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Abstract—Model-based Systems Engineering plays a pivotal
role in the design of distributed embedded systems by enabling
early virtual integration of the different parts of the system.
Traditionally, the system model is composed of subsystem models
at the same level of abstraction and with one particular view.
However, in some cases the system model may comprise sub-
system models at different levels of abstraction. Integration of
these different abstraction level models imposes some important
drawbacks which hinder the overall system simulations. These
drawbacks need to be addressed to facilitate the simulation of
systems composed with multi-level subsystem models.

In this paper we report on modelling techniques for embedded
and distributed systems to deal with this heterogeneity. We
describe a methodology to (semi-)automatically generate an
executable multi-level system simulation model starting from an
abstract system architecture of the system. A platooning system
example is used to demonstrate the new modelling techniques.

I. INTRODUCTION

Development of cyber-physical systems (CPS) is becoming

more expensive because of the rising complexity of such

systems. CPSs are systems of synergistically interacting

computing and physical elements distinguished from classical

embedded systems by their complex, networked character

[5]. Engineers deal with the complexity by modelling and

simulating the system under design(SUD). However, design

has to be done at the correct level(s) of abstraction for each

subsystem of the SUD [6].

In addition, a complex system is very hard to understand

and to manage from a single point of view [1], therefore

the system modeller will represent the SUD with a variety

of domain-specific views of each subsystem. In addition,

each subsystem is also represented by a set of subsystem

models at different levels of abstraction, induced i.e. by

the incremental development of the system. This way, the

design space comprises a large set of subsystem models, at a

particular level of abstraction and view and somehow these

models have to ”fit together” in order to perform a variety of

system-level analysis.

Traditionally, a system model will be composed of subsystem

models at the same level of abstraction and with one particular

view. In some cases, this typical approach is not possible or

not sufficient. In these cases, we will integrate subsystem

models at different levels of abstraction and/or with different

views in one system model. Simulation of those system

models, comprising subsystem models at different levels

of abstraction, can be reffered to as multi-level system
simulation.

In this paper, we will discuss the motivation for multi-

level simulation and identify some possible pitfalls of the

usage. We propose a platooning system as a running example

to demonstrate the modelling techniques for embedded and

distributed systems, simultaneously dealing with multiple

modelling abstraction levels. A platooning system is a

group of vehicles showing collective driving behaviour.

Platooning system models should at least contain computing,

commmunication and control models. The platooning system

is particularly interesting for simulation with multiple

abstraction levels in case the platoon is heterogeneous, i.e. if

it consists out of vehicles with different functionality.

The rest of the paper is organised as follows : Section

”Background and Related Work” presents some essential

background and related work on vehicle platooning. Section

”Multi-level simulation” discusses the motivation for multi-

level simulation and identifies some important pitfalls.

Section ”Case study” implements a case study. In Section

”Discussion”, we discuss our proposed methodology. Finally,

Section ”Conclusion and future work” concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Platooning system

Platooning is the coordinated motion of groups of (heavy-

duty) vehicles cooperating with each other to reach the

same destination with a common velocity and a constant

inter-vehicle spacing[10] or constant time headway[2]. These

platooning systems present a significant opportunity to both

improve traffic efficiency and improve the efficiency and safety

of vehicles within the platoon because the vehicles can travel

closer together which improves the aerodynamic performance

and steady state traffic flow. This has the potential to lower fuel

consumption (reduced carbon emission)[8], improve network

capacity and reduce traffic collisions.

A multitude of control strategies for vehicle platooning can

be found in the literature since the 1950s. These studies

range from theoretical work on vehicle platooning to more

experimental research. Based on a brief survey on platooning

and inter-vehicle control [4] , we distinct three major kinds
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of platooning systems, each with a corresponding level of

complexity :

• platooning systems without communication

• platooning systems with Inter-Vehicle Communication
(IVC)

• platooning systems with IVC and Smart Infrastructure
(SI)

Implementation of these different platooning systems imposes

different requirements on the sensory and communication

equipment of the platooning vehicles(PVs). The most basic

platooning system implies that the following vehicles of the

platoon have relative and/or absolute location awareness to

other following vehicles, through a whole series of sensors,

and a smart ECU to control the longitudinal and/or lateral

movement of the vehicle. The more sophisticated platooning

system requires a communication mechanism between the

PVs, or so called inter-vehicle communication and the most

advanced system implies a Smart Infrastructure which informs

the vehicles with specific road information like traffic density

and speed limits.

