
CloudMF: Applying MDE to Tame the Complexity
of Managing Multi-Cloud Applications

Nicolas Ferry, Hui Song, Alessandro Rossini, Franck Chauvel, Arnor Solberg
Department of Networked Systems and Services

SINTEF, Oslo, Norway

{name.surname}@sintef.no

Abstract—The market of cloud computing encompasses an
ever-growing number of cloud providers offering a multitude
of infrastructure-as-a-service (IaaS) and platform-as-a-service
(PaaS) solutions. The heterogeneity of these solutions hinders
the proper exploitation of cloud computing since it prevents
interoperability and promotes vendor lock-in, which increases
the complexity of executing and managing multi-cloud applic-
ations (i.e., applications that can be deployed across multiple
cloud infrastructures and platforms). Providers of multi-cloud
applications seek to exploit the peculiarities of each cloud solution
and to combine the delivery models of IaaS and PaaS in order
to optimise performance, availability, and cost. In this paper,
we show how the Cloud Modelling Framework leverages upon
model-driven engineering to tame this complexity by providing:
(i) a tool-supported domain-specific language for specifying the
provisioning and deployment of multi-cloud applications, and (ii)
a models@run-time environment for enacting the provisioning,
deployment, and adaptation of these applications.

I. INTRODUCTION

Cloud computing is a computing model enabling ubiquit-
ous access to a shared and virtualised pool of computing
capabilities (e.g., processing, memory, storage, and network)
that can be rapidly provisioned with minimal management
effort [1]. The landscape of cloud computing encompasses
an ever-growing number of providers offering a multitude of
infrastructure-as-a-service (IaaS) and platform-as-a-this service
(PaaS) solutions. In this landscape, application providers are
facing the emergent need to execute and manage multi-cloud
applications [2] (i.e., applications that can be deployed across
multiple cloud infrastructures and platforms). In particular,
they need to exploit the peculiarities of each cloud solution
as well as to combine the delivery models of IaaS and
PaaS in order to optimise performance, availability, and cost.
However, this is a complex task as stated in the CORDIS
reports on cloud computing [3], [4], “whilst a distributed data
environment (IaaS) cannot be easily moved to any platform
provider (PaaS) [...], it is also almost impossible to move
a service/image/environment between providers on the same
level.”

There are several projects that aim to promote interoper-
ability and prevent vendor lock-in, but they are not sufficient
to properly tame the complexity of executing and managing
multi-cloud applications [5] at both design- and run-time. In
particular, existing cloud solutions typically focus on support-
ing either IaaS or PaaS, but not both. Moreover, they adopt
a design-time representation of the applications that is not
kept synchronised with the underlying running systems, which
hinders their continuous design and dynamic adaptation.

To address these challenges, we have extended our
model-based framework called Cloud Modelling Framework
(CLOUDMF) [6], [7]. CLOUDMF consists of (i) the Cloud
Modelling Language (CLOUDML), a tool-supported domain-
specific language (DSL) for specifying the provisioning and
deployment of multi-cloud applications and (ii) a models@run-
time environment for enacting the provisioning, deployment
and adaptation of these applications.

In this paper, we present the extended version of
CLOUDMF. The extensions consist of: (i) support for manage-
ment of multi-cloud applications that may rely simultaneously
on both IaaS and PaaS solutions (previously only IaaS was
supported); (ii) definition of simple graphical and textual
syntaxes for the language; and (iii) support for remote access
to the models@run-time engine by third parties, including
reasoning engines.

The extended version of CLOUDMF enables managing
multi-cloud applications in a cloud provider-independent way
while still exploiting the peculiarities of each IaaS and PaaS
solution. By supporting both IaaS and PaaS, CLOUDMF
enables several levels of control of multi-cloud applications:
(i) in case of execution on IaaS or white box PaaS solu-
tions, it offers full control with automatic provisioning and
deployment of the entire cloud stack from the infrastructure
to the application, or (ii) in case of execution on black box
PaaS solutions, it offers partial control of the application (note
that if parts of the multi-cloud application execute on IaaS
or white box PaaS, CLOUDMF offers full control of those
parts). In addition, by providing a model-based representation
of the applications that is causally connected to the underlying
running systems through the models@run-time environment,
CLOUDMF enables the continuous design and dynamic adapt-
ation of multi-cloud applications, where the adaptation can be
automated through the usage of reasoning engines. This way,
CLOUDMF promotes the DevOps method [8], which aims at
achieving better delivery life-cycle by integrating development
and operation activities. In this respect, the contribution of
CLOUDMF is the model-based provisioning, deployment, and
orchestration of multi-cloud applications.

The remainder of the paper is organised as follows. Sec-
tion II introduces SENSAPP, a multi-cloud application used as
a motivating example throughout the paper. Sections III and
IV describe the DSL and the models@run-time environment,
respectively. Section V reports the status of the implement-
ation, and how it addresses the requirements identified in
the motivating example. Finally, Section VI compares the

2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing

978-1-4799-7881-6/14 $31.00 © 2014 IEEE

DOI

269

proposed approach with the state-of-the-art and Section VII
draws some conclusions.

II. MOTIVATING EXAMPLE

SENSAPP1 is an open-source, service-oriented application
for storing and exploiting large data sets collected from sensors
and devices [9]. It is designed to seamlessly bridge the gap
between the Internet of things (IoT) and the cloud [9].

