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Abstract. Model-Driven Engineering (MDE) is a software engineering
paradigm where models play a key role. In a MDE-based development
process, models are successively transformed into other models and even-
tually into the final source code by means of a chain of model trans-
formations. Since writing model transformations is an error-prone task,
mechanisms to ensure their reliability are greatly needed. One way of
achieving this is by means of testing. A challenging aspect when test-
ing model transformations is the generation of adequate input test data.
Most existing approaches generate test data following a black-box ap-
proach based on some sort of partition analysis that exploits the struc-
tural features of the source metamodel of the transformation. However,
these analyses pay no attention to the OCL invariants of the metamodel
or do it very superficially. In this paper, we propose a mechanism that
systematically analyzes OCL constraints in the source metamodel in or-
der to fine-tune this partition analysis and therefore, the generation of
input test data. Our mechanism can be used in isolation, or combined
with other black-box or white-box test generation approaches.

1 Introduction

Model-Driven Engineering (MDE) is a software engineering paradigm that pro-
motes the utilization of models as primary artifacts in all software engineering
activities. When software is developed following a MDE-based approach, models
and model transformations are used to (partially) generate the source code for
the application to be built.

Writing model transformations is a delicate, cumbersome and error-prone
task. In general, MDE-based processes are very sensitive to the introduction
of defects. A defect in a model or a model transformation can be easily propa-
gated to the subsequent stages, thus causing the production of faulty software.
This is especially true when developing systems of great size and complexity,
which usually requires writing large chains of complex model transformations.

In order to alleviate the impact defects can cause, a great deal of effort has
been made to find mechanisms and techniques to increase the robustness of
MDE-based processes. Thus far, these efforts have been centered on trying to
somewhat adapt well-known approaches such as testing or verification to the
reality of models and model transformations of MDE (see [1] or [5] for recent
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surveys). This has resulted in the appearance of a series of testing and verification
techniques, specifically designed to target models or model transformations.

In the particular case of testing model transformations, the current picture
shares a great deal of similarity with that of traditional testing approaches.
Roughly speaking, testing a model transformation consists in first, automatically
generating a set of test cases (henceforth test models), second, exercising the
model transformation using the generated test models as an input, and finally,
checking whether the execution yielded any errors. However, since models are
complex structures conforming to a number of constraints defined in a source
metamodel, the first and third steps are particularly challenging [4,5].

When addressing test models generation, and along the lines of adapting well-
known approaches, expressions such as black-box, white-box or mutation analysis
are also of common application. Actually, the black-box paradigm based on the
analysis of the model transformation specification is the most exploited one and
has given way to a number of techniques (for example [10] or [15]). The objective
here is to analyze the model transformation’s input metamodel, with the intent
of generating a set of test models representative of its instance space, something
known as metamodel coverage. The problem though, is that a metamodel’s in-
stance space is usually infinite, so what the majority of these methods really
do is to use partition analysis to identify non-empty and disjoint regions of the
instance space where models share the same features.

The challenge when using partition analysis is building the best partition
possible. Since one test model is usually created out of each region identified,
partitions should be small enough, so that all the models from the same region
are as homogeneous as possible (meaning that the sample model from that re-
gion can be used to represent all models from that same region and reduce, this
way, the number of test models to use to get a sufficient confidence level on
the quality of the transformation). Existing approaches address this by taking
advantage of the fact that input metamodels usually come in the form of UML
class diagrams complemented with constraints expressed in the OCL (Object
Constraint Language). Therefore, partition analysis focuses on elements like as-
sociation multiplicities, attributes values or OCL constraints to partition the
model. However, in this last case, current approaches tend to be very superficial,
either focusing only on simple OCL constraints, or deriving just obvious regions
that do not require a deep analysis. This limits the representativeness of the
generated test models and also the degree of coverage achieved when dealing
with non-trivial metamodels.

In this paper, we propose a mechanism for the generation of input test mod-
els based on a combination of constraint and partition analysis over the OCL
invariants of the model transformation’s input metamodel. The method covers a
substantial amount of OCL constructs and offers up to three different test model
generation modes. Besides, it can be used in isolation, or combined with other
black-box or white-box approaches to enhance the testing experience.

The paper is organized as follows: Section 2 outlines our proposal. Section 3
focuses on the analysis ofOCL invariants to identify suitable regions of the instance
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space. Section 4 describes the three testmodel generationmodes. Section 5 is about
the implementation of the approach and some scenarios where the tool could be
useful. Section 6 reviews the related work and finally, in Section 7, we draw some
conclusions and outline the future work.

