
INV ITED
P A P E R

Modeling Cyber–Physical
Systems
Developing cyber–physical systems (CPS) models is the main concern of this

paper which provides a comprehensive overview of their current state and

future directions.

By Patricia Derler, Member IEEE, Edward A. Lee, Fellow IEEE, and

Alberto Sangiovanni Vincentelli, Fellow IEEE

ABSTRACT | This paper focuses on the challenges of modeling

cyber–physical systems (CPSs) that arise from the intrinsic

heterogeneity, concurrency, and sensitivity to timing of such

systems. It uses a portion of an aircraft vehicle management

system (VMS), specifically the fuel management subsystem,

to illustrate the challenges, and then discusses technologies

that at least partially address the challenges. Specific technol-

ogies described include hybrid system modeling and simula-

tion, concurrent and heterogeneous models of computation,

the use of domain-specific ontologies to enhance modularity,

and the joint modeling of functionality and implementation

architectures.

KEYWORDS | Computers and information processing; computer

simulation; continuous time systems; discrete time systems;

embedded software; modeling; simulation; software; system

analysis and design; systems engineering and theory; time

factors

I . INTRODUCTION

Cyber–physical systems (CPSs) are integrations of com-

putation and physical processes. Embedded computers and

networks monitor and control the physical processes,

usually with feedback loops where physical processes

affect computations and vice versa. The design of such

systems, therefore, requires understanding the joint
dynamics of computers, software, networks, and physical

processes. It is this study of joint dynamics that sets this

discipline apart.1

When studying CPS, certain key problems emerge that

are rare in so-called general-purpose computing. For ex-

ample, in general-purpose software, the time it takes to

perform a task is an issue of performance, not correctness. It
is not incorrect to take longer to perform a task. It is
merely less convenient and therefore less valuable. In CPS,

the time it takes to perform a task may be critical to correct

functioning of the system.

In CPS, moreover, many things happen at once. Phy-

sical processes are compositions of many things occurring

at the same time, unlike software processes, which are

deeply rooted in sequential steps. Abelson and Sussman [1]

describe computer science as Bprocedural epistemology,[
knowledge through procedure. In the physical world, by

contrast, processes are rarely procedural.

Physical processes are compositions of many parallel

processes. Measuring and controlling the dynamics of

these processes by orchestrating actions that influence the

processes are the main tasks of embedded systems. Conse-

quently, concurrency is intrinsic in CPS. Many of the

technical challenges in designing and analyzing embedded
software stem from the need to bridge an inherently

sequential semantics with an intrinsically concurrent

physical world.

The goal of this paper is to highlight progress that

has been made, but mostly still not yet adopted by the

Manuscript received March 1, 2011; revised June 17, 2011; accepted June 23, 2011. Date

of publication August 22, 2011; date of current version December 21, 2011.

This work was supported in part by the Center for Hybrid and Embedded Software

Systems (CHESS), University of California Berkeley, which receives support from the

National Science Foundation [NSF awards #0720882 (CSR-EHS: PRET), #0931843

(ActionWebs), and #1035672 (CSR-CPS Ptides)], the U.S. Army Research Office

(ARO #W911NF-07-2-0019), the U.S. Air Force Office of Scientific Research

(MURI #FA9550-06-0312), the Multiscale Systems Center (MuSyC), one of six research

centers funded under the Focus Center Research Program, a Semiconductor Research

Corporation program, and the following companies: Bosch, National Instruments,

Thales, and Toyota.

The authors are with the Department Electrical Engineering and Computer Science,

University of California Berkeley, Berkeley, CA 94720 USA (e-mail:

pd@eecs.berkeley.edu; eal@eecs.berkeley.edu; alberto@eecs.berkeley.edu).

Digital Object Identifier: 10.1109/JPROC.2011.2160929

1As an experiment, the models discussed in this paper are available in
executable form using Web Start at http://ptolemy.org/modelingCPS.

Vol. 100, No. 1, January 2012 | Proceedings of the IEEE 130018-9219/$26.00 �2011 IEEE

community, on an enormously difficult and complex
problem, the design of CPSs. The major theme of this

paper is on models and their relationship to realizations of

CPSs. The models we study are primarily about dynamics,

the evolution of a system state in time. We do not address

structural models, which represent static information

about the construction of a system, although these too are

important to system design.

Working with models has a major advantage. Models
can have formal properties. We can say definitive things

about models. For example, we can assert that a model is

deterministic, meaning that given the same inputs it will

always produce the same outputs. No such absolute asser-

tion is possible with any physical realization of a system. If

our model is a good abstraction of the physical system

(here, Bgood abstraction[means that it omits only ines-

sential details), then the definitive assertion about the
model gives us confidence in the physical realization. Such

confidence is hugely valuable, particularly for embedded

systems where malfunctions can threaten human lives.

Studying models of systems gives us insight into how those

systems will behave in the physical world.

In this paper, we begin in Section II by considering a

vehicle management system (VMS) challenge problem

provided to us by the United Technologies Corporation as
support to our MuSyC research effort (Multiscale System

Center). We focus on the fuel management subsystem,

using it to illustrate modeling challenges that arise from

the intrinsic heterogeneity, concurrency, and sensitivity to

timing of such systems. In Section III, we survey a few

existing techniques that at least partially address these

challenges, and we identify open research challenges. In

Section IV, we analyze the state of the art in existing tools
and methods.

II . MODELING CHALLENGES

In model-based design [73] and model-driven development

[72], models play an essential role in the design process.

They form the specifications for systems and reflect the

evolution of the system design. They enable simulation and
analysis, both of which can result in earlier identification

of design defects than prototyping. Automated or semiau-

tomated processes can, under certain circumstances, syn-

thesize implementations from models. But the intrinsic

heterogeneity and complexity of CPS stresses all existing

modeling languages and frameworks.

A model of a CPS comprises models of physical pro-

cesses as well as models of the software, computation
platforms, and networks. The feedback loop between phy-

sical processes and computations encompasses sensors,

actuators, physical dynamics, computation, software

scheduling, and networks with contention and communi-

cation delays. Modeling such systems with reasonable

fidelity is challenging, requiring inclusion of control engi-

neering, software engineering, sensor networks, etc. Addi-

tionally, the models typically involve a large number of
heterogeneous components. Composition semantics be-

comes central.

We will illustrate modeling challenges in CPS using a

portion of an aircraft VMS, specifically the fuel management

subsystem. We give small illustrative models constructed in

Ptolemy II [19], a modeling and simulation environment for

heterogeneous systems. Ptolemy uses an actor-oriented

design approach [44] to model components that communi-
cate via ports. Actors can execute and communicate with

other actors. The rules of interaction between actors are

defined by the model of computation (MoC).

In Ptolemy, an MoC is indicated and implemented by a

director, which is a component in a model or submodel. A

multiplicity of directors realizing distinct MoCs can be

combined in a single hierarchical model. A region of a

model governed by a single director is called a domain. The
open-source Ptolemy software distribution includes direc-

tors that implement a variety of both mature and experi-

mental MoCs, including discrete events (DEs) [35],

continuous time (CT) [49], finite state machines (FSMs)

[47], synchronous reactive (SR) [17], process networks

(PNs) [45], and several varieties of dataflow [43]. Hierar-

chical compositions that combine CT models with discrete

domains such as FSM or DE can be used to model hybrid
systems.

Modern aircraft are typically equipped with several

fuel tanks and a variety of valves, pumps, probes, sensors,

and switches. The primary purpose of the fuel system is to

reliably supply engines with fuel. Secondary functions of

the fuel system include providing an engine coolant and

distributing weight on an aircraft to maintain balance and

optimal performance. Fuel is transferred from collector
tanks to engine feed tanks, and, to maintain the center of

gravity of the vehicle, fuel is transferred between storage

tanks. Fuel might also be used as a heat sink for heat

generated during the flight. For example, fuel is used to

cool the engine oil. Raising the temperature of the fuel can

also make engines operate more efficiently. Fuel venting

systems are required to adjust ullage space in tanks during

aircraft climbs and descends. Without such venting sys-
tems, high forces on the tanks endanger the structural

integrity. Fuel pressurization is required to perform effi-

cient refueling and to transfer fuel between tanks. The

system is far from simple.

Several physical processes affect the fuel control sys-

tem. Weight and density of fuel changes with the tem-

perature of the fuel, and different fuel types have different

characteristics. Measuring the fuel level is complex be-
cause one has to consider the shape of the fuel tank, the

motion of the aircraft, the temperature, and the pressure.

In order to measure fuel level during flight operations, a

large number of sensors, including float level, diodes,

capacitance sensors, and ultrasonic sensors, are used. The

fuel control system monitors the values retrieved from

sensor tanks, computes and displays the fuel levels and

Derler et al.: Modeling Cyber–Physical Systems

14 Proceedings of the IEEE | Vol. 100, No. 1, January 2012

operates pumps and valves. Fig. 1 shows a schematic view

of a typical aircraft fuel system for a military jet aircraft.

