
Model Transformations for Round-Trip Engineering in
Control Deployment Co-Design

Ken Vanherpen
University of Antwerp

ken.vanherpen@uantwerpen.be

Joachim Denil
University of Antwerp

joachim.denil@uantwerpen.be

Hans Vangheluwe
University of Antwerp

McGill University
hv@cs.mcgill.ca

Paul De Meulenaere
University of Antwerp
paul.demeulenaere@

uantwerpen.be

ABSTRACT
When developing a control algorithm for a mechatronic sys-
tem, its deployment on hardware is rarely taken into ac-
count. Hardware properties such as execution performance,
memory consumption, communication delays, buffer sizes,
(un)reliability of the communication channel, etc. are often
not the first concern of the control engineer. However, these
properties may have important effects on the control loop be-
haviour such that initial requirements may no longer be ful-
filled. To tackle this issue, we propose a Round-Trip Engi-
neering (RTE) method allowing for a semi-automatic integra-
tion of hardware properties, corresponding to the deployment,
into the control model. The proposed RTE method combines
techniques of model transformations and model-based design
space exploration. The resulting method will enable an en-
gineer to further enhance the control model based on imple-
mentation properties such that the initial requirements are still
satisfied when deployed on the target hardware platform.

Author Keywords
Behavioural Modelling; Co-Design; Deployment
Optimization; Real-Time Embedded Systems; Round-Trip
Engineering (RTE)

ACM Classification Keywords
B.8.2 PERFORMANCE AND RELIABILITY; C.4 PER-
FORMANCE OF SYSTEMS; D.3.4 PROGRAMMING
LANGUAGES: Processors-Code generation

INTRODUCTION
Model Driven Engineering (MDE) and Model-Based Design
(MBD) are gaining more interest for the design and develop-
ment of software-intensive and cyber-physical systems [12].
This results in a development shift from hand-written code
to models from which implementation code is automatically
generated through model-to-text transformations. Further-
more, various disciplines are involved in designing a cyber-
physical system such as mechanical engineering, control en-
gineering, software engineering, integration engineering, etc.

SpringSim-TMS/DEVS, 2015, April 12 - 15, Alexandria, VA, USA
c© 2015 Society for Modeling & Simulation International (SCS)

This interdisciplinary design involves a multitude of views
on the system under design. For example, a control engi-
neer designs a control algorithm for a certain problem and is
concerned about the control performance and stability of the
algorithm. Afterwards, a software and integration engineer
have to deploy this control model on a set of networked em-
bedded systems. They use the constraints given by the con-
trol engineer to deploy the algorithm but are also concerned
about resource constraints, timing constraints, schedulability
of software tasks, etc.

Because control engineers have limited aids to estimate the
impact of the deployment process on their (created) control
algorithms, they typically do not take any resource constraints
into consideration during control design. Software and inte-
gration engineers face similar difficulties when deploying a
control algorithm on hardware. The control engineer specifies
timing constraints on the periodic behaviour of the algorithm
for numerical stability. However, the software and integration
engineer still have to decide the optimal control-loop timing
for the algorithm based on control performance and resource
constraints [7]. It is clear that an optimised deployment of
control models onto an electronic control unit (ECU) or a set
of networked ECUs remains a huge challenge.

To mend these problems, this work focuses on control-
deployment co-design by introducing a Round-Trip Engi-
neering (RTE) approach [19] as globally represented in Fig-
ure 1. It allows both the control engineer and integration en-
gineer to assess the impact of the deployment on the control
algorithm. Our RTE approach is implemented in a common
design process for software-intensive and cyber-physical sys-
tems: (a) Control Design: Based on a set of requirements, a
control engineer designs an algorithm to control (a part of)
the system. This can be done by using Simulink R© block di-
agrams, currently the de facto standard for control engineer-
ing. Once the simulation results conform to the given require-
ments, the model of the system is handed over to the software
engineer. (b) Deployment: The software engineer receives
the control model and prepares the model for deployment,
for example modularisation of the control model. From the
prepared control model, code is generated. Afterwards, an

55



Control model Plant model

ECU1 ECU2
CAN

Tr
ac

ea
b
ili
ty

De
pl

oy
m

en
t

Ro
un

d-
Tr

ip
 lo

op

Extra 
blocks

Figure 1. Overview of RTE approach.

integration engineer decides how the model is deployed on a
set of networked ECUs by setting the operating system pa-
rameters, setting bus priority messages, etc. (c) Round-Trip
loop: The results of the deployment process are used to create
new behavioural diagrams by updating the control model with
extra blocks. These blocks represent the effects of the deploy-
ment at the level of the control engineer. As a result, the con-
trol engineer can use his/her appropriate view and techniques
to evaluate the behaviour after deployment.