2 Overview of Our Approach

Category-partition testing [16] consists in partitioning the input domain of the
element under test, and then selecting test data from each class in the partition.
The rationale here is that, for the purpose of testing, any element of a class is
as good as any other when trying to expose errors.

According to this philosophy, our approach is depicted in Fig. 1. The model
transformation’s input metamodel characterizes a certain domain, and its in-
stance space, possible inputs for the transformation. In the figure, dashed arrows
indicate what characterizes certain elements, whereas solid arrows are data flows.
When generating test models, the component called “OCL Analyzer” partitions
the metamodel’s instance space by analyzing its OCL invariants (Sections 3 and
4). As a result, a series of new OCL invariants characterizing the regions of the
partition are obtained. This information, along with the input metamodel is then
given to the “Test Model Generator” component, for the actual creation of the
test models (Section 4).

Fig. 1. Overall picture

As mentioned before, the main difference between our approach and other
black-box ones based on partition analysis is the way OCL invariants are ana-
lyzed. Whereas our approach is capable of analyzing the majority of OCL con-
structs in a systematic way, approaches like [10] or [15] build partitions by ex-
ploiting only simple OCL expressions that explicitly constraint the values a given
model element can take. This is because numeric or logical values are an easy
target at the time of identifying regions in the instance space. In what follows,
we compare this type of analysis with our proposal to show that they are, in
many cases, insufficient to derive representative test models.

Fig. 2(a) shows a metamodel describing the relationship between research
teams and the papers they submit for publication. A simple partition analysis
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would try to exploit the presence of a numerical value in the OCL invariant stat-
ing that every team must have more than 10 submissions accepted. However, that
alone is not enough to generate an interesting partitioning. A more fine-grained
analysis of the constraint would reveal that beyond testing the transformation
with teams with more than 10 accepted submissions, you should also test the
transformation with teams with more than 10 accepted submissions and at least
one rejected one. Our method reaches this conclusion by analyzing the “select”
condition in the OCL expression (more details on this later on). Fig. 3 shows the
difference in the output produced by both analyses. Obviously, the second one
exercises more the transformation and therefore may uncover errors not detected
when using only the first one.

(a) (b)

Fig. 2. Metamodels of the examples used throughout the paper

(a) (b)

Fig. 3. Results of two different partition analyses over the metamodel example

3 OCL Analysis

In this section, we begin the description of how to identify partitions in the
input metamodel’s instance space, focusing on the first step: analyzing the OCL
invariants in the input metamodel to generate new OCL invariants characterizing
suitable regions of the instance space. Next section uses these constraints to
create the actual partitions.
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Firstly, we talk about the OCL constructs supported by the method. After
that, we describe how to systematically analyze complex OCL invariants made
up by arbitrary combinations of the supported constructs.

3.1 OCL Constructs Supported

The supported OCL constructs have been classified in five groups and presented
here in tabular form. The first group corresponds to expressions involving the
presence of boolean operators (Table 1). The second group is about expressions
formed by a boolean function operating over the elements of a collection (Table
2). The third group includes those boolean expressions involving the presence
of arithmetic operators (Table 3). The fourth group contains other non-boolean
expressions, that can be part of more complex boolean expressions (Table 4).
Finally, the last group (Table 5) shows equivalent expressions for boolean ex-
pressions from Tables 1, 2 and 3 when they are negated.

Tables 1, 2, 3 and 4 share the same structure. For any given row, the sec-
ond column contains a pattern. Analyzing an OCL invariant implies looking for
these patterns, and every time one of them matches, the information in the third
column indicates how to derive new OCL expressions characterizing suitable re-
gions in the instance space. A dash (-) indicates that no new OCL expressions
are derived. The rationale behind a given pattern and the expressions in the
“Regions” column is simple: the pattern represents the invariant that the model
must hold, and the information in the “Regions” column are more refined ex-
pressions that must also hold when the pattern holds. For example, the entry 1
in Table 1 indicates that the pattern expression holds if the two subexpressions
evaluate to the same value. The subexpressions in the “Regions” column indicate
that there are two possibilities for this: either both are true, or both are false.

Table 5 is slightly different, though, and that has to do with how the method
deals with negated expressions. Each time a negated expression is found, it must
be substituted by an equivalent non-negated expression before any new regions
can be identified. Second column in the table shows boolean expressions from
Tables 1, 2 and 3. The third column contains the equivalents to these expressions
when they are negated. In some cases, the substitution process must be applied
recursively since, for some expressions, the negated equivalent can also contain
negated subexpressions.