The importance of a fuel management system that

supports flight crew decisions is underscored by the expe-

rience with Air Transat Flight 236 on August 23–24, 2001

[14] (see also [76]). On that flight, a fuel leak was dis-
covered too late and led to an emergency landing. Initially,

the only indication of a problem was that the flight control

system reported a low oil temperature and a high oil pres-

sure. This resulted in an increased fuel flow caused by a

leak in the engine. Fuel is used as a heat sink, and the

increased fuel flow cooled the engine oil more than usual.

The decreased oil temperature increased its viscosity, re-

sulting in higher oil pressure. Later, the flight control sys-
tem reported a fuel imbalance between the tanks. The

flight crew corrected this imbalance by transferring fuel

into the leaking tank. A smarter flight control system that

integrated models could have helped the flight crew detect

the leak sooner, for example, by using model-integrated

computing [73], where the behavior of a model can be

compared at run time to the measured behavior of the

deployed system.
Using the fuel system as an illustration, we next discuss

a few specific modeling challenges.

Challenge 1VModels With Solver-Dependent, Nondetermi-
nate, or Zeno Behavior: A CPS may be modeled as a hybrid

system where physical processes are represented as

continuous-time models of dynamics and computations

are described using state machines, dataflow models,
synchronous/reactive models, and/or DE models.

Continuous-time models work with solvers that numeri-

cally approximate the solutions to differential equations.

Design of such solvers is an established, but far-from-trivial

art. Integrating such solvers with discrete models is a newer

problem, and problems persist in many available tools.

One of the problems that can arise is that the behavior
defined by a model may be nondeterminate even when the

underlying system being modeled is determinate. This

means that the model defines a multiplicity of behaviors,

rather than a single behavior. This can occur, for example,

when DEs are simultaneous and the semantics of the

modeling language fails to specify a single behavior. Such

nondeterminism can surprise system designers. Another

problem that can arise is that numerical solvers typically
dynamically adjust the step size that they use to increment

time, and the behavior of the model can depend on the

selected step sizes. Again, this will surprise designers, who

rarely have insight into the basis for step-size selection. A

third problem that can arise is that models may exhibit

Zeno behavior, where infinitely many events occur in a

finite time interval. Such behavior from a model may re-

flect physical phenomena, such as chattering, but Zeno
behavior can also arise as an artifact of modeling.

We can illustrate some of these difficulties using a

model of a fuel tank. One challenging part of such a model

is to accurately specify how the behavior changes when the

tank becomes full or empty. It is reasonable to model

Bbecoming full[and Bbecoming empty[as DEs, even though
the physical world is not so discrete. We do not want to force

modelers to use overly detailed models of physical pheno-
mena that are not central to their design problem, and such

discrete models provide adequate abstractions.

Fig. 2 depicts one possible Ptolemy II model of a single

fuel tank. This model is constructed using a continuous-

time director with semantics similar to popular continuous-

time simulation tools such as Simulink (from The

MathWorks) and the LabVIEW Control Design and Sim-

ulation Module (from National Instruments). (For exam-
ple, Simulink is used in [31] to construct similar models of

aircraft fuel systems.) In this MoC, components (actors)

have input and output ports, in contrast to equational

modeling tools such as Modelica [23], where ports are

neither inputs nor outputs. In Modelica ports represent

continuous-time signals, and actors and connections be-

tween ports represent declarative relationships among

these signals.
While it may seem intuitive that a fuel tank is naturally

modeled with inputs and outputsVinputs provide fuel for

the tank, and outputs withdraw fuelVthis is actually not

the case. An input to a fuel tank cannot insert fuel if the

tank is full, and an output cannot withdraw fuel if the

destination is full. Hence, if we want to model, for exam-

ple, the transfer of fuel from one tank to another, the

amount of fuel transferred per unit time must be deter-
mined collaboratively by the two tanks and a model of the

intervening pumps and valves.

Fig. 2 shows one possible resolution to this dilemma.

Two of the input ports of the tank represent desired input
and desired output flows, rather than actual flows. A third

input represents the actual output flow. The actual output
flow has to be an input to the tank model because fuel

Fig. 1. Military aircraft system (after [57]).

Derler et al. : Modeling Cyber–Physical Systems

Vol. 100, No. 1, January 2012 | Proceedings of the IEEE 15

cannot flow out of a tank unless it has somewhere to go.

One of the output ports represents available output flow,
thus enabling models where the destination for the fuel

refuses to accept some or all of the output flow. At the top

level in Fig. 2, the available output flow output is fed back to

the actual output flow input, which models the situation

where there is always somewhere for the fuel to go. The

destination can accept any amount of fuel.
Another output port represents the actual input flow. If

the tank is not full, then, ideally, the actual input flow will

closely match the desired input flow. A true match be-

tween flows is desired but in a real system many factors

such as the shape of the pipe might influence the flows and

therefore introduce slight variations. But if the tank is full,

then the actual input flow will significantly differ from the

desired flow.

The model in Fig. 2 also shows output ports that pro-

vide the fuel level and full and empty indicators. The latter
indicators are DEs provided by LevelCrossingDetector

actors.

Fig. 2. Naive model of a single fuel tank in a simple test scenario.

Derler et al.: Modeling Cyber–Physical Systems

16 Proceedings of the IEEE | Vol. 100, No. 1, January 2012

The particular model in Fig. 2 uses two expression
actors to implement what may seem to be an intuitively

accurate description of how a fuel tank behaves. In this

model, the tank ignores the desired input flow to the tank

when the tank is full, setting the actual input flow to

zero. It also stops the output flow when the tank is

empty.

The behavior of the model is problematic, however. In

particular, Fig. 2 embeds the tank model in a simple test
scenario where the desired input flow is a constant 1.0 (in

some units, such as liters per second), and the desired

output flow is 0.0 for three time units, followed by 2.0

subsequently. As shown in the plot in the figure, when the

tank becomes empty, the model begins chattering. This

behavior exposes one flaw in the model that results in

solver-dependent behavior and/or the possibility of a Zeno

condition. Specifically, when the tank becomes empty,
actual output flow goes to zero. But an infinitesimal

amount of time later, the tank is no longer empty, so the

output flow can resume. But then it becomes empty again,

then resumes, etc. In simulation, it appears as if time stops

advancing. Only close examination of the output signals

reveals the chattering behavior.

This model has several features that challenge simu-

lation technology. First, the expression actors have input–
output relations that are not continuous. The lower one in

Fig. 2, for example, has the expression

ðlevel > 0Þ ? desiredFlow : 0:0:

The output of this actor is equal to the input if the level is
greater than zero, and otherwise the output is zero. When

the level hits zero, the actual behavior of this actor will

depend on numerical precision and solver-chosen step

sizes. Giving a precise semantics to the time at which the

level hits zero is far from trivial. And controlling the be-

havior at the discontinuity requires collaboration between

the solver and the expression actor, something not easy to

achieve in a modular way.
In addition, the LevelCrossingDetector should produce

a DE at the precise time at which the tank becomes full or

empty. This also requires careful collaboration with the

solver to ensure that step sizes in time are chosen to in-

clude the time point at which the event occurs.

The chattering exhibited by the model in Fig. 2 may in

fact accurately represent the physical realization. One

could design a fuel tank controller that closes an output
valve when the tank becomes empty. Such a design could,

in fact, chatter. A better design would limit the input and

output flows when the tank becomes either full or empty.

When the tank becomes full, the input flow will be limited

to be no greater than the output flow, and when the tank

becomes empty, the output flow will be no greater than the

input flow.

Below, we will give such a model, showing how it can
leverage a rigorous hybrid-systems semantics to provide a

determinate and intuitive model. But before we develop

the better model, we address a second challenge that

concerns how to evolve and maintain a multiplicity of

models and keep them consistent.

Challenge 2VKeeping Model Components Consistent: In
the previous section, we developed a simple tank model
and tested it in a scenario that does not reflect any real-

world scenario, but is useful nonetheless as a regression

test for the tank model. In practice, unfortunately, such

test scenario models are usually lost. They evolve into

much more complex and realistic models, so the simple

regression test disappears. If the model is kept as a

regression test, then there is little assurance that the test

model and the final design match. The final design is likely
to be evolved from a copy of the test model, and the copy

will inevitably diverge from the test model. Worse, when it

comes time to design the embedded software, even if code

generators are used to synthesize software from models,

the software will often evolve separately from the model,

increasing divergence.

The same problem arises as a simple model evolves into

a complex one, where a single component in the simple
model becomes multiple components in the complex one.

How can we ensure that the multiple components evolve

together? Until now we have only considered models with

one fuel tank. Modern aircraft typically have several fuel

tanks, and fuel is transferred between these tanks.

In this section, we consider the problem of evolving

multiple models with multiple variants of components, all

the while ensuring some measure of consistency across the
models.