B. Platooning system setup

As stated before, there is a multitude of conducted and

ongoing research on platooning systems, each with their own

point of view on the platooning system. Most of the researches

focus on a particular part of the platooning system e.g. the

inter-vehicle spacing [10],[2],[13] or the Vehicle-to-Vehicle

communication (V2V)[3]. For the good understanding, the

used terminology of a platooning system needs to be clarified.

Fig. 1: Platooning system actors [8]

1) Actors: The key actors of a platooning system are the

leading vehicle (LV) and one or more following vehicles

(FVs). The LV is mostly a heavy-duty truck, equiped with

high-end communication technology and is driven by a li-

censed and trained driver. As stated before, the FVs need to

be equiped with more or less advanced sensors and communi-

cation technologies, depending on the kind of platoon system.

Vehicles who are not (yet) part of a platoon can be categorized

in (a) vehicles who can potentially join a platoon (PFVs) and

(b) vehicles which are not allowed to join a platoon. In order

to achieve autonomous driving, the road infrastructure can also

be equipped with suitable sensors and communication devices.

This equipped road is called a back office (BO).

2) Communication: The actors of the more complex pla-

tooning systems will be equiped with communication mech-

anisms in order to achieve either solely V2V communication

or the combination of V2V and the more advanced Vehicle-

to-Infrastructure (V2I) communication. This V2V and V2I

communication improves the efficiency and safety of the

platoon by providing road and maneuvering information e.g.

oncoming traffic jams or lane switching of the LV.

III. MULTI-LEVEL SYSTEM SIMULATION

A. Motivation

As stated before, a multi-level system simulation1 is a simu-

lation where the simulated system model comprises subsystem

models at different levels of abstraction. There are many

reasons why we integrate subsystem models at different levels

of abstraction in one system model. One possible cause is

the kind of development process. Within some development

processes, this heterogeneity is inherent to the type of de-

velopment process. E.g. within hardware/software co-design

(such as embedded system development processes), meaning

that the hardware and software are developed simultaneously,

it regularly occurs that the individually developed models

of the hardware and software don’t have the same level of

abstraction caused by small deviations to the synchronicity of

the hardware/software development process. Another reason

occurs when using product variants. Adding a new feature

to an existing system will likely induce the integration of a

low abstraction level subsystem model with higher abstraction

level subsystem models.

B. Pitfalls and limitations

When conducting a multi-level system simulation, there are

some pitfalls that we need to bear in mind in order to perform

proper simulations. Some of the possible pitfalls are identified

below.

1) Port mismatch: The first issue concerns the in- and

output ports of the models. When we develop subsystem

models, we iterativaly add detail to the model which results

in models at different levels of abstraction. It can, and likely

will, occur that by adding detail, the number of in- and output

ports change. This way, when integrating subsystem models

at different levels of abstraction it can happen that the number

of input ports don’t match the number of output ports of the

preceding model(s).

2) Unit mismatch: The second issue concerns the units of

the connected in- and output ports of different models. It can

occur that the units of the signals on the interconnected ports

don’t match, especially when integrating models at different

levels of abstraction.

3) Validity of the system simulation model: Another con-

cern is the validity of the overall system model. In a single-

level simulation, the validity of a system model is inherent to

validity of the connected subsystem models. However, when

composing models consisting of submodels from different ori-

gins, the global system validity must be verified, based on the

1Besides multi-level system simulation, we can also encounter multi-view
system simulations. This is the case when we integrate subsystem models with
a different domain-specific view. This is out of scope of this work.
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given validity of the individual submodels. Although (semi-

)automatic methods are appropriate to address this problem,

the current paper will deal with the verification problem in a

manual way.

IV. APPROACH

This section introduces the proposed methodology of our

approach. We propose a step-by-step workflow which will

facilitate the multi-level system simulation by eliminating

some of the pitfalls, more specifically (a) the mismatch of in-

and output ports and (b) the mismatch of units.