3.2 Analyzing OCL expressions

Typically, real-life OCL invariants will be composed by combinations of some of
the patterns described above. In the following we give the intuition of how to
process some of these combined expressions, in particular, those of type source →
operation(argument)1:

1 For the case of more complex expressions, involving boolean (AND, OR, ...) or logical
operators (≤, >, ...), the process is quite the same. However, this full process cannot
be described here due to lack of space.
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Table 1. Expressions Involving Boolean Operators

Pattern Regions

1 BExp1 = BExp2 BExp1 = FALSE AND BExp2 = FALSE
BExp1 = TRUE AND BExp2 = TRUE

2 BExp1 AND BExp2 BExp1 = TRUE AND BExp2 = TRUE

3 BExp1 OR BExp2 BExp1 = FALSE AND BExp2 = TRUE
BExp1 = TRUE AND BExp2 = FALSE
BExp1 = TRUE AND BExp2 = TRUE

4 BExp1 XOR BExp2 BExp1 = FALSE AND BExp2 = TRUE
BExp1 = TRUE AND BExp2 = FALSE

5 BExp1 <> BExp2 BExp1 = TRUE AND BExp2 = FALSE
BExp1 = FALSE AND BExp2 = TRUE

6 Class.BAttr = TRUE Class :: AllInstances() → forAll(c| c.BAttr = TRUE)

7 Class.BAttr = FALSE Class :: AllInstances() → forAll(c| c.BAttr = FALSE)

Table 2. Expressions Featuring Boolean Functions in the Context of a Collection

Pattern Regions

1 col → exists(body) col → forAll(body)
col → exists(NOT body)

2 col → one(body) col → size() = 1
col → size() > 1

3 col → forAll(body) col → isEmpty()
col → notEmpty()

4 col → includes(o) col → count(o) = 1
col → count(o) > 1

5 col → excludes(o) col → isEmpty()
col → notEmpty()

6 col1 → includesAll(col2) col1 → size() = col2 → size()
col1 → size() > col2 → size()

7 col1 → excludesAll(col2) col1 → isEmpty() AND col2 → notEmpty()
col1 → isEmpty() AND col2 → isEmpty()
col1 → notEmpty() AND col2 → notEmpty()
col1 → notEmpty() AND col2 → isEmpty()

8 col → isEmpty() −
9 col → notEmpty() −

1. Find a pattern matching the whole invariant. If not found, end here.

2. Generate the new OCL expressions corresponding to the pattern matched.

3. Find a pattern matching the “source” expression.

4. If found, generate the OCL expressions corresponding to the pattern matched.

5. Repeat the process recursively over the subexpressions in the “source” ex-
pression, until no more matchings are found.

6. Find a pattern matching the “argument” expression.

7. If found, generate the OCL expressions corresponding to the pattern matched.

8. Repeat the process recursively over the subexpressions in the “argument”
expression, until no more matchings are found.



Test Data Generation for Model Transformations 31

Table 3. Boolean Expressions Involving Arithmetic Operators

Pattern Regions

1 col1 → size() = col2 → size() col1 → isEmpty() AND col2 → isEmpty()
col1 → notEmpty() AND col2 → notEmpty()

2 col1 → size() = NUM −
3 col1 → size() <> col2 → size() col1 → size() > col2 → size() AND

col1 → notEmpty() AND col2 → notEmpty()
col1 → size() < col2 → size() AND

col1 → notEmpty() AND col2 → notEmpty()
col1 → isEmpty() AND col2 → notEmpty()
col1 → notEmpty() AND col2 → isEmpty()

4 col → size() <> NUM AND col → size() > NUM
NUM <> 0 col → notEmpty() AND col → size() < NUM

col → isEmpty()

5 col1 → size() >= col2 → size() col1 → isEmpty() AND col2 → isEmpty()
col1 → notEmpty() AND col2 → isEmpty()
col1 → notEmpty() AND col2 → notEmpty()

6 col → size() >= NUM col → size() > NUM
col → size() = NUM

7 col1 → size() > col2 → size() col2 → isEmpty()
col2 → notEmpty()

8 col → size() > NUM −
9 col1 → size() <= col2 → size() col1 → isEmpty() AND col2 → isEmpty()

col1 → isEmpty() AND col2 → notEmpty()
col1 → notEmpty() AND col2 → notEmpty()

10 col → size() <= NUM AND col → size() < NUM
NUM <> 0 col → size() = NUM

col → isEmpty()

11 col1 → size() < col2 → size() col1 → isEmpty()
col1 → notEmpty()

12 col → size() < NUM col → isEmpty()
col → notEmpty()

