module C, which assumes the output of
rmally has no output, however if it perceives that the d
cts with M, by providing suitable controls.

decomposition. Many
ns apply to input data
rks and graphs and this
cult; if instead a graph

components (namely
tra-module connectivi-
r-module connectivity,
on can be achieved, by

work to an internal mega-module and then integrating
al combination mega-module. Interestingly, the emerg
as demonstrated that many complex networks, and nota
non-random structure with a tendency of nodes to clu
ties (many edges among nodes in the same communi
es are bridged by relatively few long-range edges: a str
mall-world phenomenon (any two persons are only a f
in the social network) and for the tendency of social tri

sharing common friends have a higher chance of becom
19,20]. As a consequence, many real networks from dif
related, biological, technological) can be partitioned i
es, and a wide variety of methods for community detect
ng each sub-network independently can solve a modu
able way; arcs connecting the sub-networks are then eit
by a separate mega-module, which produces compu

nd evaluated at the end. Community structure is theref
micro-scale analytical process (within a community) an

ysis (among different communities, taking each commun
network).

7

pat-
and

d be
f M
drift

the
ging
ably
uster
ity),
ruc-
few
ian-

ming
ffer-
into
tion
ular
ther
uted
fore
nd a
nity

8 S. Ceri et al.

4 Data Management through Schemata and Patterns

Data-intensiveness is the characteristic feature of big data analytics, therefore it is not
surprising that data and patterns are given an essential role.

4.1 Mega-schema

We define a Scientific Data Experiment as a unitary data research experience over a
scientific big data collection, where the experiment can possibly span through years,
over different laboratories, involving a huge number of data sources, each with mas-
sive amount of data. Then, we make the assumption that all the data used in the input
and output schemas of the experiment must be conformant to a unique mega-schema.

Methodologically, the global schema design should be the first task in setting a
scientific data experiment. This step should be heavily influenced by the agreed on-
tologies of the domain under study: schema names should reflect the agreed names as
codified in the ontology. Ontology-driven schema design and annotation methods are
already in use in many scientific communities, e.g. medicine and biology, and we
advocate that a similar trend should take place in all cases of big data analytics.

We do not make assumption on the specific mega-schema syntax – candidates are
relational, XML, and RDF – and semantics – candidates are ER, XML Schema, and
OWL. Establishing a mega-schema in a context of conflicting/pre-existing data and
computing resources requires the availability of a variety of data conversion tools, due
to the intrinsic heterogeneous nature of those resources; we assume the a-priori estab-
lishing of one mega-schema, forcing each data source to be conformant using a
“global as view” (GAV) mapping, with the strong belief that such practice will result,
in the long run, beneficial also in terms of the overall data conversion complexity.

4.2 Patterns Organization

Patterns describe data regularities, which are sometimes exposed at data definition
and in most times inferred as result of data analysis and mining; their format is do-
main-independent, therefore the “schema” of patterns reflects the underlying structure
of the discovery that the scientific experiment should produce, rather than its input
and output data. We are henceforth assuming that there exists a finite number of pat-
tern structures capable of describing all the forms of regularity that are worth extract-
ing through a given scientific data experiment. We assume patterns to describe large
numbers of Items, all with the same format; Items are structured objects with a sche-
ma, and can be typed (ItemType is a label of the type). Patterns can be described by
means of type constructors with Items and numerical attributes expressing their prop-
erties (either exact or approximate). Fig. 2 lists examples of patterns from a broad
spectrum of problems, although at a very shallow level of details, as each pattern
should be further specialized by considering the specific data analysis experiment.

 Mega-modeling for Big Data Analytics 9

CLASSIFICATION. The computation extracts classes from a population based on some classification
algorithm operating upon its property, and then computes statistics – from simple frequencies up.

Data: Population(Item)
Pattern: Class(Name, AggrStats)

CLUSTERING. The computation operates upon a collection and extracts its clusters, where each clus-
ter has a name, an extent consisting of its elements, possibly a centroid element, and then statistics –
from cardinalities up.