The rest of this paper is structured as follow. Related work is
elaborated in Section “Related Work”. Section “Approach”
explains in detail our contributions, whereas Section “Case
Study: Power Window” applies our theory on a case study.
A discussion about our proposed approach and some future
work which needs to be tackled is described in Section “Dis-
cussion & Future Work”. Finally, Section “Conclusions” con-
cludes our contributions.

RELATED WORK
The literature describes multiple scientific contributions to
introduce real-time execution behaviour when modelling a
Cyber-Physical System (CPS). Eidson et al. [6] presents the
PTIDES design environment as an extension to the Ptolemy
II framework. It allows a control designer to add a no-
tion of physical time without actually deploying the system.
Therefore, PTIDES extends discrete-event systems with a
relationship between model time and physical time at sen-
sors, actuators and network interfaces. Another approach
is presented by Guerra et al. [10] where triple graph trans-
formations are used to back-annotate original models with
analysis results. In [15] Naderlinger demonstrates how to
manipulate the Zero Execution Time (ZET) simulation be-
haviour of MATLAB/Simulink R© models to real-time execu-
tion behaviour by introducing building blocks consuming a
finite amount of simulation time. In addition, a more gen-
eral overview of integrating real-time execution behaviour at
model level is given by Derler et al. [5] where a framework of

design contracts is proposed to facilitate interaction between
control and embedded integration engineers designing CPS.

However, the former mentioned methods all perform horizon-
tal model-to-model transformations meaning they operate at a
same level of abstraction. By contrast, our approach operates
vertically in terms of levels of abstraction and thus perform-
ing transformations from model-to-text and vice versa. To
this end, Ciccozzi et al. describe in [2,3] an approach which is
similar to ours. Their round-trip solution consists out of three
steps: (1) the generation of code from a source model, (2)
monitoring of extra-functional properties at system level, and
(3) back-annotation of the source model. Nevertheless, their
back-annotation consists out of a textual description with im-
plementation related properties meaning the system devel-
oper needs to be aware of these specific technical terms in
order to optimise the deployment. In this respect, Morelli
and Di Natale present the T-Res framework in [13] allowing
for a co-simulation of the software model and the hardware
execution platform. Inspired by TrueTime [1, 11], they in-
troduce kernel and task blocks into the Simulink R© software
model (i.e. the control model which is adapted for implemen-
tation). Although they graphically back-annotate the control
model with deployment information, the T-Res framework, in
our opinion, aims for a collaborative design between software
and integration engineer.

Our work differs in the sense that we aim for a co-design be-
tween control and integration engineer. To this end, we focus
on changing the behaviour of the source models with (de-
ployment) timing information at the level of abstraction of the
control engineer, i.e. by introducing rather simple Simulink R©
blocks and eliminating excessive deployment information.

APPROACH
Nowadays, many different disciplines are involved in the de-
velopment of a control algorithm, each with their own view,
skills and concerns regarding the algorithm to be developed.
However, some of these views may conflict with each other
and may affect the overall performance of the algorithm under
development. Moreover, due to the introduction of model-
based development the integration of some of those views is
postponed to a later development phase. In our case a prece-
dence relation [17] exist between the control design and the
integration engineering. This results in a late detection of
conflicting views which in turn results in multiple iterations
to deploy a single control model. In this paper we focus on
a method to facilitate this co-design, in particular between a
control engineer and an integration engineer.

Overview
We graphically represent our Round-Trip Engineering (RTE)
method by the Formalism Transformation Graph and Process
Model (FTG+PM) shown in Figure 2. The left side of the
FTG+PM declares all the involved formalisms (boxes) and
all the model transformations (circles) between these differ-
ent formalisms. The right side shows the process with the
involved models (boxes), transformed by a model transfor-
mation (round-tangled boxes). Note that a model in the PM
part is an instance of a formalism declared in the FTG part.