����
����	

��
�	
�	������

��
�	

�����
�	

���
���������

������
�
	���
�	�

������������
��
�����	

����������	�
������ ����������	�������

Figure 1. The SENSAPP architecture [9]

SENSAPP provides capabilities to register sensors, store
their data, and notify clients when new data are pushed. It
consists of three main components (see Figure 1). The Registry
component stores metadata about the sensors (e.g., descrip-
tion and creation date). The Database component stores raw
data from the sensors in a MongoDB database. The Notifier
component sends notifications to third-party applications when
relevant data are pushed (e.g., when new data collected by
air quality sensors become available). Finally, the Dispatcher
component orchestrates the other components: it receives data
from the sensors, stores these data in the Database according
to the metadata from the Registry, and then triggers the
notification mechanisms for the new data. SENSAPP ADMIN

(see Figure 1) uses the public REST API of SENSAPP and
provides capabilities to manage sensors and visualise data
using a graphical user interface. In order to be deployed,
SENSAPP requires a Servlet container and a database, whilst
SENSAPP ADMIN requires a Servlet container only.

In this paper, we adopt a running example illustrating dif-
ferent scenarios of provisioning and deployment of SENSAPP

and SENSAPP ADMIN. In order to reduce the management
efforts, the SENSAPP ADMIN is deployed on a public Amazon
Elastic Beanstalk PaaS, since it is a typical Servlet and does
not require custom run-time environments. On the other hand,
SENSAPP, which may store private data, has to be deployed
in a private cloud. In this experimental scenario, the company
exploiting SENSAPP uses its private OpenStack IaaS. Initially,
as a test deployment, both SENSAPP and the MongoDB are
deployed on the same virtual machine (VM). Eventually, as
a production deployment, SENSAPP is migrated to a new
VM whilst the database remains on the existing VM. This
example motivates for the following requirements that should
be addressed by CLOUDMF:

1http://sensapp.org

• Cloud provider independence (R1): CLOUDMF shall
support a cloud provider-agnostic specification of the
provisioning and deployment. This will simplify the
design of multi-cloud applications and prevent vendor
lock-in.

• Separation of concerns (R2): CLOUDMF shall sup-
port a modular, loosely-coupled specification of the
provisioning and deployment so that the modules
can be seamlessly substituted. This will facilitate the
maintenance as well as the dynamic adaptation of the
deployment topology.

• Reusability (R3): CLOUDMF shall support the spe-
cification of types or patterns that can be seamlessly
reused to design the system. This will ease the evol-
ution as well as the rapid development of different
variants of a system in time and in space.

• Abstraction (R4): CLOUDMF shall provide a single
domain-specific language and abstraction for specify-
ing deployment on both IaaS and PaaS in a cloud
provider-independent or -specific way. In addition,
CLOUDMF shall provide a continuously up-to-date,
abstract representation of the running system. This will
facilitate the reasoning, simulation, and validation of
the adaptation actions before their actual enactments.

• White- and black-box infrastructure (R5):
CLOUDMF shall support IaaS and PaaS solutions.
This will enable various degrees of control over
underlying infrastructures and platforms of multi-
cloud applications.

Cloud provider independence (R1) is justified by the need
of deploying SENSAPP and SENSAPP ADMIN on multiple
clouds as well as by the need of migrating SENSAPP from one
cloud to another. Furthermore, separation of concerns (R2) and
reusability (R3) are justified by the need of migrating SENSAPP

(i) without modifying the specification of the components that
are not concerned with the migration, and (ii) without redefin-
ing the deployment management of the components involved
in the migration. Moreover, abstraction (R4) is justified by
the need of monitoring the status of SENSAPP and SENSAPP

ADMIN as well as planning their adaptation. Finally, support
for white- and black-box infrastructure (R5) is justified by the
need to deploy SENSAPP on a IaaS in order to enable its full
control and to deploy SENSAPP ADMIN on a PaaS in order to
reduce its management efforts.

In the next two sections, we present the two main compon-
ents of CLOUDMF, i.e., CLOUDML and the models@run-time
environment, and how they address these requirements.

III. THE CLOUD MODELLING LANGUAGE

CLOUDML relies on model-driven techniques and meth-
ods. Model-driven engineering [10] is a branch of software
engineering which aims at improving the productivity, quality,
and cost-effectiveness of software development by shifting the
paradigm from code-centric to model-centric. This approach,
which is commonly summarised as “model once, generate
anywhere”, is particularly relevant to tame the complexity of
developing complex systems such as multi-cloud systems [6],
[7]. Models and modelling languages as the main artefacts

270

of the development process enable developers as well as
reasoning engines to work at a high level of abstraction
by focusing on cloud concerns rather than implementation
details. Model transformation serves as the primary technique
to generate (parts of) software systems restrains developers
from repetitive and error-prone tasks.

CLOUDML is inspired by the OMG’s Model-Driven Archi-
tecture [11] and allows developers to model the provisioning
and deployment of a multi-cloud application at two levels
of abstraction: (i) the Cloud Provider-Independent Model
(CPIM), which specifies the provisioning and deployment of
a multi-cloud application in a cloud provider-agnostic way
(addressing the requirement R1); (ii) the Cloud Provider-
Specific Model (CPSM), which refines the CPIM and specifies
the provisioning and deployment of a multi-cloud application
in a cloud provider-specific way. This two-level approach is
agnostic to any development paradigm and technology, mean-
ing that the application developers can design and implement
their applications based on their preferred paradigms and
technologies.

CLOUDML is also inspired by component-based ap-
proaches [12], which facilitate separation of concerns (R2)
and reusability (R3). In this respect, deployment models can
be regarded as assemblies of components exposing ports (or
interfaces), and bindings between these ports.