13 col → count(o) > NUM col → excluding(o) → isEmpty()
col → excluding(o) → notEmpty()

14 col → count(o) = NUM col → excluding(o) → isEmpty()
col → excluding(o) → notEmpty()

15 col → count(o) < NUM col → isEmpty()
col → notEmpty() AND

col → excluding(o) → notEmpty()
col → notEmpty() AND

col → excluding(o) → isEmpty()

16 Class.NumAttr > NUM Class :: AllInstances() →
forAll(c| c.NumAttr > NUM)

17 Class.NumAttr < NUM Class :: AllInstances() →
forAll(c| c.NumAttr < NUM)

18 Class.NumAttr = NUM Class :: AllInstances() →
forAll(c| c.NumAttr = NUM)



32 C.A. González and J. Cabot

Table 4. Other OCL Functions

Pattern Regions

1 col → select(body) col → forAll(body)
col → exists(NOT body)

2 col → reject(body) col → forAll(NOT body)
col → exists(body)

3 col → collect(body) AND col → forAll(body)
body.oclIsTypeOf(boolean) col → exists(NOT body)

4 col1 → union(col2) col1 → isEmpty() AND col2 → isEmpty()
col1 → isEmpty() AND col2 → notEmpty()
col1 → notEmpty() AND col2 → notEmpty()
col1 → notEmpty() AND col2 → isEmpty()

5 col1 → intersection(col2) col1 = col2
col1 → includesAll(col2) AND

col1 → size() > col2 → size()
col2 → includesAll(col1) AND

col2 → size() > col1 → size()
col1 <> col2

6 col → excluding(o) col → isEmpty()
col → notEmpty()

7 col → subsequence(l, u) col → size() = u − l
col → size() > u − l

8 col → at(n) col → size() = n
col → size() > n

9 col → any(body) col → forAll(body)
col → exists(NOT body)

9. Once the matching phase finishes, every constraint from each matching group
is AND-combined with each one in the rest of the groups. This way, the
final list of OCL expressions is obtained. Each of these OCL expressions
characterizes a region of the input metamodel’s instance space.

As an example, Fig. 2(b) shows another version of the metamodel describing the
relationship between research teams and the papers they submit. It includes two
OCL invariants. The first one states that the members of a team do not review
their own papers, and the second one says that at least one of the teams must
have at least one submission.

The analysis starts with the first invariant. It features a “forAll” operation
matching entry 3 in Table 2. That entry says that the instance space can be
divided in two regions. The region of models with no teams, and the one of
models with any number of teams except zero. They can be characterized as:

Team::AllInstances()–>isEmpty() (A1.1)

Team::AllInstances()–>notEmpty() (A1.2)

Now, a pattern matching the “argument” of the “forAll” operation is searched.
Entry 6 in Table 2 matches. Since the expression is embedded as the argument
of a higher level operator, its context must be identified to build the new OCL
expressions properly. By doing this, the following OCL constraints are obtained:
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Table 5. Boolean Expressions And Their Negated Equivalents

Pattern Negated Equivalent

1 BExp1 = BExp2 BExp1 <> BExp2
2 BExp1 AND BExp2 NOT BExp1 OR NOT BExp2
3 BExp1 OR BExp2 NOT BExp1 AND NOT BExp2
4 BExp1 XOR BExp2 BExp1 = BExp2
5 col1 → exists(body) col1 → forAll(NOT body)

6 col1 → one(body) col1 → select(body) → size() <> 1

7 col1 → forAll(body) col1 → exists(NOT body)

8 col1 → includes(o) col1 → excludes(o)

9 col1 → isEmpty() col1 → notEmpty()

10 col1 → size() = col2 → size() col1 → size() <> col2 → size()

11 col1 → size() > col2 → size() col1 → size() ≤ col2 → size()

12 col1 → size() < col2 → size() col1 → size() ≥ col2 → size()

13 col → size() ≤ NUM AND NUM <> 0 col → size() > NUM

14 col → size() <> NUM AND NUM <> 0 col → size() = NUM

15 col → size() = NUM (col → size() > NUM) OR
(col → size() < NUM)

16 col → size() > NUM (col → size() = NUM) OR
(col → size() < NUM)

17 col → count(o) > NUM (col → count(o) < NUM) OR
(col → count(o) = NUM)

18 col → count(o) = NUM (col → count(o) < NUM) OR
(col → count(o) > NUM)

19 col → count(o) < NUM (col → count(o) = NUM) OR
(col → count(o) > NUM)