56



Furthermore, complex data-flow (dashed line) and control-
flow (full line) relations can exist in the process part of the
FTG+PM.

Our RTE method is typed by three distinguished phases: (1)
Control Design, (2) Deployment and (3) Round-Trip Loop.
Note that each of these phases respectively correspond to
one column in Figure 2. Furthermore, an Architecture De-
scription Language (ADL) is used to store design information
while executing each phase and to maintain traceability. For
this purpose, formalisms such as MARTE can be used which
is a UML profile for the Modeling and Analysis of Real-Time
and Embedded Systems [8].

(1) During the first phase a control algorithm is created and
modelled by the control engineer. A software engineer re-
ceiving the control model applies some other actions such as
the modularisation of the control model (i.e. the subdivision
of the control model in to several subsystems). Simultane-
ously, the ADL model which holds the requirements of the
system is updated by adding the different subsystems to the
component level. Traceability links link the ADL model to
the behavioural models. From each subsystem, source code
is generated by performing a model-to-text transformation.

(2) From the source code, several analyses are executed in or-
der to find a feasible and optimised deployment onto an Elec-
tronic Control Unit (ECU) or a set of networked ECUs. These
analyses include timing analysis to obtain the Worst Case Ex-
ecution Time (WCET) of the source code and schedulability
analysis to obtain the Worst Case Response Time (WRT) for
each subsystem. These extra functional properties are added
to the ADL model while maintaining traceability. Further-
more, parameters related to the mapping of software compo-
nents to tasks, operating systems parameters, parameters of
the tasks and messages on the bus, etc. are stored in the ADL.

(3) By using parametrised model transformation templates in
our Round-Trip Loop, a set of model transformations, based
on the result of the deployment process, are created to up-
date the control design by inserting extra blocks. Note that
the results of the deployment process are retrieved from the
ADL model. The control engineer receives this updated con-
trol model enabling him/her to evaluate its behaviour after
deployment.

Round-Trip Engineering Method
For each of the described phases of our RTE method, we elab-
orate on the involved methods and tools that are used. This
further clarifies the presented FTG+PM of our RTE method.

Control Design

Based on a set of requirements, which are stored in an ADL,
a control engineer creates an algorithm to control (part of)
the system. A common way to specify control logic is by
using the Causal Block Diagram formalism, usually referred
to as Simulink R© diagrams. Control engineers connect plant
models to the control models to verify the behaviour of the
designed algorithms in the context of the system with respect
to the requirements of the system. The created control models
are prepared for deployment by the control engineers. This

involves the discretisation of a continuous-time model into a
discrete-time model.

If the output of the control model still meets the predeter-
mined requirements, the model is handed over to the software
engineer. He applies some other actions such as the modu-
larisation of the control model with respect to the hardware
configuration while maintaining traceability. To this end, the
software engineer adds the different components to the com-
ponent model of the ADL and models the interactions be-
tween the new components and the rest of the system. Trace-
ability links link the ADL model to the behavioural models.
From the different subsystems, source code is automatically
generated for deployment onto the ECUs. Widely available
tools like Simulink Embedded Coder R© are used for this pur-
pose.

Deployment

The source code generated from each subsystem, called soft-
ware components, need to be feasibly and optimally mapped
to an ECU or a set of networked ECUs. Each software com-
ponent is allocated to an operating system task and task re-
lated parameters are set. Signals originating in the software
components are packed into bus messages for communica-
tion between networked ECUs. To this end, parameters such
as message priority are set.

To check whether a configuration is feasible and optimal, the
integration engineer starts by determining the performance
of each software component by executing a timing analy-
sis. For this purpose, two different methods exist: static and
measurement-based method. The former method makes use
of the generated code and a model of the target hardware to
analyse the set of different possible control flow paths. The
latter method executes the generated code on the target hard-
ware or on a low-level simulation model to measure the exe-
cution time given a set of inputs. Both methods lead to the
determination of the Worst Case Execution Time (WCET)
indicating the upper bound on execution times of the soft-
ware components running on the target hardware. A detailed
overview of the tools and methods involved in obtaining the
WCET can be found in [21].