In addition, CLOUDML implements the type-instance pat-
tern [13], which also facilitates reusability (R3) and abstraction
(R4). This pattern exploits two flavours of typing, namely
ontological and linguistic, respectively [14]. Figure 2 illustrates
these two flavours of typing. SL (for Small Linux) represents a
reusable type of VM. It is linguistically typed by the class VM
(for Virtual Machine). SL1 represents an instance of the VM
SL. It is ontologically typed by SL and linguistically typed by
VMInstance.

��� ������	�
��

�� ���

linguistic
typing

ontological
typing

Metamodel

Model

Figure 2. Linguistic and ontological typing

Previously, the CLOUDML editor supported two formats
for the textual syntax, namely the JavaScript Object Notation
(JSON) and the XML Metadata Interchange (XMI) which
resulted from the serialization of deployment models. We have
extended CLOUDMF with: (i) a web-based editor that supports
a new graphical syntax (see Figure 4) and (ii) an Eclipse-based
editor (see Figure 3) that supports a new textual syntax and
offers features such as syntax highlighting, auto-completion,
and on-site validation. The models defined using this syntax
can be serialized into the JSON and XMI formats. Figure 4
illustrates the deployment model of our example using this
graphical syntax.

A. Cloud Provider-Independent Model

In the following, we provide a description of the most im-
portant classes and corresponding properties in the CLOUDML

Figure 3. Screenshot of the text-based CloudML Editor

Figure 4. SENSAPP deployment model

metamodel as well as sample models in the associated textual
syntax. The textual syntax better illustrates the various con-
cepts and properties that can be involved into a deployment
model and that can be hidden in the graphical syntax. Both
the textual and the graphical syntax offer an abstraction over
multi-cloud and cloud provider-specific concepts as well as
over the deployment process.

Figure 5 shows the type portion of the CLOUDML
metamodel in Ecore format2.

A CloudMLModel consists of CloudMLElements,
which can be associated with Property and Resources. A
Resource represents an artefact (e.g., scripts, binaries, con-
figuration files, etc.) adopted to manage the deployment life-
cycle (e.g., download, configure, install, start, and stop). The
three main types of CloudMLElements are Component,
Communication, and Hosting.

2http://www.eclipse.org/modeling/emf/

271

Component

CommunicationPort

HostingPort

ProvidedHostRequiredHost
ProvidedCommunication RequiredCommunication

InternalComponent

Communication

DeploymentModel

ExternalComponent
location : EString
region : EString
endPoint : EString
username : EString
password : EString
serviceType : EString

Cloud
Provider

credentials : EString

VM
minCPU : EDouble
maxCPU : EDouble
minCores : EInt
maxCores : EInt
minRam : EInt
maxRam : EInt
minStorage : EInt
maxStorage : EInt
securityGroup : EString
publicSshKey : EString
privateSshKey : EString

Hosting

component 1 component1

providedHosts
0..*providedCommunications

0..*

requiredCommunications
0..*

compositeInternalComponents
0..*

requiredHost
1

requiredCommunication
1providedCommunication

1

components 0..*

communications
0..*

clouds
0..*

providers
0..*

provider
0..1

vms
0..*

providedHost
1

requiredHost
1

hostings
0..*

externalComponents
0..*

Figure 5. Type part of the CLOUDML metamodel

A Component represents a reusable type of component
of a cloud-based application. A Component can be an
ExternalComponent, meaning that it is managed by an
external Provider (e.g., an Amazon Beanstalk container, see
Listing 1), or an InternalComponent, meaning that it is
managed by CLOUDMF (e.g., a Servlet container or SENS-
APP). This mechanism enables supporting both IaaS and PaaS
solutions through the single abstract concept of component
(R5). The property location of ExternalComponent
represents the geographical location of the data centre hosting
it (e.g., location="eu-west-1", short for West Europe).
The properties username, password, and serviceType
represent the authentication information needed to access to
this specific service and its type (e.g., database, application
container), respectively.

Listing 1. An example of an External Component type from a CPIM
1 external component BeanstalkContainer {

provider: Beanstalk, location: "eu-west-1"
3 environment: "Tomcat", autoscaling: false

provided host SCProvided {("language": "Java")}
5 }

An ExternalComponent can be a VM (e.g., a
VM running GNU/Linux, see Listing 2). The properties
minCores, maxCores, minRam, maxRam, minStorage,
and maxStorage represent the lower and upper bounds of
virtual compute cores, RAM, and storage, respectively, of
the required VM (e.g., minCores=1, minRam=1024). The
property OS represents the operating system to be run by the
VM (e.g., OS="ubuntu"). All these constraints are optional
and do not have to be defined in the CPIM.

Listing 2. An example of a VM type from a CPIM
1 vm SL {

provider: OpenStackNova, os: "ubuntu", os64
3 ram: 1024.., cores: 1.., storage: 50..

securityGroup: "SensApp", sshkey: "cloudml", groupName: "
sensapp"

5 provided host slProvided
}

Components are connected through two kinds of ports.
A CommunicationPort represents a communication in-
terface of a component. A CommunicationPort can be
a ProvidedCommunication, meaning that it provides a
feature to another component (e.g., SENSAPP provides a REST
interface, see Listing 3), or a RequiredCommunication,
meaning that it consumes a feature from another com-
ponent (e.g., SENSAPP requires a MongoDB interface,
see Listing 3). Only internal components can have a
RequiredCommunication since they are managed by
CLOUDMF. The property isLocal shows whether the com-
ponent providing the feature and the component consuming the
feature have to be deployed on the same external component
(e.g., in the initial deployment SENSAPP and MongoDB have
to be deployed on the same VM, see Listing 3). The property
isMandatory of RequiredCommunication represents
that the InternalComponent depends on this feature (e.g.,
SENSAPP depends on MongoDB and hence MongoDB has to
be deployed before SENSAPP, see Listing 3).