20 Class.NumAttr > NUM (Class.NumAttr < NUM) OR
(Class.NumAttr = NUM)

21 Class.NumAttr < NUM (Class.NumAttr > NUM) OR
(Class.NumAttr = NUM)

22 Class.NumAttr = NUM (Class.NumAttr < NUM) OR
(Class.NumAttr > NUM)

Team::AllInstances()–>forAll(t|t.papersReviewed–>isEmpty()

and t.papersSubmitted–>NotEmpty()) (A2.1)

Team::AllInstances()–>forAll(t|t.papersReviewed–>isEmpty()

and t.papersSubmitted–>isEmpty()) (A2.2)

Team::AllInstances()–>forAll(t|t.papersReviewed–>NotEmpty()

and t.papersSubmitted–>NotEmpty()) (A2.3)

Team::AllInstances()–>forAll(t|t.papersReviewed–>NotEmpty()

and t.papersSubmitted–>isEmpty()) (A2.4)

With this, the matching phase over the first invariant is over. The rest of elements
in the invariant do not match any pattern. Now, the resulting two groups (A1.X
and A2.X) must be combined. This produces the following list of expressions:
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Team::AllInstances()–>isEmpty() and Team::AllInstances()–>forAll(t|
t.papersReviewed–>isEmpty() and t.papersSubmitted–>NotEmpty()) (A3.1)

Team::AllInstances()–>isEmpty() and Team::AllInstances()–>forAll(t|
t.papersReviewed–>isEmpty() and t.papersSubmitted–>isEmpty()) (A3.2)

Team::AllInstances()–>isEmpty() and Team::AllInstances()–>forAll(t|
t.papersReviewed–>NotEmpty() and t.papersSubmitted–>NotEmpty()) (A3.3)

Team::AllInstances()–>isEmpty() and Team::AllInstances()–>forAll(t|
t.papersReviewed–>NotEmpty() and t.papersSubmitted–>isEmpty()) (A3.4)

Team::AllInstances()–>notEmpty() and Team::AllInstances()–>forAll(t|
t.papersReviewed–>isEmpty() and t.papersSubmitted–>NotEmpty()) (A3.5)

Team::AllInstances()–>notEmpty() and Team::AllInstances()–>forAll(t|
t.papersReviewed–>isEmpty() and t.papersSubmitted–>isEmpty()) (A3.6)

Team::AllInstances()–>notEmpty() and Team::AllInstances()–>forAll(t|
t.papersReviewed–>NotEmpty() and t.papersSubmitted–>NotEmpty()) (A3.7)

Team::AllInstances()–>notEmpty() and Team::AllInstances()–>forAll(t|
t.papersReviewed–>NotEmpty() and t.papersSubmitted–>isEmpty()) (A3.8)

With this, the analysis of the first invariant is finished. The analysis of the second
invariant is analogous and yields the constraints in the group B1.X.

Team::AllInstances()–>forAll(t|t.papersSubmitted–>notEmpty()) (B1.1)

Team::AllInstances()–>exists(t|not t.papersSubmitted–>notEmpty()) (B1.2)

Putting all together, the analysis of the two invariants in the model of Fig. 2(b)
yielded the groups of constraints A3.X and B1.X, respectively. Each constraint
in these groups characterizes a region of the instance space. They will be the
input for the test model generation phase, described in the next section.

Finally, it is important to mention that the analysis of OCL invariants is not
free from inconveniences. From the example, it can be easily seen that some
of the generated constraints could be simplified (for example in A.3.1, if there
are no “Team” instances, then there is no need to check the subexpression at
the right of “and”). More importantly, some of the constraints produced in the
combination stage could be inconsistent. These problems can be addressed in
two different ways: adding a post-processing stage at this point to “clean” the
constraints obtained, or addressing them directly during the test model creation
stage (our preferred alternative, as we explain in the next section).

4 Partition Identification and Test Models Generation

This section details the identification of partitions and the generation of test
models from the sets of constraints obtained in the previous step. Our approach
provides three different alternatives depending on the effort the tester wants to
invest to ensure the absence of overlapping test models.

4.1 Simple Mode

As shown before, the analysis of one OCL invariant yields a list of new OCL
expressions, each one characterizing a region of the instance space. It cannot
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be guaranteed though, that these regions do not overlap (i.e. that they consti-
tute a partition). Looking back at the example, this means that the regions in
A3.X might overlap, and the same goes for the regions in B1.X (we have two
groups here because we had analyzed two invariants). Fig. 4(a) and 4(b) illus-
trate the best- and worst-case scenarios when three regions are identified from
the analysis of a given invariant. In the worst case, a generated test model to
cover, for example, region 4, could indeed “fall into” this area, or in any of the
adjacent overlapping areas labeled with a question mark (?). In this situation,
when regions overlap, it is likely that generated test models do it as well.

