
Autom Softw Eng (2008) 15: 379–391
DOI 10.1007/s10515-008-0035-7

Personal reflections on automation, programming
culture, and model-based software engineering

Bran Selic

Received: 21 July 2008 / Accepted: 1 August 2008 / Published online: 3 September 2008
© Springer Science+Business Media, LLC 2008

Abstract Model-based software engineering (MBSE) is an approach to software de-
velopment characterized in part by significantly greater levels of automation when
compared to more traditional development methods. Computer-based tools play
a fundamental role in a number of key aspects of development, including author-
ing support (many MBSE languages are predominantly visual), automatic or semi-
automatic verification, automated translation of specifications into corresponding
programs, and so on.

Given the historical precedents, such as the introduction of compilation technol-
ogy, there is little doubt that automation, when properly conceived and realized, can
dramatically increase the productivity of software developers and improve the qual-
ity of their software. Therefore, it is natural to assume that MBSE would quickly
become the dominant form of software development, similar to the rapid adoption of
computer-aided design approaches for hardware. Yet, this has not been the case.

In this opinion-based article, derived from the author’s long-term experience with
MBSE and its application in industry, we examine the causes behind this seemingly
paradoxical situation.

Keywords Model-driven development · Computer-aided software engineering ·
Psychology of programming · Usability · Computer automation · Software tools

1 Introduction

The use of computer technology in support of software design and development dates
back to the earliest days of programming. It is an obvious fit, given that the computer
is, in effect, the ultimate automation machine and that the primary artifacts of the

B. Selic (�)
Malina Software Corp., 10 Blueridge Court, Nepean, Ontario, Canada K2J 2J3
e-mail: selic@acm.org

mailto:selic@acm.org

380 Autom Softw Eng (2008) 15: 379–391

development process are themselves stored, manipulated, and executed on comput-
ers. Computer-based automation has been used for a variety of functions related to
software development including compilation, program linking and loading, source
program creation and editing, version management, debugging, verification, docu-
mentation, and so on. Of these, perhaps the most significant in terms of greatest
impact on productivity and quality, is compilation. The introduction of compilers
enabled so-called high-level programming languages (also referred to sometimes as
third-generation languages), which reduced the complexity involved in program de-
sign by eliminating the need for program writers to concern themselves with many
technology-specific details. This not only made it possible to port a given program to
a different machine with little or no modification, but, more importantly, it also al-
lowed programs to be specified using concepts and constructs that were much closer
to human understanding and to the problem domain.

These important benefits were quickly recognized and the vast majority of practi-
tioners switched from low-level to high-level language programming in a relatively
short period of time. Furthermore, programming became more approachable, leading
to an increase in the number of both programmers and applications.

Still, as demand grew for ever more complex and diverse computer applications,
the abstraction level provided by common third-generation programming languages
such as C, Fortran, or Basic proved inadequate despite numerous incremental im-
provements to these languages. Specifically, the basic constructs provided by these
languages were often found to be too fine grained to allow direct and clear expres-
sion of the more complex and domain-specific concepts and relationships of many
software applications (i.e., their architecture).

This naturally led to a further elevation of the abstraction level of software spec-
ifications, through use of higher-order1 formalisms, such as finite state machines or
entity-relationship structures. (It is worth noting here that many of these formalisms
were inherently graphical in nature, since graphical renderings are often more effec-
tive in describing certain types of structures and relationships compared to text.) The
use of such higher-level formalisms has now become standard practice in the analysis
and design of complex software systems.

However, although there is obvious similarity here to the shift in abstraction lev-
els that took place during the switch from second- to third-generation languages
and despite the fact that higher-level implementation languages, such as ROOM
(Selic et al. 1994), Statemate (Harel et al. 1990), or SDL (Ellsberger et al. 1997),
have been around for decades, there has not been a comparable massive adoption
of more modern implementation practices and technologies. This has resulted in a
widening semantic gap between software design specifications, which are typically
expressed using higher-level formalisms, and their corresponding implementations,
which are usually specified using third-generation programming languages. Although
there have been numerous advances in programming languages over the past three
decades, the essential level of abstraction (and, consequently, the expressive power)

1What makes them higher order is that they express problem domain concepts more directly and more
succinctly and abstract out even more of the underlying implementation technology.