The results of the timing analysis are added to the ADL
model, from which a Real-Time Task Model can be derived.
As a result, this model contains software related information
(e.g. WCET) and information about the target hardware (e.g.
number of ECUs), as well as the information related to tasks
on the operating system and messages on the bus. Based on
this model, an integration engineer executes a schedulabil-
ity analysis. Different techniques such as the one described
by Tindell and Clark [20] or Palencia and Harbour [16] can
be used. As a result, the schedulability analysis provides the
integration engineer a trace containing the Worst Case Re-
sponse Time (WRT) for each subsystem. As its name im-
plies, the WRT indicates the maximum bound at which the
subsystem produces a signal on (one of) its outputs. Nowa-
days, several tools can be invoked to perform a schedulability
analysis resulting in a trace containing the WRT. In the scope
of this paper, we are using an analysis tool called MAST [9]
for this purpose.

57



CodeGeneration

C-Code

ExecuteTimingAnalysis

Control Model

Performance Trace

ExtractPerformanceResults

Performance Model

ExecuteSchedulabilityAnalysis

Schedulability Trace

Real-Time Task Model

ADL Model

UpdateADL

BackAnnotationOfADL

CreateRTTaskModel

Rule

CreateGraph

Himesis

CreateGraph

Himesis

CreateTemplate CreateTemplate

Parametrised Template

CreateSimulinkTransformations

Simulink Transformations

CreateGraph

Himesis

UpdateControlModel

:Control Model

:UpdateADL:CodeGeneration

:C-Code :ADL Model

:ExecuteTimingAnalysis :CreateRTTaskModel

:Performance Trace :Real-Time Task Model

:ExtractPerformanceResults :ExecuteSchedulabilityAnalysis

:Performance Model :Schedulability Trace

:ExtractSchedulabilityResults

ExtractSchedulabilityResults

:BackAnnotationOfADL

Schedule Model :Schedule Model

:BackAnnotationOfADL

:ADL Model

FTG

Consume / Produce Formalism

Formalism Manual
Transformation

(Semi-)Automatic
Transformation

PM

Control Flow Data Flow

Model
Artifact

Manual
Activity

(Semi-)Automatic
Activity

:CreateGraph

:Himesis

:CreateTemplate

:Rule

:CreateGraph

:Himesis

:CreateTemplate

:Parametrised Template

:CreateSimulinkTransformations

:CreateGraph

:UpdateControlModel

:Simulink Transformations

:Himesis

:Control Model

Figure 2. Formalism Transformation Graph (left) + Process Model (right) of our Round Trip Engineering Method.

One should notice that the former mentioned deployment pro-
cess is typically an iterative process. This is not taken into ac-
count in the FTG+PM shown in Figure 2, but is demonstrated
in the work of Mustafiz et al. [14].

The results of this deployment are fed back to the ADL
model. However, the choices made by the integration engi-
neer when deploying the system onto the hardware affect the
performance of the designed control loop. For example, a
signal can be delayed due its transmission via a bus or a soft-
ware component may encounter a longer execution time due
to task related parameters.

Round-Trip Loop

Finally, the results of the deployment process are used to cre-
ate new behavioural models by updating the Simulink R© con-
trol model with extra blocks. These blocks introduce the ef-
fects of the deployment at the level of the control engineer.
The control engineer can use his/her appropriate view and
techniques to evaluate the behaviour after deployment.

Therefore, we rely on a model transformations for, and in
Simulink [4] as can be seen in the third column of the
FTG+PM. Our technique creates a parametrised rule-based
model transformation based on the original control model and
a self-defined (set of) rule(s). It serves as a template to create
a set of rule-based model transformations whereby the pa-
rameters are replaced by parsing the information stored in the
ADL.

Updating the control model is supported by introducing delay
blocks. These blocks delay signals in the Simulink model to
reflect the WRT as a result of the schedulability analysis.

CASE STUDY: POWER WINDOW
In this section, the former mentioned RTE method is applied
to an automotive case study. At the time of writing, we imple-

mented a mock-up of an ADL prior to the selection of an ap-
propriate ADL which covers all our current and future needs.
As a result, however, traceability is manually maintained.

As an automotive case study, we select the power window
case consisting out of four windows and typed by the follow-
ing requirements/specifications [18]:

1. The power window consists out of four windows which
can be separately operated.

2. All three passenger windows can be globally operated by
the driver.

3. The operations of the driver have priority in case a passen-
ger window is simultaneously operated by the driver and a
passenger.