In the model in Fig. 3, we add functionality for moving

fuel between tanks. Whenever the fuel level of Tank1 falls

below one fourth of its capacity, a FuelMover component

transfers fuel from Tank2 to Tank1. This component uses a

simple modal model to change the desired output flow of

Tank2 from zero in the initial idle mode to moveRate (a
parameter) in the moving state. The FuelMover con-
troller specifies the desired output flow of Tank2, which in

turn provides an available output flow to the desired input

flow port of Tank1. Tank1 responds with an actual input

flow, which in turn becomes the actual output flow of

Tank2. Thus, if either tank is full or empty, the flows are

appropriately limited.

In Fig. 3, the FuelMover and the two tanks are em-

bedded in a simple test scenario where Tank1 has a con-
stant desired output flow of 1. This could, for example,

model the flow of fuel to an engine. The desired input flow

of Tank1 is regulated by Tank2. Tank2 does not receive any

fuel (its desired input flow is 0) and its desired output flow

is regulated by the FuelMover. This component is a modal

model that receives information about the fuel level of

Tank1 and regulates the desired output flow of Tank2. The

Derler et al. : Modeling Cyber–Physical Systems

Vol. 100, No. 1, January 2012 | Proceedings of the IEEE 17

fuel mover can be interpreted as the cyber part of this CPS,

while the Tank models the physical processes.

In a modeling environment, the tank model can be

copied and reused in various parts of the model. However,

if later a change in the tank model becomes necessary, the

same change has to be applied to all other tank models that
were copied. This procedure is error prone, because there

is no way to ensure that all copies are updated accordingly.

Below, we explain how object-oriented design princi-

ples can be adapted to CPS models using the notion of

actor-oriented classes [42], and how semantics-preserving

transformation and code generation can reduce divergence

in evolving designs.

Challenge 3VPreventing Misconnected Model Components:
The bigger a model becomes, the harder it is to check for

correctness of connections between components. Typically

model components are highly interconnected and the pos-

sibility of errors increases. We identify three types of

errors: 1) unit errors, 2) semantic errors, and 3) transposition

errors, illustrated in Fig. 4. Unit errors occur when a port

provides data with different units than those expected at

the receiving port. For example, in Fig. 4, the output port

of the left actor provides the fuel level in gallons, whereas

the input port of the right actor expects a value in kilo-

grams. An example of a semantic error 2) is shown, where

Fig. 4. Misconnected model components.

Fig. 3. Fuel system with two tanks.

Derler et al.: Modeling Cyber–Physical Systems

18 Proceedings of the IEEE | Vol. 100, No. 1, January 2012

a midtank level is provided to a port that expects an aft
tank level. A transposition error 3) occurs when connec-

tions are reversed, as in the example where the engine

input flow and a tank level are reversed. None of these

errors would be detected by a type system. Below we will

explain how expressing knowledge formally in an ontology

[51] can encode domain knowledge and enable measures

to automatically check for such errors.

Challenge 4VModeling Interactions of Functionality and
Implementation: The models discussed above describe func-

tionality of computations and physical processes. All of the

above models ignore implementation details such as the

underlying platform and the communication networks.

These models implicitly assume that data are computed

and transmitted in zero time, so the dynamics of the soft-

ware and networks have no effect on system behavior.
However, computation and communication takes time. We

argue that, in order to evaluate a CPS model, it is necessary

to model the dynamics of software and networks.

Implementation is largely orthogonal to functionality

and should therefore not be an integral part of a model of

functionality. Instead, it should be possible to conjoin a

functional model with an implementation model. The lat-

ter allows for design space exploration, while the former
supports the design of control strategies. The conjoined

models enable evaluation of interactions across these

domains.

One strategy for conjoining distinct and separately

maintained models uses the concept of aspect-oriented

programming (AOP) [34]. In AOP, distinct models are

maintained and developed, but they can be Bwoven[to-

gether to conjoin their behaviors. AOP has been developed
primarily as a software engineering technique, but the

concept has also been applied to conjoining models of

functionality and implementation. Specifically, below we

explain how to use the concept of quantity managers, in-

troduced in Metropolis [3], to associate functional models

with implementation models.

Challenge 5VModeling Distributed Behaviors: The dis-
tributed nature of CPS requires strategies that facilitate

composition of components that are separated in space.

Modeling distributed systems adds to the complexity of

modeling CPS by introducing issues such as disparities in

measurements of time, network delays, imperfect commu-

nication, consistency of views of system state, and distri-

buted consensus. Below, we will describe a distributed

programming model called PTIDES [78] that addresses
many of these issues.

Challenge 6VSystem Heterogeneity: An undercurrent

throughout the above challenges arises from the intrinsic

heterogeneity and complexity of CPSs. By definition, CPS

integrates diverse subsystems. Often these subsystem have

domain-specific, and sometimes quite sophisticated mod-

eling techniques. Integrating the resulting models to de-
velop holistic views of the system becomes very challenging.

III . ADDRESSING THE CHALLENGES

Over the last 20 years, we at the University of California

Berkeley have been researching model-based design tech-

niques that we believe have sufficiently well-defined se-

mantics to provide an effective basis for platform-based
design and engineering. Components can be designed to

operate with a model, and when deployed, will operate in

predictable ways with the deployed system. The rigorous

foundations of the models [46] provide a foundation for

integration across design domains, design adaptation and

evolution, and analysis and verification. Our work has

been demonstrated in the open-source software frame-

works Ptolemy Classic [9], Ptolemy II [19], Polis [2],
Metropolis [3], and MetroII [15]. Many of the techniques

that we developed have been deployed in a wide range of

domain-specific applications, including hardware and

field-programmable gate array (FPGA) synthesis, signal

processing, automotive system design, computer archi-

tecture design and evaluation, instrumentation, wireless

system design, mixed signal circuit design, network simu-

lation and design, building system simulation and design,
financial engineering, and scientific workflows.

In the remainder of this section, we review some of the

key technologies that can help. In the following section,

we outline the considerable work remaining to be done.

A. Models of Computation
Several of the challenges arise fundamentally from the

complexity and heterogeneity of CPS applications. Com-
plexity of models is mitigated by using more specialized,

domain-specific models and by using modeling languages

with clear, well-defined semantics. Heterogeneity neces-

sitates combining a multiplicity of models (Challenge 6).

To address the first of these issues, models should be

built using well-defined MoCs [16]. An MoC gives seman-

tics to concurrency in the model, defining, for example,

whether components in the model execute simultaneously,
whether they share a notion of time, and whether and how

they share state. An MoC also defines the communication

semantics, specifying, for example, whether data are

exchanged using publish-and-subscribe protocols, synchro-

nous or asynchronous message transmission, or time-

stamped events. We have provided a formal framework

within which the semantics of a variety of MoCs can be

understood and compared, and heterogeneous interactions
across MoCs can be defined [46]. This formal foundation

has been elaborated and applied to multiclock (latency

insensitive) systems [12], globally asynchronous, locally

synchronous (GALS) designs [4], and to timed MoCs ca-

pable of reflecting real-time dynamics [54]. The challenge

is to define MoCs that are sufficiently expressive and have

strong formal properties that enable systematic validation

Derler et al. : Modeling Cyber–Physical Systems

Vol. 100, No. 1, January 2012 | Proceedings of the IEEE 19

of designs and correct-by-construction synthesis of imple-
mentations. A second challenge is to identify which of the

many MoCs and variants are actually needed, and to figure

out how to educate the community to use them.

B. Abstract Semantics
In many situations, using a single general MoC for an

entire design requires giving up any possibility of property

checking except by extensive simulation. More restricted
(less expressive) MoCs yield better to analysis, enabling

systematic exploration of properties of the design, often

including formal verification. But less expressive MoCs

cannot capture the richness and diversity of complex de-

signs. The solution is heterogeneous mixtures of MoCs.

Indeed, the heterogeneous nature of most CPS applica-

tions makes multiple MoCs a necessity (Challenge 6).

In addition, during the design process, the abstraction
level, detail, and specificity in different parts of the design

vary. The skill sets and design styles that engineers use on

the project are likely to differ. The net result is that, during

the design process, many different specification and mod-

eling techniques will be used. The challenge is how to

combine heterogeneous MoCs and determine what the

composition’s behavior is. Unfortunately, the semantics of

different MoCs are typically not directly compatible.
A way to solve this problem is to embed the detailed

models into a framework that can understand the models

being composed. A theoretical approach to this view,

which is well beyond the scope of this paper, can be found

in [10], where an abstract algebra defines the interactions

among incompatible models. In some sense, we are look-

ing at an abstraction of the MoC concept that can be

refined into any of the MoCs of interest. We call this
abstraction an abstract semantics, first introduced in [37]

and [44].