Autom Softw Eng (2008) 15: 379–391 381

of today’s dominant implementation languages, such as Java, C++, or C#, is not sig-
nificantly greater than that of the earliest third-generation languages. That is, it is
almost as difficult to discern the high-level architectural form and key design princi-
ples of a program written in Java as it would be if the same program were written in
Fortran or Cobol.

Needless to say, this discrepancy in abstraction causes problems that are often
very difficult to overcome. There is the obvious risk that, in the process of informally
translating high-level specifications into programs, errors will be introduced such that
the implementation does not accurately capture design intent. On the other hand, it
is also possible that, in ignoring key implementation concerns, a high-level design
specification could prescribe inefficient and even infeasible systems. To minimize
the likelihood of such pitfalls, complex software systems are best designed through
some type of iterative and incremental process, in which analysis, design, and im-
plementation activities proceed either in parallel or cyclically follow each other in
quick succession. The wider the abstraction gap between the concepts used in these
activities the more difficult it is to iterate between them.

The use of computer-based automation to assist in bridging the semantic gaps in
this process seems like an obvious choice. In fact, there have been numerous initia-
tives to introduce such automation into software development, starting with so-called
fourth-generation languages, through computer-aided software engineering (CASE)
tools, to the current model-based software engineering (MBSE). Let us examine each
of these in turn.

2 Fourth-generation computer languages

These languages (often referred to as 4GL) are high-level languages specialized for
a specific application domain or purpose. An early example of a 4GL is the Re-
port Program Generator (RPG) language (International Business Machines 1964), a
declarative language used to generate reports from databases. It proved highly ef-
fective for its intended purpose, greatly reducing development time compared to
equivalent imperative-style programs written in a language such as Cobol. Many
other 4GLs, including notably SQL (for database queries) (Chamberlin and Boyce
1974), MATLAB (for mathematical and dynamic system modeling) (MathWorks
2008), and SPSS (for statistical analysis) (SPSS Inc 2006), have been defined and
proven successful over time. The current focus on domain-specific (modeling) lan-
guages (DSLs) is simply the latest manifestation of this trend (Greenfield et al. 2004;
Mernik et al. 2005).

The primary drawback of 4GLs stems from the very same characteristic that makes
them successful: their highly-specialized nature. Because they have a limited scope
of application, these languages appeal to a limited user base. This usually implies
that it much less cost effective to build highly sophisticated automation support for
such languages compared to the much more common general-purpose programming
languages. More often than not, tools to support these languages are either custom
built in-house tools or provided by a small number of specialized vendors (often just
one). In-house tools mean dedicating development and other resources to tool support

382 Autom Softw Eng (2008) 15: 379–391

and evolution, resources that come at the expense of core business. On the other hand,
tools that are supported by a small number of vendors are typically more expensive
and often carry a high risk that either the vendor or the tools may be discontinued.
Furthermore, highly specialized tools and languages require specialized training and
skills that are more difficult to come by on the open market, implying higher training
costs.

In contrast, there is a plethora of excellent and diverse development tools that
support common general purpose programming languages. These tools are produced
and supported by both vendors who specialize in such tools as well as by the open
source movement. Competitive pressures as well as the altruistic motives behind open
source ensure that these tools are constantly improving while their cost keeps drop-
ping (many are available for free). The economies of scale simply do not allow an
equivalent situation to develop for 4GLs. (This is a factor that is unfortunately often
overlooked in recent discussions about the advantages of DSLs.)

3 CASE tools

CASE tools were inspired by the undeniable success of computer-aided design (CAD)
tools, which introduced high levels of automation in hardware design. CASE tools
represent an early initiative to directly translate higher-level formalisms used in
analysis and design of software systems into equivalent code—an idea that seems
beyond reproach. They not only helped with the production of various analysis
and design diagrams but also typically supported some form of automated or semi-
automated code generation from them. Unfortunately, CASE tools never came close
to matching the success of their hardware counterparts. In fact, they are now fre-
quently cited as a paradigmatic example of yet another technology that promised a
breakthrough which it failed to deliver.