Ensuring that a number of regions do not overlap requires additional effort,
but in “Single Mode”, no further effort to identify partitions is made. It simply
runs the test model generator over the regions that were identified in the OCL
analysis, each time passing the input metamodel (and its OCL invariants), and
one of the OCL expressions characterizing these regions. It represents a cheaper
way (compared to the other alternatives) of creating test models without ensur-
ing that they will not overlap. Running “Single Mode” over the example of Fig.
2(b) consists in invoking the model generator for each of the OCL expressions
in A3.X and B1.X.

(a) (b) (c)

(d) (e) (f)

Fig. 4. Overlapping and partitions when generating test models

4.2 Multiple-Partition Mode

Given the set of OCL expressions obtained from the analysis of one OCL in-
variant, “Multiple-Partition Mode” produces a new set of OCL expressions that
constitute a partition (i.e. do not overlap each other) of the instance space.

In general, if the analysis of one OCL invariant yields “n” regions, a partition
can be derived, with a number of regions somewhere in the interval [n, 2n - 1].
Although the exact number depends on how the original “n” regions overlap
each other, justifying the lower and upper bounds is rather simple. To show this,
we will focus on the particular case of n = 3 and refer to the OCL expressions
characterizing these regions as Bi, i = 1..3.

The lowerboundcorresponds to thebest-case scenario (Fig. 4(a))where the orig-
inal “n” regions do already constitute a partition. The upper bound corresponds
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to the worst-case scenario (Fig. 4(b)) where the “n” regions overlap each other. In
this case, it is possible to derive a partition (Fig. 4(d)) with 7 regions, characterized
by the following OCL expressions:

– D4 = B4 AND NOT B5 AND NOT B6

– D5 = B5 AND NOT B4 AND NOT B6

– D6 = B6 AND NOT B4 AND NOT B5

– D7 = B4 AND B5 AND NOT B6

– D8 = B4 AND B5 AND B6

– D9 = NOT B4 AND B5 AND B6

– D10 = B4 AND NOT B5 AND B6

That is, all the combinations of three elements (the initial number of regions)
that can take two different states (to overlap, not to overlap), excepting:

– NOT B5 AND NOT B4 AND NOT B6

which is not representative of any region, since it falls out of the instance space.
Generalizing for the case of “n” regions, the upper limit of 2n - 1 is obtained.

Running “Multiple-Partition Mode” over the example of Fig. 2(b) consists in
first, creating all the combinations of the OCL expressions in the groups A3.X
and B1.X, and then invoking the model generator to process each of them. The
combination of the expressions in A3.X yields a list of 255 new expressions, so
only the results of combining the OCL expressions in B1.X are shown.

Team::AllInstances()–>forAll(t|t.papersSubmitted–>notEmpty()) and

Team::AllInstances()–>exists(t|not t.papersSubmitted–>notEmpty()) (B2.1)

not Team::AllInstances()–>forAll(t|t.papersSubmitted–>notEmpty()) and

Team::AllInstances()–>exists(t|not t.papersSubmitted–>notEmpty()) (B2.2)

Team::AllInstances()–>forAll(t|t.papersSubmitted–>notEmpty()) and not

Team::AllInstances()–>exists(t|not t.papersSubmitted–>notEmpty()) (B2.3)

4.3 Unique-Partition Mode

Applying “Multiple-Partition Mode” guarantees that the regions obtained for
each OCL invariant do not overlap each other. However, if the input metamodel
has more than one invariant, regions in the partition for one invariant might over-
lap regions in the partitions of the rest of invariants. “Unique-Partition Mode”
guarantees that regions do not overlap each other, no matter where they come
from. Therefore, in “Unique-Partition Mode” only one partition is characterized,
regardless of the number of OCL invariants of the input metamodel. This can be
easily seen with an example. If Fig. 4(c) and Fig. 4(d) were the partitions pro-
duced by “Multiple-Partition Mode” for two invariants, when putting together,
they would overlap as shown in Fig. 4(e). In this scenario “Unique-Partition
Mode” would yield the partition of Fig. 4(f).