4. A window shall start moving within 200 ms after a com-
mand is issued.

5. A window shall automatically move to a final position
when the up or down command is issued for less than
500 ms.

6. A window shall be fully opened or closed within 4.5 s.
7. When closing a window, a force of no more than 100 N

may be present.
8. The detection of an object when closing a window should

result in lowering the window by approximately 10 cm.

Control Design
We create a Simulink R© model based on the presented require-
ments consisting out of five sequential connected main parts
(further called subsystems): (1) Control signals simulating
the actions of driver and passengers, (2) signal debouncing,
(3) control exclusion for driver priority, (4) main control de-
sign, (5) plant model to simulate the environment. We briefly
describe their implementation details. Furthermore, subsys-

58



tems (2) to (4) are deployed on several ECUs. This will be
further elaborated in Subsection Deployment.

(1) The control signals which simulate the actions of driver
and passengers are built by using Simulink Signal Builder R©.
For each driver and passenger a set of up and down signals
are generated. At some points in time, a simultaneous action
from driver and passenger is generated to simulate the control
exclusion.

(2) Signal debouncing is modelled by the use of Simulink
Stateflow R©. The implementation of the debounce circuit is
trivial: A signal has to be in its new state for at least 30 ms
before it is forwarded.

(3) Likewise, the implementation of the control exclusion
circuit is straightforward. By using some basic logic gates,
driver priority is obtained when a driver and passenger oper-
ate the same window simultaneously.

(4) Our controller is based on the work of Prabhu and Moster-
man [18] which can also be find as a Simulink R© tutorial. It
includes an implementation for most of the aforementioned
requirements as a Simulink Stateflow R© diagram.

(5) As a last subsystem of our control design, the plant model
represents the environment of our power window. This in-
cludes mainly the behaviour of the motor and the window
mechanism. Their properties are explicitly modelled by us-
ing control theory. Note that the external pinch force is part
of the environment. Therefore, a feed back loop from plant to
control model is present.

The simulation result of this ideal control design is shown
as a solid blue curve in Figure 5 and more detailed in the
upper part of Figure 6, where the window behaviour of the
front passenger is shown. At time stamp 1 s the driver ini-
tiates an up-command, whereafter the window closes within
50 ms. During this movement, a force of 100 N is detected
at time stamp 3.15 s. This results in a revert movement of
the window 35 ms after pinch detection. The driver sends
a down-command at time stamp 8 s for a time period longer
than 500 ms, resulting in lowering the window 52 ms after the
command is initiated. At time stamp 10 s both driver and pas-
senger issue a window command. However, their commands
conflict with each other giving it priority to the driver. This
results in a completely closed window within a time period
of 4.41 s. At the remainder time stamps, some other require-
ments are tested which are irrelevant to the further course of
this paper. Bottom line of these simulation results is that the
aforementioned requirements are met.

Deployment
The modularisation of the subsystem is made on the basis
of their specific action. Each subsystem (i.e. parts (2) to
(4) since the other ones are a simulation of the environment)
needs to be deployed onto an ECU. Therefore, code is gener-
ated for each of those subsystems by performing a model-
to-code transformation. Since we have modelled the con-
trol design in Matlab Simulink R© we are using the Embedded
Coder R© for this purpose. Furthermore, the ADL is updated
such that it contains the names of all the subsystems.

Once the different subsystems are transformed to C-code, a
timing analysis is executed. The Worst Case Execution Time
(WCET) is derived from this trace. To this purpose, each
code-segment is separately deployed on a DVK90CAN1 de-
velopment board which holds an 8-bit AT90CAN128 micro-
controller. After a repeated execution of all possible func-
tionalities of the different subsystems, our timing analysis re-
sults in the WCET shown in column ‘C’ of Table 1. Along
with the timing periods (‘T’) and deadlines (‘D’) shown in
Table 1 this information is stored in the ADL. Note that the
task names refer to the different subsystems of our control de-
sign, where ‘Deb’, ‘PW’ and ‘CE’ are abbreviations for ‘De-
bounce’, ‘Power Window’ (i.e. the controller which holds the
stateflow of the power window) and ‘Control Exclusion’ re-
spectively. For the rear passenger windows the same results
are obtained as for the front passenger.