The inspiration for how to define the abstract semantics

comes from the consideration that MoCs are built by

combining three largely orthogonal aspects: sequential

behavior, concurrency, and communication. Similar to the

way that an MoC abstracts a class of behavior, abstract

semantics abstract the semantics. The concept is called a
Bsemantics meta-model[in [70], but since the term Bmeta-

model[is more widely used in software engineering to

refer instead to models of the structure of models (see [59]

and http://www.omg.org/mof/), we prefer to use the term

Babstract semantics[here. The concept of abstract seman-

tics is leveraged in Ptolemy II [19], Metropolis [3], and

Ptolemy Classic [9] to achieve heterogeneous mixtures of

MoCs with well-defined interactions.

C. Actor-Oriented Models
Model-integrated development for embedded systems

[30], [33] commonly uses actor-oriented software com-

ponent models [36], [44]. In such models, software

components (called actors) execute concurrently and com-

municate by sending messages via interconnected ports.

Examples that support such designs include Simulink,
from The MathWorks, LabVIEW, from National Instru-

ments, SystemC, component and activity diagrams in

SysML and UML 2 [5], [60], and a number of research

tools such as ModHel’X [26], TDL [66], HetSC [28],

ForSyDe [67], Metropolis [24], and Ptolemy II [19]. The

fuel tank models given above are all actor-oriented models.

The key challenge is to provide well-defined actor-

oriented MoCs with well-defined semantics. All too often
the semantics emerge accidentally from the software im-

plementation rather than being built-in from the start. One

of the key challenges is to integrate actor-oriented models

with practical and realistic notions of time. To address

Challenge 5, for example, modeling distributed behaviors,

it is essential to provide multiform models of time. Model-

ing frameworks that include a semantic notion of time,

such as Simulink and Modelica, assume that time is homo-
geneous in the sense that it advances uniformly across the

entire system. In practical distributed systems, even those

as small as a single chip, no such homogeneous notion of

time is observable. In a distributed system, even when

using network time synchronization protocols (such as

IEEE 1588 [29]), local notions of time will differ, and

failing to model such differences could introduce artifacts

in the design.
One interesting project that directly confronts the

multiform nature of time in distributed systems is the

PTIDES project [18]. PTIDES is a programming model for

distributed systems that relies on time synchronization,

but recognizes imperfections. Simulations of PTIDES sys-

tems can simultaneously have many time lines, with events

that are logically or physically placed on these time lines.

Despite the multiplicity of time lines, there is a well-
defined and deterministic semantics for the interactions

between events.

D. Hybrid Systems
CPSs integrate computation, networking, and physical

dynamics. As a consequence, modeling techniques that

address only the concerns of software are inadequate [38],

[40]. Integrations of continuous physical dynamics ex-
pressed with ordinary differential equations with the dis-

crete behaviors expressed using finite automata are known

as hybrid systems [56]. There are many challenges in de-

fining good hybrid systems modeling languages, a few of

which are described in Challenge 1. These challenges in-

clude ensuring that models of deterministic systems are

indeed determinate, not having behavior that, for example,

depends on arbitrary decisions made by a numerical dif-
ferential equation solver. It is also challenging to accu-

rately represent distinct events that are causally related but

occur at the same time.

Tools supporting hybrid systems modeling and simula-

tion are compared in [11]. A rigorous MoC that provides

determinate semantics to such hybrid systems is described

in [49], [52], and [55]. This work has influenced

Derler et al.: Modeling Cyber–Physical Systems

20 Proceedings of the IEEE | Vol. 100, No. 1, January 2012

development of commercial tools such a Simulink and
LabVIEW and has been realized in the open-source tool

HyVisual [7]. Moreover, we have leveraged the notation of

abstract semantics to integrate such hybrid systems with

other MoCs such as synchronous/reactive and DE models

[50]. This integration enables heterogeneous models that

capture the interactions of software and networks with

continuous physical processes.

We can use the rigorous hybrid systems MoC imple-
mented in Ptolemy II to improve the tank model described

in Challenge 1 above. Such a model is shown in Fig. 5,

which uses a modal model [47] to describe the different

modes of operation based on the state of the tank. In this

model, the net flow is equal to the difference between the

actual input flow and the actual output flow. The model

has three modes. In the normalmode, the tank is neither

full nor empty, and the actual input flow equals the desired
flow, and the available output flow equals the desired out-

put flow. In the full and emptymodes, either the actual

input flow (if the tank is full) or the available output flow

(if the tank is empty) is limited to match the other. The

transitions between modes are triggered by the guards,

which are predicates shown adjacent to the transitions in

the figure. This model does not chatter and is determinate.

Note that in amanner very similar to Fig. 5,modalmodels
can be used to encode adaptation strategies that all CPSs

need to deal with uncertain environments and with faults.

For example, the state in which a tank that feeds an engine

becomes empty might be considered an error condition if

there remains fuel in other tanks. A modal model could

specify a strategy for adapting to that eventuality. Also,

analysis of the dynamics of the model could identify condi-

tions under which such an error condition occurs.
The hybrid systems semantics of Ptolemy II handles

rigorously the discontinuities of the mode transitions and

the event detection of the LevelCrossingDetector actors.

The semantics ensures determinism in the model, helps

avoid solver-dependent behavior, and helps to identify

Zeno conditions. This helps in developing confidence in

the models, and hence confidence in the system.

At the bottom of Fig. 5, the plot shows the behavior of
the system in a test scenario where the desired input flow

is a constant 1.0, and the desired output flow alternates

between zero (for three time units) and 2.0 (for five time

units). Such a scenario provides a reasonable regression

test for behavior of the tank model that includes full and

empty conditions.

E. Heterogeneity
Integrating multiple MoCs such that they can inter-

operate, which is far from trivial, has been called Bmulti-

modeling[[8], [22], [58]. Many previous efforts have

focused on tool integration, where tools from multiple

vendors are made to interoperate [25], [32], [53]. This

approach is challenging, however, and yields fragile tool

chains. Many tools do not have adequate published ex-

tension points, and maintaining such integration requires
considerable effort. A better approach is to focus on the

semantics of interoperation, rather than the software

problems of tool integration. Good software architectures

for interoperation will emerge only from a good under-

standing of the semantics of interoperation.

Key to heterogeneity is to focus on the interfaces be-

tween MoCs. We have built a variety of modeling, analysis,

and simulation tools based on different MoCs [16], and
have shown how such interfaces can facilitate more robust

interoperability. These include DE [35] (useful for mod-

eling networks, hardware architecture, and real-time sys-

tems), synchronous-reactive [17] (useful for modeling and

designing safety-critical concurrent software), dataflow

[43] (useful for signal processing), process networks [63]

(useful for asynchronous distributed systems), and con-

tinuous-time models [50] (useful for physical dynamics).
For nearly all of these MoCs, the emphasis in our de-

sign has been on providing determinate behavior (where

the same inputs always result in the same outputs), and

introducing nondeterminacy only where it is needed by the

application (for example, to model faults). The result is a

family of far better concurrency models than the widely

used thread-based models that dominate software engi-

neering [39].
The hybrid systems MoC of Ptolemy II is, in fact, built

using such interfaces between MoCs. The modal model in

Fig. 5 is constructed using a Ptolemy director that has no

particular knowledge of continuous-time modeling, yet it

interoperates with a director that realizes continuous-time

modeling. It also interoperates with other Ptolemy direc-

tors, enabling modal models to be used anywhere in a

design with a wide variety of modeling styles. This stands
in stark contrast to, say, Statecharts techniques, where the

state machine modeling framework is designed to specif-

ically work with exactly one concurrent MoC, typically

synchronous/reactive.

Systematic support for heterogeneity can also help with

Challenge 2, keeping model components consistent, be-

cause models that interoperate are less likely to diverge

than models that do not. It also helps with Challenge 4,
modeling interactions of functionality and implementa-

tion, because different pieces of a system can evolve

nonuniformly from abstract models to detailed models of

realizations. It also helps with Challenge 5, modeling

distributed behaviors, because models of networks (par-

ticularly wireless networks) benefit enormously from

domain-specific modeling and simulation techniques

created particularly for networks. If heterogeneity is sup-
ported, then models of networks interoperate with models

of the distributed components, be they mechanical, chemi-

cal, or software components.

Influenced in part by our work, SystemC, a widely used

language in hardware design, is capable of realizing multi-

ple MoCs [28], [65], although less attention in that com-

munity has been given to interoperability.

Derler et al. : Modeling Cyber–Physical Systems

Vol. 100, No. 1, January 2012 | Proceedings of the IEEE 21

F. Modularity
Key to effective design of complex systems is modular

design, where modules have well-defined interfaces, and

composition of modules can be checked for compatibility.

A key challenge is to ensure that modules are correctly

composed (Challenge 3 above). It is often easy to misin-
terpret data provided by one module in another module.

Such misinterpretation can be catastrophic. Type systems

Fig. 5. ModalTank: Improved model of a fuel tank using modal models.

Derler et al.: Modeling Cyber–Physical Systems

22 Proceedings of the IEEE | Vol. 100, No. 1, January 2012

provide rudimentary protection, but much stronger protec-
tion is possible. Another key challenge is to enable reuse

and customization of modules, as, for example, is sup-

ported by object-oriented concepts such as classes, inheri-

tance, and polymorphism.