Applying “Unique-Partition Mode” is a simple three-step process: First,
“Multiple-Partition Mode” is applied over each invariant. After that, the lists
of OCL expressions characterizing the regions in each partition are merged to-
gether to form one big list. Finally “Multiple-Partition Mode” is applied over
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that list, to generate the final partition. Applying this mode over the example
of Fig. 2(b) consists in merging the results of “Multiple-Partition Mode” shown
before (255 + 3 = 258 OCL expressions) into one big list and run another itera-
tion of “Multiple-Partition Mode” over that list. Clearly, the main problem for
the practical utilization of this approach could be the combinatorial explosion
in the number of regions conforming the final partition.

4.4 Creating Test Models

After having described how partitions are generated, the last step is the cre-
ation of the actual test models. Without regard of the generation mode selected,
this is a pretty straightforward process. When fed with the input metamodel
(and its OCL invariants) and an OCL invariant characterizing one region of the
input space, the “Test Model Generator” component (Fig. 1) tries to build a
valid instance of the input metamodel, that also satisfies this additional OCL
constraint. The whole set of test models is obtained by repeating this process as
many times as regions were found.

In practical terms, we use a separate tool called EMFtoCSP2 for that. This
tool is capable of looking for valid instances of a given metamodel enriched or not
with OCL constraints. One of its nicest features is that it transforms the problem
of finding a valid instance into a Constraint Satisfaction Problem (CSP). This
is especially convenient to address the issues mentioned at the end of Section
3. For example, when presented with an infeasible combination of constraints,
EMFtoCSP can dismiss it, yielding no test model.

5 Implementation and Usage Scenarios

We have implemented an Eclipse3-based tool that can generate test models fol-
lowing any of the three generation modes exposed before. It can be downloaded
from http://code.google.com/a/eclipselabs.org/p/oclbbtesting/ where the user
will find all the necessary information for its installation and usage.

When used in isolation, the tool produces models to cover the instance space of
the transformation’s input metamodel, out of the OCL invariants of that meta-
model. Since graphical constraints in a model, like associations, multiplicities,
etc can also be expressed in the form of OCL invariants, as detailed in [11], the
tool could also be used to derive test models out of these graphical constraints.

There may be occasions though, in which it is convenient to focus only on
specific sections of the input metamodel: the model transformation could only
“exercise” a part of the input metamodel, or the tester could only be interested on
a specific part of the transformation. In the first case, the tool could be combined
with approaches capable of identifying what the relevant sections of the input
metamodel are, like for example [10]. In the second case, if the preconditions
that trigger specific parts of the model transformation are expressed in such a

2 http://code.google.com/a/eclipselabs.org/p/emftocsp/
3 http://www.eclipse.org
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http://www.eclipse.org
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way, that new OCL invariants in the context of the input metamodel can be
derived, then these new invariants could be used to limit the generation of test
models to those regions of the instance space triggering the sections of the model
transformation that are of interest. This could be exploited even further, to allow
the generation of test models aimed at satisfying different coverage criteria over
the transformation [13].

Finally, the tool could also be useful to complement others that lack the ability
to generate test models out of OCL invariants, or do it in a limited way.

6 Related Work

Although not related to model transformation testing, to the best of our knowl-
edge, the first attempt of using partition analysis to derive test models out of
UML class diagrams was made by Andrews et al. [3]. In this work, partition
analysis is employed to identify representative values of attributes and associ-
ation ends multiplicities to steer the generation of test models. However, OCL
invariants are analyzed only in the context of how they restrict the values an
individual attribute can take. This represents only a portion of the analysis of
OCL invariants presented in this paper. Andrews et al. served as inspiration for
the black-box test model generation approach proposed by Fleurey et al. [10,7]
where the partition analysis of [3] is used to identify representative values of the
model transformation input metamodel.

The work of Fleurey et al. influenced a number of proposals in this field as well.
Lamari [15] proposed a tool for the generation of the effective metamodel out of
the specification of a model transformation. Wang et al. [19] proposed a tool for
the automatic generation of test cases, by deriving the effective metamodel and
representative values out of model transformations rules. Sen et al. [17] presented
a tool called “Cartier” for the generation of test cases based on the resolution
of a SAT problem by means of Alloy4. The SAT problem is built, among other
data, out of some model fragments obtained out of a partition analysis of the
input metamodel. Since these works are more/less based on the partition analysis
technique proposed in [3] the comments made there apply here as well.

Also based on the utilization of constraints solvers are the works of Fiorentini
et al. [9] and Guerra [13]. In [9], a logic encoding of metamodels expressed in
the MOF5 language is proposed. The encoding is then exploited by means of a
constraint solver, although OCL does not seem to be supported. [13] presents
a framework for specification-driven testing, that can be used to generate a
complete test suite. It works by transforming invariants and preconditions from
the model transformation specification into OCL expressions, that are then fed
to a constraint solver.