A HostingPort represents a hosting interface of a
component. A HostingPort can be a ProvidedHost,
meaning that it provides hosting facilities (i.e., it provides
an execution environment) to another component (e.g., a VM
running GNU/Linux provides hosting to a Servlet container,
see Listing 2), or a RequiredHost, meaning that an in-
ternal component requires hosting from another component
(e.g., SENSAPP requires hosting from a Servlet container, see
Listing 3).

272

Listing 3. An example of an Internal Component type from a CPIM
internal component SensApp {

2 resource SensAppResource {
download: "wget -P ~ http://github.com/downloads/SINTEF
-9012/sensapp/sensapp.war; wget -P ~ http://cloudml.org
/scripts/linux/ubuntu/sensapp/sensapp.sh",

4 install: "sudo bash sensapp.sh"
}

6 provided communication restProvided {local, port: 80}
required communication mongoDBRequired {local, port: 0,

mandatory}
8 required host SCRequired { ("language" : "Java") }
}

A Communication represents a reusable type of
communication binding between a Required- and a
ProvidedCommunication (e.g., SENSAPP communicates
with SENSAPP ADMIN through HTTP on port 80, see
Listing 4). A Communication can be associated with
Resources specifying how to configure the components so
that they can communicate with each other.

Listing 4. An example of a Communication type from a CPIM
1 communication SensAppAdmin2SensApp {

from SensAppAdmin.restRequired
3 to SensApp.restProvided,

resource SensappAdmin2SensAppResource: {
5 download: "wget -P ~ http://cloudml.org/scripts/linux/

ubuntu/sensappAdmin/install_sensappadmin.sh",
configure : "sudo bash install_sensappadmin.sh"

7 }
}

A Hosting represents a reusable type of hosting binding
between Required- and a ProvidedHost (e.g., a Servlet
container is contained by a VM running GNU/Linux, see List-
ing 5). A Hosting can be associated with Resources spe-
cifying how to configure the components so that the contained
component can be deployed on the container component.

Listing 5. An example of an Hosting type from a CPIM
execution JettySC2SL {

2 from JettySC.slRequired to SL.slProvided
}

These types can be instantiated in order to form an as-
sembly of components that specifies a deployment model. Each
instance is identified by a unique identifier and refers to a
type (see Listing 6).The deployment model of our SENSAPP

example can then be specified as depicted in Figure 4.

Listing 6. Example of instances from a CPIM
1 instances {

external component bc1 typed BeanstalkContainer
3 internal component sensApp1 typed SensApp

internal component sensAppAdmin1 typed SensAppAdmin
5 internal component jettySC1 typed JettySC

vm sl1 typed SL
7 connect sensAppAdmin1.restRequired to sensApp1.

restProvided typed SensAppAdmin2SensApp
host jetty1.slRequired on sl1.slProvided typed JettySC2SL

9 }

B. From CPIM to CPSM

In the following, we show how a CPIM can be refined into
a CPSM. A deployment model at the CPSM level consists of an
enrichment of the instances of the corresponding CPIM with
cloud provider-specific information. This enrichment mainly
affects external components.

application provider model models@runtime cloud provider

refine CPIM and provide selection

CPIM model

search(Request):Metadata

eu, imageID, etc.
setImage(ImageID)

setLocation(eu)

...

refinement status

CPSM

Figure 6. Example of refinement of a CPIM into a CPSM

The transformation from CPIM to CPSM consists in: (i)
adding the actual data resulting from the resolution of the
constraints defined in the external component types (e.g., actual
number of cores, RAM size, storage size), and (ii) adding
data required for the deployment and management of the
application that are cloud provider-specific. Thanks to this
enrichment, it is possible to retrieve data about the actual
resources provisioned including how they can be accessed
and how they can be configured. Such data is particularly
useful during the process of configuration of the components
and their bindings. Rather than relying on models specifying
all possible cloud providers and corresponding cloud services
supported by CLOUDMF, which should be maintained up-to-
date with the current offerings, the refinement of a CPIM into
CPSM retrieves cloud provider-specific information directly
from the cloud providers. In order to achieve this refinement,
the models@run-time environment interacts with the APIs of
the cloud providers.

Figure 6 presents an example of a refinement of a CPIM
into a CPSM in the context of the motivating example. The
application provider specifies the cloud provider on which
the application will be provisioned and deployed (e.g., the
sensApp1 Servlet, jettySC1 Servlet container, and the
sl1 VM running GNU/Linux will be provisioned and de-
ployed in the private OpenStack IaaS). The models@run-time
engine requests the cloud providers for a list of available
VMs compatible with the constraints defined in the VM type
(e.g., the list of VMs with at least 1 core, at least 1024
MiB of RAM, and at least 50 GiB of storage available on
the private OpenStack IaaS). The cloud provider responds the
models@run-time engine with this list along with metadata
associated with each VM (e.g., the small VM instance
located in the EU). Similar metadata can be requested for PaaS
(e.g., the public Amazon Elastic Beanstalk PaaS supports Java
and autoscaling). Finally, the models@run-time engine uses
this metadata to refine the CPIM into a CPSM, and enacts the
actual provisioning and deployment of this CPSM.

In the following, we describes how the models@run-time
environment exploits CPSMs to provision, deploy, and adapt
multi-cloud application.