Like some other modeling frameworks (Modelica,

SystemC, SysML, and others), Ptolemy II supports object

oriented design principles in modeling, although the

approach in Ptolemy II is unique [42]. In particular, we
use classes to describe interface and behavior of an actor.

Inheritance is used to describe relationships between ob-

jects. Instances of actors implement the behavior specified

by the actor class definition. Subclasses inherit the class

definitions and can be extended with additional objects as

well as override parameters of the superclass. And updates

to classes propagate to instances even during interactive

model development.
In the fuel system models we have shown, the Tank

component is defined as a class and instantiated in differ-

ent parts of a model and in different models. Fig. 3 displays

a model with two tanks. The class definition of the tank is

maintained in a separate XML file, and Tank1 and Tank2

are instances of this class. Editing the class definition

results in changes in all the instances. This strategy also

facilitates maintenance of regression tests that can help
assure that behavior remains reasonable as the tank model

evolves. The regression tests are themselves models that

use instances of the same class. This ensures that the

model being tested and the model being developed remain

consistent (Challenge 2).

Fig. 6 shows a possible UML class hierarchy for the

Tank models we have implemented so far. The Abstract-

Tank class models the interface and the functionality of
computing the tank level. The SimpleTank class extends

the AbstractTank with the functionality shown in Fig. 2.

The ModalTank class represents the tank model in Fig. 5.

If all models, including regression tests, are developed

using these class definitions, then the tank model can

evolve to become more sophisticated, regression tests can
check whether the evolution has changed expected be-

havior, and a multiplicity of instances of tank components

across several models are assured to be consistent.

We have shown that object-oriented concepts such as

classes, inheritance, and polymorphism can be adapted to

concurrent, actor-oriented components [42], making them

more suitable for CPS. But there are several more tech-

niques that can be applied in modeling that enhance mod-
ularity. In particular, we have also developed advanced

type systems for component compositions, enabling type

inference and type checking across large models with po-

lymorphic components [77]. We have also adapted such

type systems to capture domain-specific ontology informa-

tion, checking for correct usage and correct interpretation

of shared data [51]. And we have shown how to check for

compatibility of protocols in compositions [48] and to
synthesize interface adapters for separately defined

components [64].

We illustrate how a domain-specific ontology can ad-

dress Challenge 3 discussed above using the techniques

given in [51]. Fig. 7 shows at the upper right a simple

ontology for dimensions used in the fuel system with the

key concepts Level and Flow. The goal is to prevent model

builders from accidentally misinterpreting a flow as a level
or vice versa.

A model can be annotated with constraints that repre-

sent the model builder’s domain knowledge. Such con-

straints are shown at the bottom of Fig. 7, where the

parameters tank2InFlow and tank1OutFlow are associated

with the concept Flow, and capacity is associated with the

concept Level.
The system described in [51] can infer concept asso-

ciations throughout a model from just a few annotations.

To do this, actors may impose particular constraints. In the

simple ontology shown in the figure, we have asserted that

an Integrator actor converts a Flow to a Level. That is, if

its output is a Level, then its input must be a Flow, and

vice versa. Given this and similar constraints and the

associations on the parameters, the ontology solver infers

associations throughout the model. The result is shown as
annotations close to the ports of the actors in the model,

which are also color-coded according to the color scheme

in the ontology. The component in the model labeled

FuelDimensionSystemSolver handles executing the infer-

ence algorithm. With an appropriately designed ontology,

errors like those in Fig. 4 will be reported by the solver.

Constraints on model components such as actors im-

pose constraints on proper relationships. Checkers such as
the type system infrastructure in Ptolemy can infer these

properties and detect errors. By allowing users to specify

ontologies graphically and describing constraints on model

elements, the domain knowledge is built up. Ontological

information about the overall system can be inferred au-

tomatically from the relatively small constraint set. Incon-

sistencies can be detected and reported automatically.Fig. 6. UML diagram for abstract and concrete tank classes.

Derler et al. : Modeling Cyber–Physical Systems

Vol. 100, No. 1, January 2012 | Proceedings of the IEEE 23

G. Linking Behavior to Implementation:
Quantity Managers

To support evaluation of design choices, modeling

frameworks need to enable weaving together a multiplicity

of models that cover different aspects of a system (Chal-
lenge 4 above). For example, a choice of networking fabric

will affect temporal behavior, power usage, and vulnera-

bility to faults. A key challenge is that this requires bridges

between models that are modeling very different aspects of

the same system.

The Metropolis project [3], [15] introduced the notion

of Bquantity manager,[a component of a model that

functions as a gateway to another model. For example, a
purely functional model that describes only idealized

behavioral properties of a flight control system could be

endowed with a quantity manager that binds that func-

tional model to a model of a distributed hardware

architecture using a particular network fabric. By binding

these two models, designers can evaluate how properties

of the hardware implementation affect the functional

behavior of the system. For example, how does a time-
triggered bus protocol affect timing in a distributed control

system, and how do the timing effects change the dyna-

mics of the system? Similarly, a functional model could be

endowed with a quantity manager that measures power

and identifies potential overloads that may result from

unexpectedly synchronized interactions across a distrib-

uted system.

Quantity managers bring a capability analogous to
aspect-oriented programming in software engineering

[34]. Separately designed models can be woven together

using quantity managers in a manner similar to the weav-

ing of separately designed classes in aspect-oriented

design.

Fig. 8 shows a variant of the model of Fig. 3 that has

been annotated with information about the implemen-

tation. In particular, the two inputs to the fuel mover
component are implemented on a network bus, which in-

troduces a communication delay. The plot at the bottom of

Fig. 8 compares the fuel levels of the tanks in two cases. In

the first case the service time of the bus is 0.05 and in the

second case the service time is 0.15. The latter shows a

clear degradation of the behavior. Between time 4 and

time 5, Tank1 does not receive any fuel from Tank2 al-

though it runs out of fuel at time 4. In a real system, this
might cause the plane to crash or at least introduce severe

system instability.

H. Semantics-Preserving Transformation
and Implementation

Effective use of models requires well-defined relation-

ships between the models and systems being modeled.

In many cases, models can be used as specifications, and

implementations can be synthesized from these specifica-

tions. The key challenge is that such synthesis must pre-

serve the semantics of the implementation.

Fig. 7. Domain-specific ontology and solver ensure that flows are not accidentally misinterpreted as levels and vice versa.

Derler et al.: Modeling Cyber–Physical Systems

24 Proceedings of the IEEE | Vol. 100, No. 1, January 2012

Code generation from models is a very active area of

work. UML tools such as Rational Rose can generate code

from executable models and templates from nonexecutable

models. Code generators from actor modeling languages

such as Simulink exist (TargetLink from dSPACE and

RealTimeWorkshop from The MathWorks, for example).
LabVIEW Embedded and LabVIEW FPGA are able to

generate code and hardware designs, respectively, from

dataflow models.

Despite considerable progress in this area, in our opi-

nion, code generation from models is still in its infancy.

The research investment so far is considerably smaller

than the investment in compiler technology, despite the

fact that the technical challenges are at least as great. And

many problems remain only partially solved, such as mod-

ular code generation [74] and model transformation [21].

IV. THE STATE OF THE ART

Despite considerable progress in languages, notations, and

tools, major problems persist. In practice, system integra-
tion, adaptation of existing designs, and interoperation of

heterogeneous subsystems remain major stumbling blocks

that cause project failures. We believe that model-based

design, as widely practiced today, largely fails to benefit

from the principles of platform-based design [68] due to its

lack of attention to the semantics of heterogeneous sub-

system composition.

Fig. 8. Fuel system model that includes some implementation detail, where the two signals into the FuelMover are transported over

a single shared bus, and the transport takes time.

Derler et al. : Modeling Cyber–Physical Systems

Vol. 100, No. 1, January 2012 | Proceedings of the IEEE 25

Consider, for example, UML 2 [5], [6], widely used for
modeling software systems. Its derivative SysML [62] has

many features that are potentially useful for CPS. The in-

ternal block diagram notation of SysML, which is based on

the UML 2 composite structure diagrams, particularly with

the use of flow ports, has great potential for modeling

complex systems, such as aircraft fuel systems. But it has

severe weaknesses that limit its ability to address system

design problems. The SysML standard defines the syntax of
these diagrams, not their semantics. Although the SysML

standard asserts that Bflow ports are intended to be used

for asynchronous, broadcast, or send-and-forget interac-

tions[[62], the standard fails to define the semantics of

such interactions. Implementers of tools are free to inter-

pret this intent, resulting in a modeling language whose

semantics is defined by the tools rather than by the lang-

uage itself. There are many semantic alternatives [41],
consequently the same SysML diagram may be interpreted

very differently by different observers.

Modeling and Analysis of Real-Time and Embedded

(MARTE) system [61] also specifically avoids Bconstrain-
ing[(or even defining) the execution semantics of models.