Data: Collection(Item)
Pattern: Cluster(Name, Extent: [Item], CentroidItem, AggrStats)

STREAMING. The computation aggregates data from a stream, by aggregating those items of a given
type and within a given time interval, typically the most recent, and then computing aggregate properties.

Data: Stream(TimeStamp, Item)
Pattern: StreamStats(ItemType, TimeInterval, AggrStats)

STREAMING WITH WINDOWS. The computation aggregates data from a stream which is subdi-
vided in windows, by aggregating within each window those items of a given type and then computing
aggregate properties.

Data: Stream(Window, StartTimeStamp, EndTimeStamp, Content:[Item])
Pattern: WindowedStats(Window, ItemType, AggrStats)

TREE. Classical computations provide the descendants or ancestors of a given node, or classify a new
node relative to an existing hierarchical taxonomy, e.g. by showing the path from the root to the node
which is most similar to the new node.

Data: Tree (Item, Descendent, ChildItem)
Pattern: Descendants(Item, To: [Item])
 Ancestors(Item, From: [Item])
 Classify (Item, Path[Item])

GRAPH. Classical computations provide a decomposition of a graph into components by minimizing
the edges which interconnect nodes of different components, or find the “friend” nodes which are at a
given “nearness” from a given node.

Data: Graph(FromItem, ToItem)
Pattern: Components(Name, Components: [Node])
 Friends(FromItem, NearnessLevel, To: [Item])

DISTANCE-GRAPH. If the graph includes a label expressing node distances, a classic computation
find the shortest path between any two items, exptessed as a sequence of nodes connecting them and a
totaldistance.

Data: D-Graph(FromItem, ToItem, Distance)
Pattern: ShortPath(OriginItem, DestinationItem, Path: [Item], TotalDistance)

ASSOCIATION RULES. A classical data mining problem is to find items which appear together with-
in a basket; an association rule has an head and a body describing item sets, and then statistical proper-
ties of support and confidence defining the rule’s interest.

Data Basket(Item)
Pattern: Rule(Head:[Item], Body:[Item], Support, Confidence)

MOVING POINTS. When a system accumulates indications of positions from individuals, a classical
computation is the reconstruction of the trajectories, i.e. the sequence of locations which are traversed
by the same item from an initial location to a final location.

Data: Point(Item, Time, Location)
Pattern: Trajectory(Item, FromLocation, ToLocation, Steps:[Location], StepCount: Number)

FLOCKS. When a system accumulates multiple trajectories, another classical computation is the combin-
ing of trajectories together to recognize flocks, i.e. movements of groups of individuals across regions.

Data: Trajectory(Item, FromLocation, ToLocation, Steps:[Location], StepCount: Number)
Pattern: Flock(FlockName, FromRegion, ToRegion, Objects: [Items], ObjectCount: Number)

Fig. 2. Examples of patterns from a broad spectrum of problems

10 S. Ceri et al.

5 Examples

5.1 Parallel and Pipe

As an example of usage of
– an augmented reality appl
points of interest, experime
dong district of Seoul. At a
ommend restaurants, but B
[16] to continuously analyz
how the social media user
given area, e.g., Insadong’s

Fig

BOTTARI was develop
LarKC and its orientation
Mega-modeling framework
tion workflow that is twist
CRAWLER continuously st
OPINION MINING & NAMED

ing all Insadong restaurant
(thousands per day) and de
positive, negative and neut
average rate of a hundred t

parallel and pipe composition we illustrate BOTTARI [
lication for personalized and localized recommendation
entally deployed for recommending restaurants in the In
a first look, it may appear like other mobile apps that r
BOTTARI uses inductive and deductive stream reason
ze social media streams (specifically Twitter) to underst
rs collectively perceive the points of interest (POIs) i
 restaurants.