There are several reasons behind the “failure”2 of CASE that are worth examining
in detail, since they hold lessons to be learned for any current or future attempts
to bridge the gap between design and implementation by means of computer-based
automation.

One prominent obstacle lies in the qualitative differences between design and im-
plementation. Design, particularly in its early phases, is best done in unconstrained
circumstances, where ideas can form, unfettered by the constraints of pedantic preci-
sion and formality. Consequently, most of the design languages supported by CASE
tools tended to support formalisms that were imprecise and informal. Implementation
languages, on the other hand, must necessarily be unambiguous and highly formal
since they have to be translated deterministically and precisely into deterministic and
precise program code. Therefore, any program code generated from such formalisms
were incomplete and needed to be supplemented with programmer-written code, that
removed any ambiguity and also added missing implementation-level detail. This,
unfortunately, breaks the formal link between the code and the specification from

2The quotation marks are there since, in my opinion, CASE was not a failure; these tools were a necessary
but insufficient step towards more modern and more effective technologies based on the same premises.

Autom Softw Eng (2008) 15: 379–391 383

which it was derived. The added code can subvert or even contradict the original de-
sign goals either by accident or by intent. At that point, it may no longer be possible to
automatically revert to the high-level formalism—thereby impeding or even blocking
further iterative development.

There have been numerous attempts to get around this problem using a process
known as round-trip engineering (RTE). In this process, the code is reverse engi-
neered into a corresponding high-level specification. However, the most common
outcome of this process is gradual deterioration of the high-level specification to a
one-to-one graphical representation of the low-level code.3 In such cases, much of
the value stemming from a high-level representation is eroded.

Furthermore, the code that was generated by CASE tools was often either triv-
ial (thereby providing little true value to developers) or of poor quality compared to
hand-crafted code. Part of this is due to the fact that there was little or no theoret-
ical understanding of or experience with how to best generate code from graphical
formalisms.

Another problem with early CASE tools was due to the overabundance of dif-
ferent high-level formalisms that emerged at the time when CASE tools were being
introduced. For example, in the early 90’s, there were close to a hundred published
analysis and design languages (Graham 2001). Individual CASE tools would typi-
cally support some subset of these, but rarely more than a few. This forced users into
the vendor lock-in problems already discussed for 4GLs.

In summary, CASE tools simply did not provide enough value to either the design-
ers or the implementers to justify more widespread dedicated use. Most CASE tool
vendors disappeared or were absorbed by other vendors with a broader perspective
on model-based software engineering (MBSE).

4 Model-based4 software engineering (MBSE)

In a sense, MBSE is simply a continuation of the CASE approach. However, there has
been a significant context shift since the early days of CASE, which makes MBSE
significantly more viable. Specifically:

• There has been considerable progress in the underlying technologies. This in-
cludes, notably, more powerful computing hardware (performance, memory capac-
ity) as well as advances in modeling language design (the use of meta-modeling
approaches), automated code generation methods, and software tooling (the intro-
duction of tool frameworks such as Eclipse (Eclipse Foundation 2008)). In general,

3To be precise, RTE is still used in many places, but primarily as an implementation assist facility rather
than a high-level analysis and design tool.
4The terms model-driven development or model-driven engineering are more commonly encountered.
However, I feel they are rather misleading. Namely, even though models play a first-order role in this
approach, they do not really drive development, but are merely a by-product of the development process
(as they are in any engineering process). Furthermore, there is a danger that, through such narrow
labelling, other equally important aspects and styles of development (such as test-driven development,
requirements-driven development, etc.) may be neglected or, worse, deemed as incompatible rather than
complementary.

384 Autom Softw Eng (2008) 15: 379–391

as our experience with the design and use of modeling languages grows there is a
corresponding increase in our understanding of both the solutions and the problems
that accompany them. (Still, it is fair to say that MBSE is still far from being an
established engineering discipline, that is, one based on well-understood scientific
and technical foundations.)