Instead, it focuses on providing alternative ways of describ-

ing today’s ad hoc, noncomposable design practices such as

concurrency based on threads [39]. Standardizing notation
is not sufficient to achieve effective analysis methods and

unambiguous communication among designers. More im-

portantly, without semantics, the modeling framework

fails to provide a platform for design. Unfortunately, the

flexibility of these modeling notations may account for

some of their success, because designers can become

Bstandards compliant[without changing their existing

practice by just adapting their notation.
Further weakening their semantics, UML notations can

be freely reinterpreted by defining a Bprofile,[greatly re-

ducing the value of the notation as an effective communi-
cation vehicle and design tool. We believe that constraints
that lead to well-defined and interoperable models have po-
tentially far greater value. More importantly, such con-

straints are essential for these modeling frameworks to

become a central part of a platform-based engineering

practice [69]. The challenge is to identify which constraints

provide the most value while still admitting useful designs.

The inclusion by OMG of Statecharts [27] in the UML
standard has helped to narrow the variability for some

modeling problems, but in many cases, the exact semantics

are determined by the implementation details of the sup-

porting tools rather than by an agreed-upon semantics [20].

In fact, Statecharts also suffers from inadequate stan-

dardization. Despite their common origin, variants have

proliferated [75]. Even the most widely used imple-

mentations of Statecharts that claim to be standards com-
pliant have subtle semantic differences big enough Bthat a
model written in one formalism could be ill-formed in

another formalism[[13]. In many implementations, in-

cluding the widely used Rhapsody tool from IBM, the se-

mantics is (probably inadvertently) nondeterminate [71].

V. CONCLUSION

The intrinsic heterogeneity, concurrency, and sensitivity

to timing of CPSs poses many modeling challenges.

Much of the current work in modeling has insufficiently

strong semantics to adequately address these problems.

We have described some promising technologies that

can help, including hybrid system modeling and sim-

ulation, concurrent and heterogeneous MoCs, the use of

domain-specific ontologies to enhance modularity, and
the joint modeling of functionality and implementation

architectures. h

REFERENCES

[1] H. Abelson and G. J. Sussman, Structure and
Interpretation of Computer Programs, 2nd ed.
Cambridge, MA: MIT Press, 1996.

[2] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh,
A. Jurecska, L. Lavagno, C. Passerone,
A. Sangiovanni-Vincentelli, E. Sentovich,
K. Suzuki, and B. Tabbara, Hardware-Software
Co-Design of Embedded SystemsVThe POLIS
Approach. Norwell, MA: Kluwer, 1997.

[3] F. Balarin, H. Hsieh, L. Lavagno,
C. Passerone, A. L. Sangiovanni-Vincentelli,
and Y. Watanabe, BMetropolis: An integrated
electronic system design environment,[
Computer, vol. 36, no. 4, pp. 45–52, 2003.

[4] A. Benveniste, B. Caillaud, L. P. Carloni, and
A. Sangiovanni-Vincentelli, BTagmachines,[in
Proc. Int. Conf. Embedded Softw., Jersey City, NJ,
pp. 255–263, 2005.

[5] C. Bock, BSysML and UML 2 support for
activity modeling,[Syst. Eng., vol. 9, no. 2,
pp. 160–185, 2006.

[6] G. Booch, I. Jacobson, and J. Rumbaugh,
The Unified Modeling Language User Guide.
Reading, MA: Addison-Wesley, 1998.

[7] C. Brooks, A. Cataldo, C. Hylands, E. A. Lee,
J. Liu, X. Liu, S. Neuendorffer, and H. Zheng.

(2005, Jul. 15). HyVisual: A hybrid system
visual modeler. Univ. California, Berkeley,
Tech. Rep. UCB/ERL M05/24. [Online].
Available: http://ptolemy.eecs.berkeley.edu/
publications/papers/05/hyvisual/index.htm

[8] C. Brooks, C. Cheng, T. H. Feng, E. A. Lee, and
R. von Hanxleden, BModel engineering using
multimodeling,[in Proc. Int. Workshop Model
Co-Evolution Consistency Manage., Toulouse,
France, pp. 114–129, 2008.

[9] J. T. Buck, S. Ha, E. A. Lee, and
D. G. Messerschmitt. (1994). Ptolemy:
A framework for simulating and prototyping
heterogeneous systems. Int. J. Comput. Simul.
[Online]. 4, Special Issue on Simulation
Software Development, pp. 155–182. Available:
http://ptolemy.eecs.berkeley.edu/
publications/papers/94/JEurSim/

[10] J. R. Burch, R. Passerone, and
A. L. Sangiovanni-Vincentelli, BOvercoming
heterophobia: Modeling concurrency in
heterogeneous systems,[in Proc. Int. Conf.
Appl. Concurrency Syst. Design, 2001, p. 13.

[11] L. P. Carloni, R. Passerone, A. Pinto, and
A. Sangiovanni-Vincentelli, BLanguages
and tools for hybrid systems design,[Found.
Trends Electron. Design Autom., vol. 1, no. 1/2,
pp. 1–204, 2006.

[12] L. P. Carloni, K. L. McMillan, and
A. L. Sangiovanni-Vincentelli, BThe theory
of latency insensitive design,[IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst.,
vol. 20, no. 9, pp. 1059–1076, Sep. 2001.

[13] M. L. Crane and J. Dingel, BUml vs. classical
vs. rhapsody statecharts: Not all models are
created equal,[Int. Conf. Model Driven Eng.
Lang. Syst., vol. 3713. Berlin, Germany:
Springer-Verlag, 2005, pp. 97–112,
ser. Lecture Notes in Computer Science.

[14] B. Crossette. (2001). Jet pilot who saved
304 finds heroism tainted. New York
Times. [Online]. Available: http://query.
nytimes.com/gst/fullpage.html?res=
9504EFDA1738F933A2575AC0A9679C8B63

[15] A. Davare, D. Densmore, T. Meyerowitz,
A. Pinto, A. Sangiovanni-Vincentelli,
G. Yang, and Q. Zhu, BA next-generation
design framework for platform-based
design,[in Proc. Design Verif. Conf., San Jose,
CA, pp. 239–245, 2007.

[16] S. Edwards, L. Lavagno, E. A. Lee, and
A. Sangiovanni-Vincentelli, BDesign of
embedded systems: Formal models,
validation, and synthesis,[Proc. IEEE,
vol. 85, no. 3, pp. 366–390, Mar. 1997.

Derler et al.: Modeling Cyber–Physical Systems

26 Proceedings of the IEEE | Vol. 100, No. 1, January 2012

[17] S. A. Edwards and E. A. Lee. (2003). The
semantics and execution of a synchronous
block-diagram language. Sci. Comput.
Programm. [Online]. 48(1), pp. 21–42.
Available: http://dx.doi.org/10.1016/
S0167-6423(02)00096-5

[18] J. Eidson, E. A. Lee, S. Matic, S. A. Seshia,
and J. Zou, BA time-centric model for
cyber–physical applications,[in Proc.
Workshop Model Based Architecting
Construction of Embedded Syst., 2010.
[Online]. Available: http://chess.eecs.
berkeley.edu/pubs/791.html.

[19] J. Eker, J. W. Janneck, E. A. Lee, J. Liu,
X. Liu, J. Ludvig, S. Neuendorffer, S. Sachs,
and Y. Xiong. (2003, Feb.). Taming
heterogeneityVThe Ptolemy approach.
Proc. IEEE [Online]. 91(2), pp. 127–144.
Available: http://www.ptolemy.eecs.
berkeley.edu/publications/papers/03/
TamingHeterogeneity/

[20] H. Fecher, J. Schönborn, M. Kyas, and
W. P. de Roever, B29 new unclarities
in the semantics of UML 2.0 state machines
International Conference on Formal Engineering
Methods (ICFEM), vol. 3785. Berlin,
Germany: Springer-Verlag, 2005, ser. Lecture
Notes in Computer Science.

[21] T. H. Feng and E. A. Lee, BScalable models
using model transformation,[in Proc.
Workshop Model Based Architect. Construction
of Embedded Syst., 2008. [Online]. Available:
http://chess.eecs.berkeley.edu/pubs/
487.html.

[22] P. A. Fishwick and B. P. Zeigler, BA
multimodel methodology for qualitative
model engineering,[ACM Trans. Model.
Comput. Simul., vol. 2, no. 1, pp. 52–81, 1992.

[23] P. Fritzson, Principles of Object-Oriented
Modeling and Simulation With Modelica 2.1.
New York: Wiley, 2003.

[24] G. Goessler and A. Sangiovanni-Vincentelli,
BCompositional modeling in Metropolis,[in
Proc. 2nd Int. Workshop Embedded Softw.,
Grenoble, France, pp. 7–9, 2002.

[25] Z. Gu, S. Wang, S. Kodase, and K. G. Shin,
BAn end-to-end tool chain for multi-view
modeling and analysis of avionics mission
computing software,[in Proc. Real-Time
Syst. Symp., 2003, pp. 78–81.