The result of this workflow is a (semi-)automatically

generated system simulation model which can be used for

multi-level simulations. Within the generated simulation

model, there will be some adaptations to compensate for the

mismatch of in- and output ports and the mismatch of units.

We limited the scope of this work by taking some assumptions:

• All subsystem models provide sufficient information to

establish the system simulation model. This means that

at least the number of in- and output ports and the cor-

responding units need to be defined for each subsystem

model.

• The generated stubs/monitors and unit conversion blocks

are undefined and need to be manually implemented.

The engineer must have adequate system knowledge to

implement these elements.

• The generated system simulation model is a continuous

model and all the subsystem models are developed using

one uniform modelling formalism.

A. Workflow

The following steps are involved to establish the executable

system simulation model.

1) step 1 : Define the abstract system architecture: The

first step of our workflow is based on the divide-and-conquer

principles found in many development processes, namely

decomposing the system in interconnected subsystems. With

this decomposition, we can easily define the abstract system

architecture model. This model contains the definition of all

the subsystems and their abstract topology. Figure 2 shows

an example of an abstract system architecture of a typical

representation of an embedded system. This abstract system

Fig. 2: Abstract system architecture example

architecture model will most likely be developed by a System

Architect[9] at the early phase of the development process.

In our approach, the abstract system architecture model is a

text-based model defined with an extensive mark-up language

(XML). This enables the model to be human- and machine

readable, which is deemed neseccary to process this model in

the subsequent steps of the workflow.

2) step 2 : Select the proper subsystem models: After

defining the abstract system architecture, we need to select a

proper subsystem model for each subsystem. In practice, this

can be done by defining the absolute path to the subsystem

model and append it to the corresponding subsystem in the

abstract system architecture model.

3) step 3 : Check the in- and output ports mismatch: Next

step in the workflow is checking whether the in- and output

ports of the interconnected subsystems match. Matching in-

and output ports mean that the number of needed input ports

is covered by the number of output ports of the preceeding

subsystem model(s). Adaptation is necessary when the needed

input ports of a subsystem exceed the number of preceeding

input ports or vice versa. This is shown in figure 3 (a) and

(b).

(a) Stubbing required (b) Monitoring required

Fig. 3: In- and output port mismatch - adaptations

In figure 3a, the number of input ports of subsystem 2

exceeds the number of output ports of subsystem 1. In this

case, we need to add a stub for one of the input ports
of subsystem 2. This stub will be a mock-up for the input

signal of the stubbed port. In figure 3b, the number of input

ports of subsystem 2 is smaller than the number of output

ports of subsystem 1. In this case, we need to add a monitor
for one of the output ports of subsystem 1. Determining

the needed stubs and/or monitors is done automatically by

extracting all the static information of the subsystem models,

which is assumed to be present within or jointly with each

model. The abstract system architecture model enables us

to determine the preceeding model(s) in order to perform

the above described check. This abstract system architecture

model is then transformed to a non-reticulated simulation

model which contains the needed stubs and monitors for that

particular setup. This is shown in figure 4.

Fig. 4: Non-reticulated simulation model with stubbing

At this step of the workflow, we don’t know which input

and/or output port needs to be stubbed or monitored.
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4) step 4 : Define the subsystem model interconnections:
Step 4 is the completion of this non-reticulated simulation

model, meaning that the user needs to define the intercon-

nections between the subsystem models. This is as easy as

defining the ”links” between the in- and output ports of

interconnected subsystem models, as shown in red in figure

5. In addition, we need to define the units for each of the

stub and monitor ports, in preparation for the next step of the

workflow.

Fig. 5: Defining the subsystem model interconnections

Up till now, this step is performed manually by the user or

the simulation engineer. This could be automated when the

”links” or ”interfaces” between the subsystems are precisely

defined in a machine-readable language.

5) step 5 : Check the in- and output ports unit mismatch:
The penultimate step of the workflow is checking whether the

units of the connected in- and output ports match and adding

an unit conversion block when needed. The content of the

unit conversion blocks can either be automatically generated,

using the theory of Ontology of Units of Measure(OM) [7],

or can be manually implemented. Manual implementation of

the unit conversion blocks needs to be performed after the

last step of the workflow, when the executable simulation

model is generated.