IV. THE CLOUDMF MODELS@RUN-TIME ENVIRONMENT

Models@run-time [15], [16] is an architectural pattern
for dynamically adaptive systems that leverages models as
executable artefacts supporting the execution of the system.

273

In particular, models@run-time provides an abstract repres-
entation of the underlying running system, which facilitates
reasoning, simulation, and enactment of adaptation actions.
A change in the running system is automatically reflected
in the model of the current system. Similarly, a modification
to this model is enacted on the running system on demand.
This causal connection enables the continuous evolution of
the system with no strict boundaries between design-time and
run-time activities.

We believe that the models@run-time approach is par-
ticularly relevant in the context of multi-cloud applications,
since the time overhead introduced by the models@run-time
engine is negligible compared to the time needed to enact an
adaptation action in the cloud (e.g., provisioning of VMs may
take several minutes). This is in contrast with other application
areas where the time overhead introduced by models@run-time
can be challenging to cope with.

A. Overview

Within CLOUDMF, the models@run-time environment
provides a CPSM causally connected to the running system
(addressing R4). On the one hand, any modification to the
CPIM will be reflected in the CPSM and, in turn, automatically
propagated onto the running system. On the other hand, any
change in the running system will be reflected in the CPSM,
which, in turn, can be assessed with respect to the CPIM.

���������������

�����������������

(1) (2)

�������
�	
��

��������������
�������

��������
�	
��

���� (3)
�� ������
�������

(4)

���������������

Figure 7. The CLOUDMF models@run-time architecture

Figure 7 depicts the architecture of the CLOUDMF
models@run-time engine. The reasoning system reads the
current CPSM (step 1), which describes the running system,
and produces a target CPSM (step 2). Then, the run-time en-
vironment computes the difference between the current CPSM
and the target CPSM (step 3). Finally, the adaptation engine
enacts the adaptation by modifying only the parts of the system
necessary to account for the difference and the target CPSM
becomes the current CPSM (step 4).

The current CPSM can be manipulated in both imperative
and declarative ways, i.e., it can be modified through a set of
instructions, or a new CPSM can be provided to replace the
existing one. Both approaches result in a target CPSM that is
consumed by the comparison engine.

B. Comparison engine

The inputs to the comparison engine (also called diff)
are the current and target CPSMs. The output is a list of

actions representing the required changes to transform the
current CPSM into the target CPSM. The types of potential
actions are listed in Table I and result in: (i) modification of
the provisioning and deployment topology, (ii) modifications
of the components’ properties, or (iii) modifications of their
status on the basis of their life-cycle. In particular, the status
of an external component can be running, stopped or in
error, whilst the status of an internal component can be
uninstalled, installed, configured, running or
in error.

The comparison engine processes, in order, external com-
ponents, internal components, hostings, and communications,
on the basis of the logical dependencies between these con-
cepts. In this way, all the components required by another
component are deployed first.

For each of these concepts, we compare the two sets of
instances from the current and target CPSMs. This comparison
is achieved on the matching the properties of both instances
and corresponding types. For each unmatched instance from
the current CPSM, a remove action with the instance as
argument is created. Similarly, for each unmatched instance
from the target CPSM, an add action with the instance as
argument is generated.

In the context of the motivating example, the migration
of SENSAPP on a new VM consists in providing as in-
put the target CPSM depicted in Figure 8. This will res-
ult in the following actions: add new instances of the VM
type SL, the hosting type JettySC2SL, the hosting type
MongoDB2SL and remove the existing instance of the hosting
type JettySC2SL. Because of the abstraction offered by
CLOUDML, this adaptation is achieved without the need for
new types and resources or for redefining the existing ones.
In addition, thanks to the comparison process, the MongoDB
remains available during the adaptation process.

Figure 8. SENSAPP CPSM after adaptation

Please note that, at this stage, the target CPSM has priority
over the current CPSM, which for example means that any
VM instance in the target CPSM that does exist in the current
CPSM will be regarded as one that needs to be created.
Conversely, any VM in the current CPSM that does not
exist in the target CPSM will be removed. This approach
is effective when there is no change in the running system
during reasoning. Coping with changes that occur during

274

Table I. TYPES OF OUTPUT ACTIONS GENERATED BY THE COMPARISON ENGINE

Action Parameter Effect
addExternalComponent ExternalComponent provision a new VM or start a PaaS service

removeExternalComponent ExternalComponent terminate a VM or stop a PaaS service

addInternalComponent InternalComponent deploy the internal component on a host

removeInternalComponent InternalComponent remove the internal component instance from its current host

addCommunication Communication configure the endpoints of the communication

removeCommunication Communication unconfigure the endpoints of the communication

addHosting Hosting configure the endpoints of the hosting

removeHosting Hosting unconfigure the endpoints of the hosting

setStatus Status change the status of a component

setProperty Property change a property of a component

reasoning could be handled in various ways, for instance as
part of a third step of the adaptation process (model checking).
Currently, CLOUDMF does not handle changes that occur
during reasoning.

While comparing the current and target CPSM, the compar-
ison engine deduces an ordering of deployment actions, which
accounts for the dependencies captured by the model (pro-
visioning thus precedes configurations of communications).
However, ad hoc synchronisation issues between asynchron-
ous configuration actions (e.g., database migration) must be
handled in the configuration management scripts that perform
these actions.