In addition to the information related to the subsystems, the
ADL is further extended by the deployment engineer with a
description of the hardware architecture (i.e. the number of
ECUs, type of scheduler, etc.). At this point, the ADL stores
al the information needed by schedulability algorithms to de-
termine the deployment of the subsystems onto the different
ECUs. For this purpose we use the MAST tool [9] and select
the ‘Offset Based Approximate Analysis’ technique [16]. An
optimal system deployment is found by using two ECUs for
each power window. One holds the debounce circuit, while
the other one holds the control exclusion circuit and the power
window control logic. However, the window control parts are
not the only tasks allocated to the ECUs. Other miscellaneous
tasks (‘Misc’), which for example control the wing mirrors
(‘WM’) or the door lock system (‘DL’), interfere with the ex-
ecution of the window control parts because of operating sys-
tem mechanisms like pre-emption. This is taken into account
in our schedulability analysis as can be seen in Table 1.

ECU Tasks
Name Name C T D P W
DRV 1 WM DRV 21 85 85 8 21.5
DRV 1 DL DRV 32 95 95 7 54
DRV 1 Deb DRV 30 100 100 5 84.5
DRV 2 PW DRV 42 50 50 5 42.5

Front 1 Misc1 Front 21 85 85 8 21.5
Front 1 Misc2 Front 32 95 95 7 54
Front 1 Deb Front 30 100 100 5 84.5
Front 2 PW Front 42 50 50 5 42.5
Front 2 CE Front 0.25 50 50 4 43.25

Table 1. ECU Mapping (C: WCET in [ms], T: Time Interval in [ms], D:

Deadline in [ms], P: Priority, W: WRT in [ms]).

Round-Trip Loop
The schedulability trace holding the Worst Case Response
Time (WRT) is added to the ADL and serves as an input for
our Round-Trip Loop. As already mentioned, the WRT indi-
cates the maximum bound at which the subsystem produces
a signal on (one of) its outputs. In other words, how much
an output signal is delayed compared to an ideal simulation.

59



(a) Left Hand Side (LHS).

(b) Right Hand Side (RHS).

Figure 3. Parametrised Model Transformation Rule.

For example, a debounce circuit takes up to 84.5 ms to pro-
duce an output. In more detail, we can deduce that this time
is composed out of 30 ms computation time (‘C’) and 54.5 ms
scheduling related time. This is valuable information for the
control engineer because these delays might affect the over-
all behaviour of the designed control loop (which was done
by the availability of unlimited resources). Moreover, by de-
tailing the WRT a control engineer is able to focus on the
optimization of the computation time since this is related to
the control design.

To this end, the Simulink R© model of the control design is
updated with extra delay blocks. Therefore, a parametrised
rule-based model transformation is created as depicted in
Figure 3. At the Left Hand Side (LHS) of the rule an
original output of a subsystem is modelled, which needs
to be transformed to an output followed by a two delay
blocks as modelled at the Right Hand Side (RHS) of the rule.
This parametrised template will be used by our Round-Trip
Loop to create a set of model transformations based on the
traces of the schedulability analysis which are stored in
the ADL. Therefore, parameters characterised by asterisks
will be replaced by values derived from the schedulability
trace. For example, Figure 4 shows the result of a model
transformation applied on the debounce subsystem of the
front passenger. Executing all model transformations based
on the schedulability trace results in a new control design
allowing a control engineer to evaluate its behaviour after
deployment.

Results
When evaluating the simulation result of the new behavioural
diagram, shown as a dashdotted red curve in Figures 5 and 6,
we see remarkable differences compared to the ideal simu-
lation result (solid blue curve). While closing the window,
a force of 100 N was detected at time stamp 3.15 s. Ideally
it only took 35 ms to reverse the movement of the window.
When taking into account the delays after deployment, one
can notice the timespan between detection and action is in-
creased to 83 ms. Due to this slow response time, the window

Figure 4. Result of a model transformation.

Figure 5. Simulation results - Front passenger.

closes for another 3.9 mm before an action takes place. Al-
though requirements don’t mention any response time when
an object is detected, it is clear that the slower response time
may lead to safety issues compared to the ideal situation
where the window closes for only 1.4 mm after detection. A
serious violation of the fourth requirement can be found when
comparing the reaction times after a command is issued. For
example, at time stamp 8 s the driver issues a lower-command
resulting in an ideal reaction time of 52 ms. However, after
deployment the reaction time appears to be 221 ms which is
10 % higher than required. Likewise, a violation of the sixth
requirement can be identified because it now takes 4.7 s to
fully close the window.