• The emergence and widespread adoption of a number of key industry standards,
most notably the Object Management Group’s Unified Modeling Language (UML)
(Object Management Group 2007a), which has greatly reduced the problem of the
gratuitous profusion of different high-level modeling languages and notations.

Much has been written about MBSE and what characterizes it (e.g., Object Manage-
ment Group 2003; Frankel 2003; Greenfield et al. 2004; Mellor et al. 2004). There is
a lot of discussion about platform-independent models (PIMs) and platform-specific
models (PSMs), meta-modeling, domain-specific modeling languages, model trans-
forms, etc. In this author’s opinion, the core idea of MBSE can be reduced to two
fundamental notions that we have already discussed:

1. Raising of the level of abstraction; that is, raising the level of software specifica-
tions even further away from underlying implementation technologies (relative to,
say, traditional programming languages) and

2. Raising the degree of computer-based automation used to bridge the widening gap
between design specifications and corresponding implementations.

In most engineering practice, the term “model” is used to denote an abstract repre-
sentation of some concrete engineering or other artifact—something that abstracts out
uninteresting detail. This could be a mathematical model or a scale model, or some
other type of model, but in all cases it is distinct from the real-world entity that it rep-
resents. However, in the context of MBSE, “model” is often used as a generic term to
denote any specification expressed using a higher-level formalism, whether it is an ab-
straction that omits detail or a fully-fledged implementation specification from which
a complete executable program can be auto-generated. This peculiar practice can be
traced to the unique nature of MBSE, in which the final development artifact can, in
principle, be the result of a series of incremental refinements of successive high-level
specifications. In the course of this process, the same language, tools, medium, meth-
ods, and expertise can be used throughout, thereby avoiding the qualitative discon-
tinuities that characterize practically every other form of engineering development.
Clearly, such a process, if properly supported by automation, has a much greater like-
lihood of ensuring preservation of the original design intent. Furthermore, with suit-
able computer-automated transforms, it is always possible to reduce a fully-detailed
implementation model into a more abstract form which is easier to comprehend and
which makes it easier to detect any unintended or undesirable design modifications.

Note that, during the early phases of this continuous process, it is useful to keep
the level of precision and formality relatively low, allowing a freer (and looser) ex-
pression of design ideas. As the process progresses, the degree of formality and con-
sistency checking should be increased correspondingly, until, in the final phases, it
is equivalent to the degree of formality associated with programming languages.
This requirement to support progressively increasing levels of formality is one im-
portant feature that distinguishes good modeling languages from most programming

Autom Softw Eng (2008) 15: 379–391 385

languages. This same capability also differentiates good MBSE design tools from
traditional programming tools.

5 Pragmatic issues with computer automation in MBSE

It is evident from the above description that MBSE is not practical without ef-
fective computer-based automation. And, although there are numerous examples
of successful applications of MBSE in large industrial software projects, real-
ized using the current generation of MBSE tools (cf. Weigert and Weil 2006;
Nunes et al. 2005), the state of the art of MBSE tools leaves much to be desired.
In particular, it is my opinion that most MBSE tools suffer from a number of serious
deficiencies:

• Usability problems. The key issue here is the accidental5 complexity of these tools.
Undoubtedly, the infrastructure required to support MBSE, with its innovative but
uncommon graphical languages, sophisticated model transforms, automatic code
generation capabilities, etc., is inherently more complex than the infrastructure re-
quired for traditional text-based programming languages. It requires more effort to
set up and tune to a particular production environment requires significant effort.
However, on top of this essential complexity, the vast majority of current MBSE
tools adds gratuitous complexity and provides mostly token support to help users
cope. Thus, the interfaces of these tools are generally not based on any deep study
of standard usage patterns or expert knowledge of human psychology. The typi-
cal MBSE design tool offers its capabilities via multiple overlapping categories of
menu items grouped in unintuitive ways. In an often naive and simplistic interpre-
tation of principles of GUI design, garnered mostly through ad hoc learning rather
than systematic study, bizarre and confusing icons and graphics abound, suppos-
edly providing an intuitive interface, but more often achieving the opposite effect.
For users, understanding what such a tool can do and how to do it requires major
expenditures of time and effort—time and effort that should have been more valu-
ably expended on solving the application problem at hand. Thus, tools, which are
intended to boost productivity, can actually reduce it.