C. Synchronisation between the models@run-time engine and
third parties

The models@run-time environment also provides syn-
chronisation mechanisms for remote third parties (e.g., reas-
oning engines) to adapt the system. The need for mechanisms
to facilitate the synchronisation of the models@run-time envir-
onment with third parties has emerged from several use cases
that apply self-adaptive mechanisms on top of CLOUDMF.
Such mechanisms typically involve decision making engines,
which reason on their own views of the model of the running
system. Because these views have to remain synchronised
with the running system, appropriate transformations must be
automatically triggered at run-time.

As an example, a use case from the DIVERSIFY EU
project3 consists in building one or several bio-inspired engines
to automatically repair cloud-based applications [17]. One of
the reasoning engines involved in this use case is a diversity
controller which reasons on a population model (i.e., repres-
enting species and the number of individuals in each species).
In order to ensure that the controller reasons on an up-to-date
population model, the latter has to be synchronised with the
CPSM.

The model synchronisation is implemented by the propaga-
tion of changes in both directions, namely notification and
command. A notification allows the models@run-time engine
to propagate its change to third parties, whilst a command
enables modifications on the current CPSM. Because two
models used by two parties can be isolated from each other and
may not be aware of the whole model state, only the sequence
of modifications is propagated, without carrying the start state
of each change. Therefore, both notification and command are
a sequence of modifications.

3http://www.diversify-project.eu

The communication with third parties is achieved using
the WebSocket protocol4 in order to enable light-weight com-
munications. Events are encoded as plain text, and can be
defined using a domain-specific language. This includes the
text formatting, the query and criteria to locate the relevant
model element, the modification or change on the element,
and the combination of other events. We have defined the
standard MOF-reflection modifications as the primitive events,
and allow developers to define further high-level events as
the composition of primitive ones. Using this language, it
is also possible to define the changes on an abstract model
as the composition of events on a concrete model, and thus
implement event-based transformation. After each adaptation,
the engine wraps the modification events into one message and
sends it to the WebSocket port.

In order to handle concurrency (i.e., adaptation actions
coming from several third parties) the models@run-time envir-
onment uses a simple transaction-based mechanism. The Web-
Socket component creates a single transaction which contains
all the modifications from a third party, and passes it to a
concurrency handler. The handler queues the transactions and
executes them one after another without overlapping. Since all
the modifications are simply assignment or object instantiation
commands on the model in the form of Java objects, the time
to finish a transaction of events is significantly shorter than the
adaptation process.

V. SYNTHESIS

In the following, we discuss how our approach addresses
the requirements defined in Section II and we report the status
of the reference implementation of CLOUDMF.

A. Requirements

The following list summarises how CLOUDMF fulfils the
requirements presented in Section II.

• Cloud provider-independence (R1): The layering of
the modelling stack into CPIMs and CPSMs ensures
that the provisioning and deployment templates are
cloud provider-independent.

• Separation of concerns (R2): The component-based
design of the CLOUDML meta-model ensures that the
provisioning and deployment templates and models
are modular and loosely-coupled. Furthermore, the
CPIM and CPSM abstraction levels effectively ensures

4http://www.websocket.org/

275

the separation of concerns between cloud provider-
specific from the cloud-provider general provisioning
and deployment design.

• Reusability (R3): The type-instance pattern in the
CLOUDML metamodel ensures that types a can be
reused across several models.

• Abstraction (R4): Thanks to CLOUDML, our frame-
work offers a single domain-specific language and ab-
straction which enables the management of application
on both IaaS and PaaS solutions. Independently of
their delivery mode, these solutions can be represented
in an homogeneous way as components. In addition,
the models@run-time environment provides an ab-
stract and up-to-date representation of the running
system which can be dynamically manipulated, and
the CPIM provides abstraction over cloud provider-
specific concerns.

• White- and Black-box infrastructure (R5):
CLOUDMF includes concepts and mechanisms
that enable the support for both IaaS and PaaS
solutions, enabling management of components
where CLOUDMF has full control of their underlying
infrastucture and platforms (IaaS/white-box) and
exploitation of advanced and rigid PaaS’s that feature
little control from the outside (black-box).

B. Reference implementation

CLOUDMF has been applied in a set of use cases in various
research projects, in particular in the FP7 EU projects REM-
ICS 5, MODAClouds6, PaaSage7, and DIVERSIFY8. The set
of use cases includes the migration of legacy applications to the
cloud as well as the migration of applications from one cloud
to another. In addition, all these projects apply self-adaptive
mechanisms on top of CLOUDMF in order to optimise the
execution of multi-cloud applications with maximum quality
of service at minimum cost.

CLOUDMF is available as an open-source project9 im-
plemented in Java using Maven as the build tool. The cur-
rent codebase consists of around 24 000 lines of code. The
CLOUDML models and metamodels are represented as plain
Java objects. These models can be serialised in either JSON or
XMI. The JSON and XMI codecs are based on Kotlin10 and
the Kevoree Modeling Framework (KMF) [18]. The textual
syntax editor11 is based on the Xtext framework [19]. For
the IaaS level management, the provisioning and deployment
engine relies on jclouds12 and the Flexiant Cloud Orches-
trator API13. For the PaaS management, the engine uses the
Cloud4SOA [20] library and the Amazon Elastic Beanstalk14

and RDS 15 APIs.