[26] C. Hardebolle and F. Boulanger,
BModHel’X: A component-oriented approach
to multi-formalism modeling,[in Proc.
Workshop Multi-Paradigm Model., Nashville,
TN, 2007.

[27] D. Harel, BStatecharts: A visual formalism for
complex systems,[Sci. Comput. Programm.,
vol. 8, no. 3, pp. 231–274, 1987.

[28] F. Herrera and E. Villar, BA framework
for embedded system specification under
different models of computation in SystemC,[
in Proc. Design Autom. Conf., San Francisco,
CA, pp. 911–914, 2006.

[29] 1588: IEEE Standard for a Precision Clock
Synchronization Protocol for Networked
Measurement and Control Systems, Standard
specification, IEEE Instrumentation and
Measurement Society, Nov. 8, 2002.

[30] A. Jantsch, Modeling Embedded Systems
and SoCVConcurrency and Time in Models
of Computation. San Mateo, CA:
Morgan Kaufmann, 2003.

[31] J. F. Jimenez, J. M. Giron-Sierra,
C. Insaurralde, and M. Seminario, BA
simulation of aircraft fuel management
system,[Simul. Model. Practice Theory,
vol. 15, pp. 544–564, 2007.

[32] G. Karsai, A. Lang, and S. Neema. (2005).
Design patterns for open tool integration.
Softw. Syst. Model. [Online]. 4(2), pp. 157–170.

Available: http://dx.doi.org/10.1007/
s10270-004-0073-y

[33] G. Karsai, J. Sztipanovits, A. Ledeczi, and
T. Bapty, BModel-integrated development
of embedded software,[Proc. IEEE, vol. 91,
no. 1, pp. 145–164, Jan. 2003.

[34] G. Kiczales, J. Lamping, A. Mendhekar,
C. Maeda, C. V. Lopes, J. M. Loingtier, and
J. Irwin, BAspect-oriented programming
European Conference in Object-Oriented
Programming, vol. 1241. Berlin, Germany:
Springer-Verlag, 1997, ser. Lecture Notes in
Computer Science.

[35] E. A. Lee. (1999). Modeling concurrent
real-time processes using discrete events. Ann.
Softw. Eng. [Online]. 7, pp. 25–45. Available:
http://dx.doi.org/10.1023/A:1018998524196

[36] E. A. Lee, BModel-driven
developmentVFrom object-oriented
design to actor-oriented design,[in Proc.
Workshop Softw. Eng. Embedded Syst., From
Requirements to Implementation, Chicago, IL,
2003. [Online]. Available: http://ptolemy.
eecs.berkeley.edu/publications/papers/03/
MontereyWorkshopLee/.

[37] E. A. Lee. (2003, Jul. 3). Overview of the
Ptolemy project. Univ. California, Berkeley,
CA, Tech. Rep. UCB/ERL M03/25. [Online].
Available: http://ptolemy.eecs.berkeley.edu/
publications/papers/03/overview/

[38] E. A. Lee, BCyber–physical systemsVAre
computing foundations adequate?[in Proc.
Workshop Cyber–Physical Syst., Res. Motiv.
Tech. Roadmap, Austin, TX, 2006. [Online].
Available: http://ptolemy.eecs.berkeley.edu/
publications/papers/06/CPSPositionPaper/.

[39] E. A. Lee. (2006). The problem with
threads. Computer [Online]. 39(5), pp. 33–42.
Available: http://dx.doi.org/10.1109/
MC.2006.180

[40] E. A. Lee, BCyber physical systems:
Design challenges,[in Proc. Int. Symp.
Object/Component/Service-Oriented Real-Time
Distrib. Comput., Orlando, FL, 2008,
pp. 363–369. [Online]. Available:
http://dx.doi.org/10.1109/ISORC.2008.25.

[41] E. A. Lee, BDisciplined heterogeneous
modeling,[in Proc. Model Driven Eng.
Lang. Syst., D. C. Petriu, N. Rouquette, and
O. Haugen, Eds., 2010, pp. 273–287.
[Online]. Available: http://chess.eecs.
berkeley.edu/pubs/679.html.

[42] E. A. Lee, X. Liu, and S. Neuendorffer.
(2009). Classes and inheritance in
actor-oriented design. ACM Trans.
Embedded Comput. Syst. [Online]. 8(4),
pp. 29:1–29:26. Available: http://ptolemy.
eecs.berkeley.edu/publications/papers/
07/classesandInheritance/index.htm

[43] E. A. Lee and E. Matsikoudis, BThe semantics
of dataflow with firing,[in From Semantics to
Computer Science: Essays in Memory of Gilles
Kahn, G. Huet, G. Plotkin, J.-J. Lévy, and
Y. Bertot, Eds. Cambridge, CA: Cambridge
Univ. Press, 2009. [Online]. Available: http://
ptolemy.eecs.berkeley.edu/publications/
papers/08/DataflowWithFiring/.

[44] E. A. Lee, S. Neuendorffer, and
M. J. Wirthlin, BActor-oriented design of
embedded hardware and software systems,[
J. Circuits Syst. Comput., vol. 12, no. 3,
pp. 231–260, 2003.

[45] E. A. Lee and T. M. Parks, BDataflow
process networks,[Proc. IEEE, vol. 83, no. 5,
pp. 773–801, May 1995, DOI: 10.1109/
5.381846.

[46] E. A. Lee and A. Sangiovanni-Vincentelli.
(1998, Dec.). A framework for comparing
models of computation. IEEE Trans.
Comput.-Aided Design Circuits Syst. [Online].

17(12), pp. 1217–1229. Available:
http://ptolemy.eecs.berkeley.edu/
publications/papers/98/framework/

[47] E. A. Lee and S. Tripakis, BModal models
in Ptolemy,[in Proc. 3rd Int. Workshop
Equation-Based Object-Oriented Model. Lang.
Tools, Oslo, Norway, 2010, vol. 47, pp. 11–21.
[Online]. Available: http://chess.eecs.
berkeley.edu/pubs/700.html.

[48] E. A. Lee and Y. Xiong, BA behavioral type
system and its application in Ptolemy II,[
Formal Aspects Comput. J., vol. 16, no. 3,
pp. 210–237, 2004.

[49] E. A. Lee and H. Zheng, BOperational
semantics of hybrid systems,[in Hybrid
Systems: Computation and Control (HSCC),
vol. 3414, M. Morari and L. Thiele, Eds.
Zurich, Switzerland: Springer-Verlag, 2005,
pp. 25–53. [Online]. Available: http://dx.doi.
org/10.1007/978-3-540-31954-2_2.

[50] E. A. Lee and H. Zheng, BLeveraging
synchronous language principles for
heterogeneous modeling and design of
embedded systems,[in Proc. Int. Conf.
Embedded Softw., Salzburg, Austria, 2007,
pp. 114–123. [Online]. Available: http://dx.
doi.org/10.1145/1289927.1289949.

[51] M. K. Leung, T. Mandl, E. A. Lee,
E. Latronico, C. Shelton, S. Tripakis, and
B. Lickly, BScalable semantic annotation
using lattice-based ontologies,[in Proc. Int.
Conf. Model Driven Eng. Lang. Syst., Denver,
CO, pp. 393–407, 2009.

[52] J. Liu, BResponsible frameworks for
heterogeneous modeling and design of
embedded systems,[Ph.D. dissertation,
Electr. Eng. Comput. Sci. Dept., Univ.
California, Berkeley, CA, Dec. 20, 2001.
[Online]. Available: http://ptolemy.eecs.
berkeley.edu/publications/papers/01/
responsibleFrameworks/.

[53] J. Liu, B. Wu, X. Liu, and E. A. Lee,
BInteroperation of heterogeneous CAD tools
in Ptolemy II,[in Proc. Symp. Design Test
Microfabricat. MEMS/MOEMS, Paris, France,
pp. 249–258, 1999.

[54] X. Liu and E. A. Lee. (2008). CPO semantics
of timed interactive actor networks. Theor.
Comput. Sci. [Online]. 409(1), pp. 110–125.
Available: http://dx.doi.org/10.1016/j.tcs.
2008.08.044

[55] X. Liu, J. Liu, J. Eker, and E. A. Lee,
BHeterogeneous modeling and design of
control systems,[in Software-Enabled Control:
Information Technology for Dynamical Systems,
T. Samad and G. Balas, Eds. New York:
Wiley-IEEE Press, 2003.

[56] O. Maler, Z. Manna, and A. Pnueli,
BFrom timed to hybrid systems,[in Proc.
Real-Time, Theory Practice REX Workshop,
1992, pp. 447–484.

[57] I. Moir and A. Seabridge, Aircraft Systems:
Mechanical, Electrical, and Avionics Subsystems
Integration, 3rd ed. New York: Wiley, 2008.