To finish with black-box approaches, Vallecillo et al. [18] presented a proposal
based on the concept of Tract (a generalization of the concept of model transfor-
mation contract [4,8]), where test models are generated by means of a language

4 http://alloy.mit.edu/alloy/
5 http://www.omg.org/spec/MOF/
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called ASSL, part of the USE tool6. In this approach, the characteristics of the
test models to be generated, seem to be explicitly indicated beforehand in the
ASSL scripts, whereas in our approach that information is derived automatically
from the analysis of the OCL invariants of the input metamodel.

Compared to the number of black-box test model generation proposals, the
number of existing white-box approaches is rather small. Fleurey et al. [10] com-
plemented their black-box approach by proposing the utilization of the trans-
formation definition to identify relevant values and the effective metamodel, al-
though not mention of OCL is made. Küster et al. [14] proposed three different
test model generation techniques following a white-box approach, although an
automatic way of building test models out of OCL constraints is not included.
Finally, the approach more similar to our work is [12], where test models are
characterized by a series of OCL constraints obtained out of the analysis of the
model transformation internals.

Finally, test case generation through partition analysis, has also been object
of study in the area of model-based testing. Examples of this are [20,6,2].

7 Conclusions

The generation of test models by means of black-box approaches based on parti-
tion analysis has largely ignored the valuable information in the OCL constraints.
This limits the test generation process and consequently, the degree of coverage
achieved over the input metamodel. In this paper, we have presented a black-
box test model generation approach for model transformation testing, based on
a deep analysis of the OCL invariants in the input metamodel of the transfor-
mation. Our method can be configured to be used at three different levels of
exhaustiveness, depending on the user’s needs. A tool supporting the process
has been implemented, and it can be used in isolation or combined with other
test model generation approaches. It can also be useful to generate test models
at different degrees of coverage.

In the future, we want to expand our method so that it could be used not
only for model transformation testing (where all input models are always as-
sumed to be valid metamodel instances) but also for faulty testing (i.e. to test
software implementations that should be able to deal appropriately with wrong
models). Additionally, we would also like to improve the way OCL expressions
characterizing regions of the instance space are generated, to reduce the number
of spurious or infeasible combinations produced.
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40 C.A. González and J. Cabot

3. Andrews, A.A., France, R.B., Ghosh, S., Craig, G.: Test adequacy criteria for UML
design models. Software Testing, Verification and Reliability 13(2), 95–127 (2003)

4. Baudry, B., Dinh-Trong, T., Mottu, J.M., Simmonds, D., France, R., Ghosh, S.,
Fleurey, F., Traon, Y.L.: Model transformation testing challenges. In: ECMDA
Workshop on Integration of Model Driven Development and Model Driven Testing
(2006)

5. Baudry, B., Ghosh, S., Fleurey, F., France, R.B., Traon, Y.L., Mottu, J.M.: Barriers
to systematic model transformation testing. Comm. of the ACM 53(6), 139–143
(2010)

6. Bernard, E., Bouquet, F., Charbonnier, A., Legeard, B., Peureux, F., Utting, M.,
Torreborre, E.: Model-based testing from UML models. In: Informatik 2006. LNI,
vol. 94, pp. 223–230. GI (2006)

7. Brottier, E., Fleurey, F., Steel, J., Baudry, B., Traon, Y.L.: Metamodel-based test
generation for model transformations: An algorithm and a tool. In: 17th Int. Sym-
posium on Software Reliability Engineering, ISSRE 2006, pp. 85–94. IEEE (2006)

8. Cariou, E., Marvie, R., Seinturier, L., Duchien, L.: OCL for the specification of
model transformation contracts. In: OCL and Model Driven Engineering Workshop
(2004)

9. Fiorentini, C., Momigliano, A., Ornaghi, M., Poernomo, I.: A constructive approach
to testing model transformations. In: Tratt, L., Gogolla, M. (eds.) ICMT 2010.
LNCS, vol. 6142, pp. 77–92. Springer, Heidelberg (2010)

10. Fleurey, F., Steel, J., Baudry, B.: Validation in model-driven engineering: Testing
model transformations. In: 1st Int. Workshop on Model, Design and Validation,
pp. 29–40 (2004)

11. Gogolla, M., Richters, M.: Expressing UML class diagrams properties with OCL.
In: Clark, A., Warmer, J. (eds.) Object Modeling with the OCL. LNCS, vol. 2263,
pp. 85–114. Springer, Heidelberg (2002)
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