My perception from observing development teams is that usability is still a
second-order concern in the design of the vast majority of software tools. It is often
incorrectly interpreted as merely a matter of providing a “fancy” user interface.6

Therefore, usability experts, if consulted at all, are typically asked to comment and
advise on the look and feel of a tool’s interface long after the architecture of a tool
has been set.

5In his insightful book on the nature of software, The Mythical Man-Month (Brooks 1995), Fred Brooks
Jr., categorizes accidental complexity as that which is not an essential part of a problem but is the result of
artificial barriers imposed due to lack of foresight or reflection.
6Of course, user interface design is an important aspect of usability, but certainly not the only one. Us-
ability has to do with how a tool interacts with its users, which implies that it must be figure in the tool’s
architecture.

386 Autom Softw Eng (2008) 15: 379–391

One promising approach to dealing with this problem might be to use an intel-
ligent adaptation approach in which tools dynamically adapt themselves and their
interfaces to users and their usage patterns (Magerko 2008). This type of usability
approach can be found in some game-playing programs, which start off with a ba-
sic set of capabilities and then gradually expose more and more of their capabilities
as users become more sophisticated and as data is gathered on usage patterns.

Another manifestation of the lack usability in today’s MBSE tools is their in-
adequate support for customization for specific application domains and environ-
ments—this despite the presence of numerous configuration options found in most
tools. However, these options are typically limited to a set of choices defined by
the tool’s designers, who, as noted earlier, often have an inadequate understanding
of the application domain or how the tool is to be used. Furthermore, custom con-
figurations are defined for individual tools independently of other tools in the same
tool chain, making it difficult to ensure consistency of customizations across tools.

• Interoperability problems. This refers not only to the fact that, despite the exis-
tence of model interchange standards such as XMI (Object Management Group
2007b), it is rarely possible to effectively exchange models between equivalent
tools from different vendors, but also to the inability to exchange models between
complementary tools. For example, it may be required to transfer a model from a
model authoring tool to a specialized analysis tool where it can be analyzed for cer-
tain properties (safety, liveness, performance characteristics, etc.). Unfortunately,
in most cases this transfer is fraught with problems and requires some interven-
tion. There are two reasons for this. First, the interchange standards themselves are
not precise enough to ensure an accurate model transfer, that is, a transfer with-
out loss of key information. There are ambiguities in how a model is serialized
into a textual form (for transfer) so that it is interpreted correctly and fully in the
receiving tool. Second, the tool vendors have so far shown little inclination to fix
the problems in the interchange standards. This is not surprising, since they have
a vested interest in keeping their customers bound to their products rather than
their competitors’ products. However, part of the fault here lies with the customers
themselves, who, although they often complain about this state of affairs, rarely
exert significant pressure on vendors to fix the problem. Until that happens, inter-
operability problems will remain.

• Scalability problems. The abstraction power of models is needed most when deal-
ing with large and complex systems. As models of such systems progress through
successive refinements that add more and more detail and, as more and more in-
dividuals get involved in working on the model, the amount of information that
needs to be maintained increases significantly. A crucial part of this information
is the internal structural relationships that capture the semantic linkages between
different parts of the model (or between different models). They are indispensible
when querying the model (e.g., to assess the impact of a change to the design). In
effect, an MBSE model is a complex network of interconnected elements in which
more or less everything is connected (directly or transitively) to everything else.7

7It can be justifiably argued that the complexity of semantic linkages of a system is independent of whether
or not it is specified as a model or as a program. However, in text-based specifications, many semantic

Autom Softw Eng (2008) 15: 379–391 387

This, of course, makes it extremely difficult to partition such a model into man-
ageable units that may evolve in parallel. To get around this problem many tools
require the full model to be loaded before it can be manipulated, which hampers
their ability to deal with large models.