6) step 6 : Generate the executable simulation model: Last

step of the workflow is transforming the simulation model,

with the necessary stubs/monitors and unit conversion blocks

into an executable simulation model. The formalism used for

this executable simulation model depends on the formalisms

used for the integrated subsystem models e.g. the Causal Block

Diagram (CBD) formalism in Simulink R©. Figure 6 shows an

example of an executable simulation model in Simulink R©.

Notice that the stubs and the unit convertion blocks are already

implemented in figure 6. This is done by hand within the

generated executable simulation model.

Fig. 6: Executable simulation model in Simulink R©

Bear in mind that all the models used in the workflow are

text-based models despite the fact that they are visually repre-

sented in the paper. To enable explicit modelling these models,

a Domain-Specific Language (DSL) needs to be created for

each of these models. Development of these DSLs can be

done via AToMPM, an open-source framework for designing

DSML environments [11].

V. CASE STUDY

In this section,we use the platooning system application to

illustrate the proposed workflow of the previous section. More

specifically, we demonstrate how our proposed methodology

allows the integration of multi-level subsystem models in one

multi-level system simulation model.

A. Platooning system setup

The experiment is a heterogeneous platooning setup where

the FVs of the platoon differ, meaning that these vehicles have

a different level of abstraction. This is particularly interesting

to analyse the behaviour of a platoon composed of vehicles

with different functionality. In this setup, the first two FVs

support V2V communication and have a special emergency

brake mode, the third FV has only a basic adaptive cruise

control to establish the platoon functionality.

The first step is defining the decomposition of the

platooning system in different subsystems and their abstract

interconnection. In this step, we don’t take the different

abstraction levels of the models into account. We just

define the subsystems and their connections in between. The

decomposition for this platooning system is shown in Figure

7.

Fig. 7: Abstract system architecture for the platooning system

Note that the interconnections between the subsystems

are either uni- or bidirectional, this for simplification of the

model. Each subsystem also gets an unique ID in the abstract

system architecture model, indicated by the CID as depicted

in Listing 1.

Next step in the process is selecting the proper model

for each of the subsystems. This is done by defining the

absolute path2 of the selected model within the text-based

abstract system architecture model. Besides the definition

of the path, we also define the view, level of abstraction,

2In Listing 1, the absolute path is abbreviated for readability reasons.
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formalism, tool and tool version for each selected model.

This is shown for the communication subsystem in Listing 1.

<Component>
<P Name=”ComponentName”>Communication</P>
<P Name=”CID”>66</P>
<SelectedModel>

<P Name=”Name”>Communication</P>
<P Name=”View”>Conceptual</P>
<P Name=”Abstraction”>0</P>
<P Name=”Formalism”>CBD</P>
<P Name=”Tool”>Matlab /Simulink</P>
<P Name=”Tool version”>MATLAB_R2014b</P>
<P Name=”AbsolutePath”>C : . . / Communication /COM_0 .slx</P>

</SelectedModel>
</Component>

Listing 1: Selecting the proper subsystem models

After selecting the proper subsystem models, the text-based

model is transformed into a non-reticulated simulation model.

Before transforming the model, the in- and outport mismatch

is checked automatically and the needed stubs/monitors are

generated. These stub and/or monitor blocks are added to the

text-based model together with the definition of the ports for

each of the subsystems. The added stub and monitor blocks

are shown in yellow in Figure 8.

Subsequentially, we need to define the specific connections

between the subsystems. This is done by specifying the

abstract interconnections as shown in Listing 2. To specify

the interconnections, we need the definitions of the ports of

each subsystem and the subsystem ID. The following syntax

is used:

[SubSystemID] [ModelVariableIndex]

The SubSystemID and the ModelVariableIndex respectively

define the source/destination subsystem and port.