5http://www.remics.eu
6http://www.modaclouds.eu
7http://www.paasage.eu
8http://www.diversify-project.eu
9https://github.com/SINTEF-9012/cloudml
10http://kotlin.jetbrains.org/
11https://github.com/SINTEF-9012/cloudml-dsl
12http://jclouds.incubator.apache.org/
13http://docs.flexiant.com
14http://aws.amazon.com/fr/elasticbeanstalk/
15http://aws.amazon.com/fr/rds/

VI. RELATED WORK

This research is the continuation of our model-based frame-
work called Cloud Modelling Framework (CLOUDMF) [6],
[7]. In this paper, we present the extended version of
CLOUDMF which adds (i) support for management of multi-
cloud applications that may rely simultaneously on both IaaS
and PaaS solutions (previously only IaaS was supported); (ii)
definition of simple graphical and textual syntaxes for the lan-
guage; and (iii) support for remote access to the models@run-
time engine by third parties, including reasoning engines.

In the cloud community, libraries such as jclouds16 or
DeltaCloud17 provide generic APIs abstracting over the hetero-
geneous APIs of IaaS providers, thus reducing cost and effort
of deploying multi-cloud applications. While these libraries
effectively foster the deployment of cloud-based applications
across multiple cloud infrastructures, they remain code-level
solutions, which make design changes difficult and error-prone.
More advanced frameworks such as Cloudify18, Puppet19,
or Chef20 provide DSLs that facilitate the specification and
enactment of provisioning, deployment, monitoring, and ad-
aptation of cloud-based applications, without being language-
dependent. As for the research community, the mOSAIC [21]
project tackles the vendor lock-in problem by providing an API
for provisioning and deployment of multi-cloud applications.
This solution is also limited to the code level. The Topo-
logy and Orchestration Specification for Cloud Applications
(TOSCA) [22] is a specification developed by the OASIS
consortium, which provides a language for specifying the com-
ponents comprising the topology of cloud-based applications
along with the processes for their orchestration. By contrast
with CLOUDMF, the aforementioned approaches only focus
on the management of cloud-based applications deployed on
IaaS environments, and are conceived for design-time only.

The literature encompasses several approaches to the man-
agement of cloud-based applications deployed on PaaS envir-
onments. Sellami et al. [23] propose a model-driven approach
to PaaS-independent provisioning and management of cloud-
based applications. This approach includes a language for
modelling provisioning and deployment, as well as a REST
API for enacting them. The Cloud4SOA EU project [20]
provides a framework for facilitating the matchmaking, man-
agement, monitoring, and migration of cloud-based applica-
tions on PaaS environments. By contrast with CLOUDMF,
these approaches focus on one cloud delivery model only (i.e.,
either IaaS or PaaS, but not both). In addition, their models are
not causally connected to the running system, and may become
irrelevant as soon as the running system is changed. The
approaches proposed in the CloudScale [24] and Reservoir [25]
projects suffer similar limitations.

The work of Shao et al. [26] was a first attempt to
build a models@run-time platform for the cloud, but remains
restricted to monitoring, without providing support for en-
actment of provisioning and deployment. To the best of our
knowledge, CLOUDMF is thus the first attempt to reconcile

16http://www.jclouds.org
17http://deltacloud.apache.org/
18http://www.cloudifysource.org/
19https://puppetlabs.com/
20http://www.opscode.com/chef/

276

cloud management solutions with modelling practices through
the use of models@run-time.

VII. CONCLUSION

In this paper, we presented how the Cloud Modelling
Framework (CLOUDMF) leverages upon model-driven tech-
niques and methods to enable the specifications of the provi-
sioning and deployment of multi-cloud applications at design-
time and their enactment at run-time. The Cloud Model-
ling Language (CLOUDML) supports the cloud provider-
independent specification of multi-clouds application including
IaaS and PaaS solutions, which are both modelled in an
endogenous way through the concept of component. The as-
sociated models@run-time environment provides mechanisms
for the dynamic provisioning, deployment, and adaptation of
multi-cloud applications to third parties through a well-defined
interface.

ACKNOWLEDGEMENT

The research leading to these results has received fund-
ing from the European Community’s Seventh Framework
Programme (FP7/2007-2013) under grant agreement number:
318484 (MODAClouds), 317715 (PaaSage). In addition, we
would like to thank Nikolay Nikolov for his help with and
comments on the CLOUDML metamodel.

REFERENCES

[1] P. Mell and T. Grance, “The NIST Definition of Cloud Computing,”
National Institute of Standards and Technology, Special Publication
800-145, September 2001.

[2] D. Petcu, “Consuming Resources and Services from Multiple Clouds,”
Journal of Grid Computing, pp. 1–25, 2014.

[3] SSAI Expert Group, “The Future of Cloud Computing,” Tech.
Rep., 2010. [Online]. Available: http://cordis.europa.eu/fp7/ict/ssai/
docs/cloud-report-final.pdf

[4] ——, “A Roadmap for Advanced Cloud Technologies under H2020,”
Tech. Rep., 2012. [Online]. Available: http://cordis.europa.eu/fp7/ict/
ssai/docs/cloud-expert-group/roadmap-dec2012-vfinal.pdf

[5] D. Ardagna, E. Di Nitto, G. Casale, D. Petcu, P. Mohagheghi, S. Mosser,
P. Matthews, A. Gericke, C. Balligny, F. D’Andria, C.-S. Nechifor,
and C. Sheridan, “MODACLOUDS, A Model-Driven Approach for the
Design and Execution of Applications on Multiple Clouds,” in ICSE
MiSE: International Workshop on Modelling in Software Engineering.
IEEE/ACM, 2012, pp. 50–56.

[6] N. Ferry, A. Rossini, F. Chauvel, B. Morin, and A. Solberg, “Towards
model-driven provisioning, deployment, monitoring, and adaptation
of multi-cloud systems,” in Proceedings of CLOUD 2013: IEEE 6th

International Conference on Cloud Computing, L. O’Conner, Ed. IEEE
Computer Society, 2013, pp. 887–894.