g. 3. The Mega-modeling of BOTTARI

ped on LarKC platform [17], but the plug-able nature
to scientific workflows, allows to cast BOTTARI in

k. In Fig. 3, we present a redesign of BOTTARI’s inter
ted towards the mega-modules concept. The MICRO PO

treams 3.4 million tweets/day related to Seoul in
D ENTITY RECOGNITION analytical sub-module that, kno
ts, identifies the subset related to the Insadong restaura
etects the users’ opinions. The result is an RDF stream
tral ratings of the restaurants of Insadong. It flows at
weets/day, peaking at tens of tweets/minute. The stream

[15]
s of
nsa-
rec-
ning
tand
in a

e of
the

rac-
OST

the
ow-
ants

m of
t an
m is

 Mega-modeling for Big Data Analytics 11

processed in real-time by the INDUCTIVE MATERIALIZER and by the CONTINUOUS

TREND ANALYZER. The former transform the data in a matrix (users x restaurants)
and incrementally maintain its inductive materialization using the internal knowledge
about restaurant categories. The latter incrementally identifies the top restaurants in
the week, month, quarter, etc. Whenever a user ask BOTTARI for a recommendation,
a SPARQL query is sent to three Mega-modules: SEMANTIC GEO-SPATIAL QUERY

ENGINE, which returns a list of restaurants that matches the semantic criterion re-
quested by the user (e.g., traditional cuisine) ordered by distance from the user; the
QUERY ANSWERING ON INDUCTIVE MATERIALIZATION, which uses the patterns identi-
fied by the INDUCTIVE MATERIALIZER to return a list of restaurants order by the prob-
ability that the user likes them; and the CONTINUOUS TREND ANALYZER, which return
a list of restaurants ordered by number of positive ratings in a given time window
(e.g., the last week). A RANK AGGREGATOR mega-module combines the lists and
returns the recommendations to BOTTARI interface.

5.2 Mega-modelling of a Proactive Car-Pooling Service

A more complex analytical process is depicted in Fig. 4, which supports the intelli-
gent, proactive car-pooling system of [22]. At the level of each individual mobile
users, trajectories corresponding to actual trips are reconstructed, and then clustered to
find the (systematic) routines of the user, e.g., her home-work-home commutes or
frequent trips for bring-get activities, such as bringing kids to school. For each cluster
a typical representative trip is extracted through a parallel decomposition, and a con-
cept-drift mechanism is used to monitor when user’s routine change, e.g., as a result
of moving or the arrival of a new-born baby. The individual routines are, then, aggre-
gated at collective level, according to two different purposes: to find the patterns of
systematic mobility and study the city access paths (bottom right), and to find best
matches among pairs of commuters with systematic routines, that can be put in con-
tact for car-pooling. In our study over the city of Pisa, we found that there is a car-
pooling potential of 67% (i.e., every routine has a 67% chance of being served from a
matching routine of another user, see [22]), showing that car-pooling systems based
on big data analytics have potentially a high impact in reducing systematic traffic.

5.3 Drift Control

The mega-model in Fig. 5 depicts a system that leverage the analysis of tourist routes
in an area of interest for the twofold purpose of understanding aggregated touristic
behavior and recommending popular routes to individual tourists. Trajectories record-
ing tourist visits are reconstructed at the individual level and then aggregated;
trajectory pattern mining is then used to discover the frequently followed routes. The
discovered patterns are delivered both to the tourism authorities for analytical purpos-
es and to the individual tourists in form of recommended popular routes. A concept-
drift composition is used to monitor the validity of the discovered patterns against the
incoming stream of tourist trajectories, as well as the emergence of novel patterns.

12 S. Ceri et al.

Fig. 4. The Me

Fig. 5. The Meg

ega-modeling of an intelligent car-pooling service

ga-modeling of a touristic recommendation service

 Mega-modeling for Big Data Analytics 13

5.4 Component-Based Graph Decomposition

An example of component-based graph decomposition is depicted in Fig. 6, based on
the idea of discovering the geographical borders delimiting the real mobility basins
dictated by the big data of human mobility [23].