<Relation>
<P Name=”DE_ID”>R4</P>
<Subrelation>

<P Name=”SDE_ID”>R1_1</P>
<P Name=”Src”>CID : 6 8_3</P>
<P Name=”Dst”>CID : 6 5_1</P>

</Subrelation>
</Relation>

Listing 2: Specification of the subsystem interconnections

After specifying the connections, we establish a reticulated

simulation model. This model serves as input for the second

transformation. This transformation will add unit conversion

blocks when needed. This can be automatically performed

by examining the unit tag, specified with each signal or

ModelVariable, of the interconnected ports. There are two unit

conversion blocks needed in our simulation setup, shown in

green in Figure 8. The last step in our workflow is generating

the executable simulation model. In this step, we use the

text-based model of the previous step and transform it to an

executable model. In this case study example, this executable

model will be a Matlab/Simulink R© model because all the

subsystem models are developed using Matlab/Simulink R©.

The automatically generated executable simulation model is

shown in Figure 8.

Fig. 8: Executable system simulation model as a

Matlab/Simulink R© model

With this generated executable simulation model, we can

analyse the behaviour of a heterogeneous platoon. In our setup,

we analyse the headway between the different PVs when

performing an emergency brake (EB). In this case, the first

two FVs receive a notification/message of the EB from the

LV, which triggers a special EB mode in the FVs. The third

FV doesn’t support communication and doesn’t have an EB

mode, so it will try to establish a constant headway using

the adaptive cruise control logic. This third FV could cause

safety critical situations for the whole platoon under specific

EB conditions, as shown in figure 9.

Fig. 9: Simulation results of the multi-level system simulation

of the heterogeneous platoon

In Figure 9, we see the headways of the different FVs. The

first two FVs react almost immediatly to the EB, the third only

reacts when the headway decreases but when the EB time is

very short, it will not be able to perform a stable control.

This way, the headway decreases, and drops below zero.

This results in safety critical situations for the whole platoon

because the third vehicle bumps into the second FV. This effect

can even be worse when the desired spacing between the PVs

decreases or the EB time decreases.

VI. DISCUSSION

Our approach relies on the defined information or meta-

knowledge for each subsystem model. This information about

the model is deemed necessary to implement the flow of

our approach. In our case, we defined a modelDescription,
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based on the FMI3 modelDescription, for each of the models.

We extended this modelDescription to fit our needs. Further

enhancement of this meta-knowledge, e.g. defining the

modelling assumptions, signal ranges, etc., will extend our

capabilities e.g. validity analysis.

As stated in Section IV, all the models used in the

workflow are text-based because defining a simple domain-

specific language for these models would not add value to

the described process. This doesn’t mean that we ignore the

importance of a graphical modelling language, which needs

to be scalable for large systems, to define these models.

Finally, in this paper we proved that the platooning
system is a nice case study for further reseach on these

multi-level/multi-view system simulations. In this case, we

focused on the multi-level system simulations, we identified

possible pitfalls and provided a way to facilitate the usage.

This could also be conducted for multi-view simulations

and ultimately, combined multi-level and multi-view system

simulations. A nice case for the multi-view system simulation

of the platoon is if we change the following vehicle models

to an aerodynamic drag model to analyse the drag in respect

to the platoon headway and/or the fuel consumption of the

different platooning vehicles.

VII. CONCLUSION AND FUTURE WORK

This paper presents a methodology to facilitate the use of

multi-level system simulations(by eleminating some of the

pitfalls). Our proposed process starts with a high abstract

model of the architecture of the system. By gradually adding

information to this abstract model, we eventually can (semi-)

automatically generate an executable simulation model for

this system. We applied this process to carry out a multi-level

system simulation of the described platooning system.

In the future, we plan to support heterogeneous multi-

level system simulations, meaning that the subsystem models

don’t need to be developed using the same formalism. To

enable this, we need a heterogeneous simulation environment.

One possible enabler for this is the Functional Mock-up

Interface (FMI) standard. Previous conducted research[12] on

this topic will facilitate the needed adaptation to support this

heterogeneity.

We also aim to incorporate the validity analysis within the

process. This way, it will be possible to analyse the validity

of the multi-level simulation model and to critically assess

the simulation results. This will be tightly coupled with the

needed model information or meta-knowledge[9], defined for

each subsystem model.

3https://www.fmi-standard.org/
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