[7] N. Ferry, F. Chauvel, A. Rossini, B. Morin, and A. Solberg, “Managing
multi-cloud systems with CloudMF,” in Proceedings of NordiCloud
2013: 2nd Nordic Symposium on Cloud Computing and Internet Tech-
nologies, A. Solberg, M. A. Babar, M. Dumas, and C. E. Cuesta, Eds.
ACM, 2013, pp. 38–45.

[8] J. Humble and D. Farley, Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation. Addison-
Wesley Professional, 2010.

[9] S. Mosser, F. Fleurey, B. Morin, F. Chauvel, A. Solberg, and I. Goutier,
“SENSAPP as a Reference Platform to Support Cloud Experiments:
From the Internet of Things to the Internet of Services,” in SYNASC
2012: 14th International Symposium on Symbolic and Numeric Al-
gorithms for Scientific Computing. IEEE Computer Society, 2012,
pp. 400–406.

[10] D. C. Schmidt, “Guest editor’s introduction: Model-driven engineering,”
IEEE Computer, vol. 39, no. 2, pp. 25–31, 2006.

[11] “OMG Model-Driven Architecture.” [Online]. Available: http://www.
omg.org/mda/

[12] C. Szyperski, Component Software: Beyond Object-Oriented Program-
ming (2nd edition). Addison-Wesley Professional, 2011.

[13] C. Atkinson and T. Kühne, “Rearchitecting the UML infrastructure,”
ACM Transactions on Modeling and Computer Simulation, vol. 12,
no. 4, pp. 290–321, 2002.

[14] T. Kühne, “Matters of (meta-)modeling,” Software and Systems Model-
ing, vol. 5, no. 4, pp. 369–385, 2006.

[15] B. Morin, O. Barais, J.-M. Jézéquel, F. Fleurey, and A. Solberg,
“Models@Run.time to Support Dynamic Adaptation,” IEEE Computer,
vol. 42, no. 10, pp. 44–51, 2009.

[16] G. Blair, N. Bencomo, and R. France, “Models@run.time,” IEEE
Computer, vol. 42, no. 10, pp. 22–27, 2009.

[17] F. Chauvel, N. Ferry, B. Morin, A. Rossini, and A. Solberg, “Mod-
els@Runtime to Support the Iterative and Continuous Design of
Autonomous Reasoners,” in Proceedings of MRT 2013: 8th Interna-
tional Workshop on Models@run.time at MODELS 2013: ACM/IEEE
14th International Conference on Model Driven Engineering Languages
and Systems, N. Bencomo, R. France, S. Götz, and B. Rumpe, Eds.
CEUR Workshop Proceedings, 2013.

[18] F. Fouquet, G. Nain, B. Morin, E. Daubert, O. Barais, N. Plouzeau,
and J.-M. Jézéquel, “An Eclipse Modelling Framework Alternative to
Meet the Models@Runtime Requirements,” in MODELS 2012: 15th
International Conference on Model Driven Engineering Languages
and Systems, ser. Lecture Notes in Computer Science, R. B. France,
J. Kazmeier, R. Breu, and C. Atkinson, Eds., vol. 7590. Springer,
2012, pp. 87–101.

[19] M. Eysholdt and H. Behrens, “Xtext: implement your language faster
than the quick and dirty way,” in SPLASH/OOPSLA 2010: Companion
to the 25th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, W. R. Cook,
S. Clarke, and M. C. Rinard, Eds. ACM, 2010, pp. 307–309.

[20] “Cloud4SOA EU project.” [Online]. Available: http://www.cloud4soa.
eu/

[21] C. Sandru, D. Petcu, and V. I. Munteanu, “Building an Open-Source
Platform-as-a-Service with Intelligent Management of Multiple Cloud
Resources,” in UCC 2012: IEEE 5th International Conference on Utility
and Cloud Computing. IEEE Computer Society, 2012, pp. 333–338.

[22] D. Palma and T. Spatzier, “Topology and Orchestration Specification
for Cloud Applications (TOSCA),” Organization for the Advancement
of Structured Information Standards (OASIS), Tech. Rep., June
2013. [Online]. Available: http://docs.oasis-open.org/tosca/TOSCA/v1.
0/cos01/TOSCA-v1.0-cos01.pdf

[23] M. Sellami, S. Yangui, M. Mohamed, and S. Tata, “PaaS-Independent
Provisioning and Management of Applications in the Cloud,” in
CLOUD 2013: IEEE 6th International Conference on Cloud Comput-
ing, L. O’Conner, Ed. IEEE Computer Society, 2013, pp. 693–700.

[24] G. Brataas, E. Stav, S. Lehrig, S. Becker, G. Kopčak, and D. Huljenic,
“CloudScale: scalability management for cloud systems,” in ICPE 2013:
4th ACM/SPEC International Conference on Performance Engineering.
ACM, 2013, pp. 335–338.

[25] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I. M.
Llorente, R. Montero, Y. Wolfsthal, E. Elmroth, J. Cáceres, M. Ben-
Yehuda, W. Emmerich, and F. Galán., “The reservoir model and archi-
tecture for open federated cloud computing,” IBM Journal of Research
and Development, vol. 53, no. 4, pp. 535–545, July 2009.

[26] J. Shao, H. Wei, Q. Wang, and H. Mei, “A Runtime Model Based Mon-
itoring Approach for Cloud,” in CLOUD 2010: IEEE 3rd International
Conference on Cloud Computing. IEEE Computer Society, 2010, pp.
313–320.

277