Fig. 6. The Mega-modeling of a micro-macro decomposition of mobility analysis

The key mega-module here is the border computation, illustrated in Fig. 7. Starting
from a given zoning of the territory, tessellated into census zones, the preparation
phase constructs a network whose nodes are the zones and the weighted edges
between any two zones represent the number of travels originating in the first and
ending in the second. The analysis phase consists in discovering densely connected
sub-graphs in this network by means of a community detection method, thus hig-
hlighting groups of zones that are highly connected by many travels compared to the
lower connectivity among different modules. The evaluation phase consists in map-
ping these modules back to geography, and drawing appropriate borders to delimit the
different modules. The borders mega-module is a means to highlight a hierarchical
structure in a large network, thus separating a micro level (within each separate mod-
ule) and a macro-level (where each module is abstracted to a node and the links
among different modules are considered). The mega-modeling of Fig. 6 then exploit
this decomposition for a parallel (or map-reduce) computation over the separate
modules of mobility analysis, such as origin-destination flow matrices or more
sophisticated pattern mining, as in previous examples.

14 S. Ceri et al.

Fig. 7. The steps of the bord
census zones; construction of
discovery of modules (commun
delimitation of modules so as to

6 Conclusions and

This paper introduces the
mega-model composition;
scientific big data processin
preliminary, and needs form
ciated with a meta-model e
mega-modelling should be
model aspects. In a broad v
model interoperability shou
form, capable of supporti
processes by composing kn
visual interfaces to mega-m
ent classes of users with va
policy makers, ordinary ci
understandable simulations
ther develop the mega-mod
projects such as FuturICT a

References

1. Bishop, S., Helbing, D.: F
2. Hey, T., Tansley, S., Toll

covery. Microsoft Researc
3. Haas, P.J., Maglio, P.P., S

els. In: Proceedings of the

ders computation (from top left to bottom right): tessellation
the flow network between any two zones; forgetting geograp

nities) in the network; mapping of communities back to geograp
o discover the borders dictated by human mobility [23]

d Future Work

 concept of mega-modelling and some abstractions
its objective is to raise the interest of the community
ng on model composition and reuse. Our approach is v
malization and extensions, e.g. each model should be as
explaining the model’s syntax and behaviour, and theref
e associated with suitable languages for expressing me
vision, meta-models should be indexed and searchable,
uld be supported, so as to build a world-of-modelling p
ing the creation of complex analytical and simulat

nowledge discovery mega-modules. Different language
modelling should also be devised, so as to empower dif
arying levels of expertise (data scientists, social scienti
itizens) with appropriate means for creating realistic
s and what-if analyses. In our future work, we plan to f
delling abstractions in the context of large inter-disciplin
and Genomic Computing.

FuturICT Project Summary, http://www.futurict.eu
le, K. (eds.): The Fourth Paradigm. Data-Intensive Scientific D
ch (2009)
Selinger, P.G., Tan, W.-C.: Data is Dead ...Without What-If M
e Very Large Data Bases Endowment, PVLDB, vol. 4(12) (20

into
phy;
phy;

for
y of
very
sso-
fore
eta-
and

plat-
tion
and

ffer-
ists,
and
fur-

nary

Dis-

Mod-
11)

 Mega-modeling for Big Data Analytics 15

4. Wiederhold, G., Wegner, P., Ceri, S.: Towards Mega-Programming. ACM Communica-
tions 35, 11 (1992)

5. Bezivin, J., Journault, F., Valduriez, P.: On the need for Megamodels. In: OOPSLA
2004/GPCE Workshop

6. Favre, J.-M., Nguyen, T.: Towards a Megamodel to Model Software Evolution Through
Transformations. Electr. Notes Theor. Comput. Sci. 127(3), 59–74 (2005)