The simulation results show that our parametrised model
transformations do add essential information to the control
model in order to evaluate the control performance for a given
deployment.

DISCUSSION & FUTURE WORK
Applying our Round-Trip Engineering method to a rather
simple case study shows how to inject the behaviour of the
deployment to a higher level of abstraction. This enables a

60



Figure 6. Detail of simulation results - Upper: Ideal simulation; Lower: After in-place transformation.

control engineer to evaluate the updated control design using
his/her appropriate view and techniques. Updating the con-
trol design consists of placing delay blocks representing the
Worst Case Response Time of the prior subsystems. Future
work consists out of the implementation of an appropriate Ar-
chitecture Description Language (ADL) which replaces the
mock-up used so far. This will enable us to maintain trace-
ability (semi-)automatically by adding traceability links be-
tween the ADL model and the behavioural models, similarly
as in [2]. Naturally, the software and integration engineers
receiving, subdividing and deploying the control model will
model their actions to the component model of the selected
ADL.

In order to obtain a control design which is deployable onto a
set of ECUs, we believe our proposed method needs to be ex-
ecuted iteratively. After the first Round-Trip Loop, a control
engineer can modify the control design such that the require-
ments are again fulfilled whereafter the process starts over.
During these successive iterations, the available ADL can be
used to enhance the deployment process. In other words, the
Design-Space Exploration (DSE) process for optimal deploy-
ment can be influenced by taking into account information
available in the ADL.

These future design optimizations should result in con-
tracts to facilitate interaction between control and soft-
ware/integration engineers in the design of Cyber-Physical
Systems [5]. In the end, the design contracts are used to in-
fluence the design process in a structured way to allow for
control deployment co-design.

CONCLUSIONS
In this paper we described a Round-Trip Engineering method
which allows control engineers to evaluate the implications
of their deployed control design. Our contribution focused on

making this information available into the behavioural mod-
els. This method enables a control engineer to evaluate the
control design using his/her appropriate view and techniques
without having knowledge of lower level specifications (e.g.
buffer usage). The Round-Trip Engineering method proposed
in this paper makes use of a set model-to-model and model-
to-text transformation to schedule the control design onto a
set of ECUs. Therefore, trace information originating from
timing analysis is used. By using a parametrised model trans-
formation, a set of model transformations are created based
on the traces of schedulability analysis. This enables us to up-
date the control design by introducing delay blocks conform
the Worst Case Response Times (WRTs) of the deployed sys-
tem. The usefulness of this method is illustrated by a power
window case study. We showed how the deployment of the
power window control design affected the overall behaviour.
Moreover, we have illustrated how initial requirements are no
longer met resulting in unsafe conditions. This is of impor-
tance when dealing with safety critical systems.

Acknowledgements
This work has been carried out within the framework of
the MBSE4Mechatronics project (grant nr. 130013) of the
agency for Innovation by Science and Technology in Flan-
ders (IWT-Vlaanderen).

REFERENCES
1. Cervin, A., Henriksson, D., Lincoln, B., Eker, J., and

Arzen, K.-E. How does control timing affect
performance? Analysis and simulation of timing using
Jitterbug and TrueTime. IEEE Control Systems 23, 3
(June 2003), 16–30.

2. Ciccozzi, F., Cicchetti, A., and Sjödin, M. Round-trip
support for extra-functional property management in
model-driven engineering of embedded systems.

61



Information and Software Technology 55, 6 (June 2013),
1085–1100.

3. Ciccozzi, F., Saadatmand, M., Cicchetti, A., and Sjödin,
M. An automated round-trip support towards
deployment assessment in component-based embedded
systems. In Proceedings of the 16th International ACM
Sigsoft symposium on Component-based software
engineering - CBSE ’13, ACM Press (2013), 179–188.

4. Denil, J., Mosterman, P. J., and Vangheluwe, H.
Rule-Based Model Transformation For , and In
Simulink. In DEVS ’14 Proceedings of the Symposium
on Theory of Modeling & Simulation (2014).