In summary, the tooling problems cited above and the issues of usability in particular
present major impediments to a broader application of MBSE and thus discourage
many who are interested in taking advantage of its benefits. However, there are some
additional factors related to MBSE that may present even greater hurdles. These are
discussed next.

6 On the influence of programming culture on MBSE

“Problems cannot be solved by the same level of thinking that created them.”
(Albert Einstein)

Vendors of MBSE tools often say that the status quo is the single most significant
issue blocking the broader adoption of MBSE in practice. By this they mean the
pervasive culture and psychology of traditional programming practice.

The source of this problem can be traced to the rather unique nature of program-
ming and to the type of personality that is attracted to it. One key element that distin-
guishes programming from other forms of engineering design is its lack of physical
impedance. That is, programming primarily involves the transfer of ideas into equiv-
alent or near-equivalent specifications and does not require bending, lifting, or oth-
erwise processing of physical materials nor does it involve protracted manufacturing
and assembly. The main ingredient involved in software production is information.
With no appreciable physical effort involved, the delay from idea to its realization (in
the form of a compiled and executing program) can be in the order of a few minutes
if not seconds. This is quite exceptional in engineering practice, where the prove-in
of a design idea typically requires months or even years and involves painstaking and
protracted analysis and design.

While this rapid turnaround is an obvious benefit, it does have some important
consequences whose effects, on reflection, are not necessarily positive. One of these
is that it often creates an impatient state of mind that discourages reflection. The
inertia that is inherent in traditional engineering design, where the time cost of bad
design decisions can be prohibitive, necessitates that design be a highly thorough and
systematically organized process. It requires a deep and lengthy analysis of possible
consequences of key design decisions that often leads to better understanding of the
issues and more optimal solutions.8 Unless strong discipline is enforced, software
design often bypasses this reflective phase; many solutions are hacked by successive

linkages are only established during compilation or link time, which means that our ability to query such
specifications is limited. But, one of the touted advantages of model-based specifications is that such
linkages are present in the model and that they can be queried at any time. Therefore, there are greater
expectations for model-based specifications.
8As a brilliant engineer friend of mine once said: “If you think about a problem long enough, you will
always find a better solution for it.”

388 Autom Softw Eng (2008) 15: 379–391

minor modifications of an inadequate initial design concept until the desired output
is finally achieved—usually a highly suboptimal one.

While this lack of what is sometimes called system-level thinking in software is
clearly a problem, there is an even deeper issue lurking behind this unique inertia-less
property of software. The ability to conceive designs and have them confirmed by a
running program in a short interval of time is a particularly satisfying and highly se-
ductive experience. For many individuals, the sense of personal gratification and mas-
tery that comes when a program executes successfully is so appealing that it leads to
a kind of infatuation with programming that can be highly addictive. A common and
unfortunate consequence of this phenomenon is that in many programmers’ minds
the focus shifts from the system being constructed to the process of programming;
a specific manifestation of the now familiar “the medium is the message” syndrome
first described by the philosopher Marshall McLuhan (1964). One common undesir-
able consequence of this is loss of focus resulting in an insufficient understanding of
and concern for the product being built. Such individuals—and I believe they consti-
tute a significant proportion of software practitioners—identify themselves primarily
by the programming skills that they have mastered (after investing significant time
and effort) and not by the types of systems that they help construct. Thus, they do
not view themselves as, say, financial system experts or embedded systems experts
with programming skills, but, instead, as Java experts or C++ experts, Linux experts,
etc. Their sense is that they are equally competent to work on any type of system,
as long as it takes advantage of their particular technological skills. An analogy to
this might be someone who is an expert riveter, who can work on any project that
requires riveting, whether it is an ocean liner, airplane, or a skyscraper—it does not
matter. Generally, one does not expect riveters to advocate newer technologies that
might displace riveting or, for that matter, to fret over the purpose and architecture of
the system they are helping construct.