7. Schmidt, D.C.: Model-Driven Engineering. IEEE Computer 39(2), 25–31 (2006)
8. Seibel, A., Neumann, S., Giese, H.: Dynamic Hierarchical Megamodels: Comprehensive

Traceability and its Efficient Maintenance. Software and System Modeling 9(4), 493–528
(2010)

9. Imielinski, T., Mannila, H.: A Database Perspective on Knowledge Discovery. Communi-
cation of the ACM 39(11), 58–64 (1996)

10. Blockeel, H., Goethals, B., Calders, T., Prado, A., Fromont, E., Robardet, C.: An Inductive
Database System Based on Virtual Mining Views. Data Mining & Knowledge Discov-
ery 24(1), 247–287 (2012)

11. Giannotti, F., Nanni, M., Pedreschi, D., Pinelli, F., Renso, C., Rinzivillo, S., Trasarti, R.:
Unveiling the Complexity of Human Mobility by Querying and Mining Massive Trajecto-
ry Data. The VLDB Journal 20(5), 695–719 (2011)

12. Franklin, M.J., Kossmann, D., Kraska, T., Ramesh, S., Xin, R.: CrowdDB: Answering
Que-ries with Crowdsourcing. In: Proc. ACM-Sigmod, Athens (June 2011)

13. Bozzon, A., Brambilla, M., Ceri, S.: Answering Search Queries with Crowdsearcher. In:
Proc. WWW 2012, Lyon (April 2012)

14. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters. In: Op-
erating Systems Design and Implementation (USDI 2004), pp. 137–147 (2004)

15. Celino, I., Dell’Aglio, D., Della Valle, E., Huang, Y., Lee, T., Park, S., Tresp, V.: Bottari:
an Augmented Reality Mobile Application to deliver Personalized and Location-based
Recommendations by Continuous Analysis of Social Media Streams. J. Web Semantics (to
appear, 2012)

16. Barbieri, D.F., Braga, D., Ceri, S., Della Valle, E., Huang, Y., Tresp, V., Rettinger, A.,
Wermser, H.: Deductive and Inductive Stream Reasoning for Semantic Social Media Ana-
lytics. IEEE Intelligent Systems 25(6), 32–41 (2010)

17. Assel, M., Cheptsov, A., Gallizo, G., Celino, I., Dell’Aglio, D., Bradesko, L., Witbrock,
M., Della Valle, E.: Large Knowledge Collider: a Service-oriented Platform for Large-
scale Se-mantic Reasoning. In: Proc. WIMS 2011 (2011)

18. Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393,
440 (1998)

19. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509
(1999)

20. Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning About a Highly
Connected World. Cambridge University Press (2010)

21. Coscia, M., Giannotti, F., Pedreschi, D.: A classification for community discovery me-
thods in complex networks. Statistical Analysis and Data Mining 4(5), 512–546 (2011)

22. Trasarti, R., Pinelli, F., Nanni, M., Giannotti, F.: Mining mobility user profiles for car
pooling. In: KDD 2011, pp. 1190–1198 (2011)

23. Rinzivillo, S., Mainardi, S., Pezzoni, F., Coscia, M., Pedreschi, D., Giannotti, F.: Discover-
ing the Geographical Borders of Human Mobility. KI - Künstliche Intelligenz (2012)

	Mega-modeling for Big Data Analytics
	Introduction
	Scientific Pillars of Mega-Modelling
	Mega-modules for Scientific Big Data Processing
	Phases of Mega-module Computations
	Composition Abstractions

	Data Management through Schemata and Patterns
	Mega-schema
	Patterns Organization

	Examples
	Parallel and Pipe
	Mega-modelling of a Proactive Car-Pooling Service
	Drift Control
	Component-Based Graph Decomposition

	Conclusions and Future Work

	References