[58] P. J. Mosterman and H. Vangheluwe,
BComputer automated multi-paradigm
modeling: An introduction,[Simulation,
Trans. Soc. Model. Simul./Int. J. High
Performance Comput. Appl., vol. 80, no. 9,
pp. 433–450, 2004.

[59] G. Nordstrom, J. Sztipanovits, G. Karsai, and
A. Ledeczi, BMetamodelingVRapid design
and evolution of domain-specific modeling
environments,[in Proc. Conf. Eng.
Comput.-Based Syst., Nashville, TN, 1999,
pp. 68–74.

[60] Object Management Group (OMG). (2008).
System modeling language specification
v1.1, OMG, Tech. Rep. [Online]. Available:
http://www.sysmlforum.com

Derler et al. : Modeling Cyber–Physical Systems

Vol. 100, No. 1, January 2012 | Proceedings of the IEEE 27

[61] Object Management Group (OMG).
(2008, Aug.). A UML profile for MARTE,
beta 2, OMG adopted specification ptc/
08-06-09, OMG, Tech. Rep. [Online].
Available: http://www.omg.org/omgmarte/

[62] Object Management Group (OMG).
(2010, Jun.). System modeling language
specification v1.2, standard specification,
OMG, Tech. Rep. [Online]. Available:
http://www.sysmlforum.com

[63] T. M. Parks and D. Roberts, BDistributed
process networks in Java,[in Proc. Int. Parallel
Distrib. Process. Symp., Nice, France,
pp. 138–146, 2003.

[64] R. Passerone, L. de Alfaro, T. A. Henzinger,
and A. Sangiovanni-Vincentelli,
BConvertibility verification and converter
synthesis: Two faces of the same coin,[in
Proc. Int. Conf. Comput. Aided Design, San Jose,
CA, pp. 132–139, 2002.

[65] H. D. Patel and S. K. Shukla, SystemC
Kernel Extensions for Heterogeneous System
Modelling. Norwell, MA: Kluwer, 2004.

[66] W. Pree and J. Templ, BModeling with
the timing definition language (TDL),[
Automotive Software Workshop San Diego
(ASWSD) on Model-Driven Development
of Reliable Automotive Services. Berlin,
Germany: Springer-Verlag, 2006, ser. Lecture
Notes in Computer Science.

[67] I. Sander and A. Jantsch, BSystem modeling
and transformational design refinement in
ForSyDe,[IEEE Trans. Comput.-Aided Design

Circuits Syst., vol. 23, no. 1, pp. 17–32,
Jan. 2004.

[68] A. Sangiovanni-Vincentelli, BDefining
platform-based design,[EEDesign of EETimes,
2002. [Online]. Available: http://www.
eetimes.com/electronics-news/4141729/
Defining-platform-based-design.

[69] A. Sangiovanni-Vincentelli, BQuo vadis, SLD?
Reasoning about the trends and challenges
of system level design,[Proc. IEEE, vol. 95,
no. 3, pp. 467–506, Mar. 2007.

[70] A. Sangiovanni-Vincentelli, G. Yang,
S. K. Shukla, D. A. Mathaikutty, and
J. Sztipanovits, BMetamodeling: An emerging
representation paradigm for system-level
design,[IEEE Design Test Comput., vol. 26,
no. 3, pp. 54–69, May-Jun. 2009.

[71] W. Schamai, U. Pohlmann, P. Fritzson,
C. J. J. Paredis, P. Helle, and C. Strobel,
BExecution of umlstate machines using
modelica,[in Proc. 3rd Int. Workshop
Equation-Based Object-Oriented Model. Lang.
Tools, Oslo, Norway, 2010, vol. 47, pp. 1–10.
[Online]. Available: http://www.ep.liu.se/
ecp/047/.

[72] B. Selic, BThe pragmatics of model-driven
development,[IEEE Softw., vol. 20, no. 5,
pp. 19–25, Sep./Oct. 2003.

[73] J. Sztipanovits and G. Karsai,
BModel-integrated computing,[IEEE
Computer, vol. 34, no. 4, pp. 110–111,
Apr. 1997.

[74] S. Tripakis, D. Bui, M. Geilen, B. Rodiers, and
E. A. Lee, BCompositionality in synchronous
data flow: Modular code generation from
hierarchical SDF graphs,[Electr. Eng.
Comput. Sci. Dept., Univ. California,
Berkeley, CA, Tech. Rep. UCB/
EECS-2010-52, May 7, 2010.

[75] M. von der Beeck, BA comparison of
statecharts variants Third International
Symposium on Formal Techniques in
Real-Time and Fault-Tolerant Systems, vol. 863,
H. Langmaack, W. P. de Roever, and
J. Vytopil, Eds. Berlin, Germany:
Springer-Verlag, 1994, pp. 128–148,
ser. Lecture Notes in Computer Science.

[76] Wikipedia, Air Transat Flight 236. [Online].
Available: http://en.wikipedia.org/wiki/
Air_Transat_Flight_236.

[77] Y. Xiong, E. A. Lee, X. Liu, Y. Zhao, and
L. C. Zhong, BThe design and application
of structured types in Ptolemy II,[in Proc.
IEEE Int. Conf. Granular Comput., Beijing,
China, 2005, vol. 2, pp. 683–688.

[78] Y. Zhao, E. A. Lee, and J. Liu, BA
programming model for time-synchronized
distributed real-time systems,[in Proc.
Real-Time Embedded Technol. Appl. Symp.,
Bellevue, WA, 2007, pp. 259–268. [Online].
Available: http://ptolemy.eecs.berkeley.edu/
publications/papers/07/RTAS/.

ABOUT THE AUTHORS

Patricia Derler (Member, IEEE) did her under-

graduate studies at the University of Hagenberg,

Austria and received the Ph.D. degree in computer

science from the University of Salzburg, Salzburg,

Austria, in 2010.

She is a Postdoctoral Researcher at theUniversity

of California Berkeley, Berkeley. Her research inter-

ests are in design and simulation of cyber–physical

systems, deterministic models of computation, and

the use of predictability in software, hardware, and

the environment towards efficient simulations and executions.

Edward A. Lee (Fellow, IEEE) received the B.S.

degree in computer science from Yale University,

New Haven, CT, in 1979, the S.M. degree in elec-

trical engineering and computer science from the

Massachusetts Institute of Technology (MIT),

Cambridge, in 1981, and the Ph.D. degree in

electrical engineering and computer science from

the University of California Berkeley, Berkeley,

in 1986.

He is the Robert S. Pepper Distinguished Pro-

fessor and former chair of the Electrical Engineering and Computer

Sciences (EECS) Department, University of California Berkeley. His

research interests center on design, modeling, and analysis of embedded,

real-time computational systems. He is a Director of Chess, the Berkeley

Center for Hybrid and Embedded Software Systems, and is the Director of

the Berkeley Ptolemy project. He is coauthor of six books and numerous

papers. He has led the development of several influential open-source

software packages, notably Ptolemy and its various spinoffs. From 1979

to 1982, he was a member of technical staff at Bell Telephone Labo-

ratories, Holmdel, NJ, in the Advanced Data Communications Laboratory.

He is a cofounder of BDTI, Inc., where he is currently a Senior Technical

Advisor, and has consulted for a number of other companies.

Dr. Lee was a National Science Foundation (NSF) Presidential Young

Investigator, and won the 1997 Frederick Emmons Terman Award for

Engineering Education.

Alberto Sangiovanni Vincentelli (Fellow, IEEE)

received an electrical engineering and computer

science degree (BDottore in Ingegneria[) summa

cum laude from the Politecnico di Milano, Milano,

Italy, in 1971.

He holds the Edgar L. and Harold H. Buttner

Chair of Electrical Engineering and Computer

Sciences at the University of California Berkeley,

Berkeley. He was a cofounder of Cadence and

Synopsys, the two leading companies in the area

of electronic design automation. He is a member of the Board of Directors

of Cadence, Sonics, and Accent. He was a member of the HP Strategic

Technology Advisory Board, and is a member of the Science and Tech-

nology Advisory Board of General Motors and of the Technology Advisory

Council of UTC. He is a member of the High-Level Group, of the Steering

Committee, of the Governing Board and of the Public Authorities Board of

the EU Artemis Joint Technology Undertaking. He is an author of 880

papers, 15 books, and 3 patents.

Dr. Sangiovanni Vincentelli is member of the Scientific Council of the

Italian National Science Foundation (CNR) and a member of the Executive

Committee of Italian Institute of Technology. He received, among others,

the Kaufman Award of the Electronic Design Automation Council for

pioneering contributions to Electronic Design Automation and the IEEE/

Royal Society of Edinburgh Wolfson James Clerk Maxwell Medal for

groundbreaking contributions that have had an exceptional impact on

the development of electronics and electrical engineering or related

fields. He holds an Honorary Doctorate from University of Aalborg,

Denmark. He is a Member of the National Academy of Engineering.

Derler et al.: Modeling Cyber–Physical Systems

28 Proceedings of the IEEE | Vol. 100, No. 1, January 2012