5. Derler, P., Lee, E. a., Tripakis, S., and Törngren, M.
Cyber-physical system design contracts. In Proceedings
of the ACM/IEEE 4th International Conference on
Cyber-Physical Systems - ICCPS ’13, ACM Press
(2013), 109.

6. Eidson, J. C., Lee, E. A., Matic, S., Seshia, S. A., and
Zou, J. Distributed Real-Time Software for
Cyber-Physical Systems. Proceedings of the IEEE 100,
1 (Jan. 2012), 45–59.

7. Ernst, R. Codesign of embedded systems: status and
trends. IEEE Design & Test of Computers 15, 2 (1998),
45–54.

8. Faugere, M., Bourbeau, T., Simone, R. D., and Gerard,
S. MARTE: Also an UML Profile for Modeling AADL
Applications. In 12th IEEE International Conference on
Engineering Complex Computer Systems (ICECCS
2007), no. Iceccs, IEEE (2007), 359–364.

9. Gonzalez Harbour, M., Gutierrez Garcia, J., Palencia
Gutierrez, J., and Drake Moyano, J. MAST: Modeling
and analysis suite for real time applications. In
Proceedings 13th Euromicro Conference on Real-Time
Systems, IEEE Comput. Soc (2001), 125–134.

10. Guerra, E., Sanz, D., Diaz, P., and Aedo, I. A
Transformation-Driven Approach to the Verification of
Security Policies in Web Designs. ICWE’07 4607
(2007), 269–284.

11. Henriksson, D., Cervin, A., and Arzén, K.-E. TrueTime :
Real-time Control System Simulation with MATLAB /
Simulink. In Proceedings of the Nordic MATLAB
Conference (2003).

12. Liggesmeyer, P., and Trapp, M. Trends in Embedded
Software Engineering. IEEE Software 26, 3 (May 2009),
19–25.

13. Morelli, M., and Di Natale, M. Control and Scheduling
Co-design for a Simulated Quadcopter Robot : A
Model-Driven Approach. In SIMPAR 2014 (2014),
49–61.

14. Mustafiz, S., Denil, J., Levi, L., and Vangheluwe, H. The
FTG + PM Framework for Multi-Paradigm Modelling :
An Automotive Case Study. In Proceeding MPM ’12
Proceedings of the 6th International Workshop on
Multi-Paradigm Modeling (2012), 13–18.

15. Naderlinger, A. Multiple Real-Time Semantics on top of
Synchronous Block Diagrams. In DEVS 13 Proceedings
of the Symposium on Theory of Modeling & Simulation
(2013).

16. Palencia, J., and Gonzalez Harbour, M. Schedulability
analysis for tasks with static and dynamic offsets.
Proceedings 19th IEEE Real-Time Systems Symposium
(Cat. No.98CB36279) (1998), 26–37.

17. Persson, M., Törngren, M., Qamar, A., Westman, J.,
Biehl, M., Tripakis, S., Vangheluwe, H., and Denil, J. A
Characterization of Integrated Multi-View Modeling in
the Context of Embedded and Cyber-Physical Systems.
In Proceedings of the Eleventh ACM International
Conference on Embedded Software, IEEE Press (2013),
10:1–10:10.

18. Prabhu, S. M., and Mosterman, P. J. Model-Based
Design of a Power Window System: Modeling ,
Simulation , and Validation. In Society for Experimental
Machines IMAC Conference (2004).

19. Sendall, S., and Küster, J. Taming Model Round-Trip
Engineering. In Proceedings of Workshop on
BestPractices for Model-Driven Software Development
(part of 19th Annual ACM Conference on
Object-Oriented Programming, Systems, Languages,
and Applications) (2004).

20. Tindell, K., and Clark, J. Holistic schedulability analysis
for distributed hard real-time systems. Microprocessing
and Microprogramming 40, 2-3 (Apr. 1994), 117–134.

21. Wilhelm, R., Mitra, T., Mueller, F., Puaut, I., Puschner,
P., Staschulat, J., Stenström, P., Engblom, J., Ermedahl,
A., Holsti, N., Thesing, S., Whalley, D., Bernat, G.,
Ferdinand, C., and Heckmann, R. The worst-case
execution-time problem-overview of methods and
survey of tools. ACM Transactions on Embedded
Computing Systems 7, 3 (Apr. 2008), 1–53.

62