So, how does this stand in the way of greater propagation of MBSE in practice?
The difficulty lies in that programmers of this type, with little or no interest in

the end product or its usage, are often unwilling to switch to new technologies that
take them out of their comfort zone, even in cases where such technologies might
be much better suited to the problem on hand. Therefore, the combination of new
languages and tools required for MBSE are viewed as a threat. It seems rather ironic
that it is these individuals, who work with the most advanced technology ever devised,
who are prone to be so highly conservative. This attitude can be contrasted with the
exceptionally rapid adoption of a similar technology (CAD) by hardware designers,
who, as noted earlier, saw it as an opportunity to build end products much more
effectively. Compounding this problem is the sheer number of such classically trained
software professionals, numbering in the millions. This is a significant inertial mass
that will likely keep impeding broader adoption of MBSE.

7 Additional opportunities for automation in MBSE

In addition to the ability to automate model creation and code generation, MBSE
offers other enticing opportunities to take advantage of computer-based automation

Autom Softw Eng (2008) 15: 379–391 389

during development. In this section, we briefly discuss two of the most promising
ones:

• Formal computer-based design analysis. The problem of practical formal check-
ing of the safety and liveness properties of a software program has been greatly
hindered by the highly complex nature of the dominant programming languages.
The semantics of these languages are so intricate that their corresponding math-
ematical models used in analysis are extremely complex and invariably lead to
scalability issues (e.g., the well-known state-explosion problem). The opportunity
created by MBSE is the possibility of defining a new generation of computer lan-
guages. These new modeling languages can be based on less complex formalisms,
such as state machines or Petri nets, which are much more open to formal analysis
than programming languages.

Note that this type of computer-assisted analysis can also be extended to ana-
lyzing not just the qualitative properties of a design, such as absence or presence
of deadlocks, but also its quantitative aspects. For example, if a design model is
annotated with suitable performance-related information (e.g., worst case execu-
tion times, deadlines, throughput rates, etc.) it is possible to analyze such a model
using modern performance analysis techniques (e.g., based on queuing theory) to
determine its time-related characteristics. This can be achieved by transforming
the original model into a model suited to performance analysis, such as a queuing
model, which is then analyzed by a specialized performance analysis tool. There
are practical examples of the viability of this approach based on the MARTE pro-
file of UML (Object Management Group 2008a, 2008b). Other types of quanti-
tative property analyses are possible as well, including timing analysis, security
analysis, availability analysis, etc. By automating the transformations from one
type of model to another and using computer-based analysis techniques, the need
for scarce analysis expertise can be minimized or even eliminated.

• Model simulation. The ability to translate modeling language specifications into
equivalent computer programs means that the modeling languages must have pre-
cise semantics. This, in turn, implies that specifications specified in such languages
can also be executable. “Executable” generally means that the specification can, in
principle, be executed on a virtual machine that directly interprets the modeling
language. This ability is important for a number of reasons. The primary one is
that it becomes possible to do a practical evaluation of the validity of a proposed
design by executing it on a computer.

The value of such an evaluation is greater if it is performed on a very abstract
version of the model, before too much effort and resources are expended on an
inappropriate design choice. This in turn implies the ability to execute very high-
level, abstract models; that is, models that have the high-level features that are
being evaluated specified sufficiently but little else. Such a capability is not as
complicated to provide as it might first appear: when an ambiguity in the specifica-
tion is encountered, the model execution system may ask for external (e.g., human)
guidance on how to proceed or it may use certain pre-configured assumptions of
its own.

One interesting and significant side effect of this type of early execution is the
confidence boost that a design team gets from seeing something work early in the

390 Autom Softw Eng (2008) 15: 379–391

development cycle. The value of this cannot be overestimated, particularly when
dealing with sophisticated software architectures, where the initial degree of con-
fidence is low. In fact, one of the main reasons why many practitioners dislike
models in favor of programming is the lack of such positive re-enforcement during
development. Waiting until the very end to determine whether or not a design is
viable is not only risky, it also very stressful. Having executing versions of a design
in the earliest phases of development will both reduce risk and alleviate the stress.

8 What the future holds

Despite all the shortcomings of current tooling, MBSE has proven its viability and
value in numerous industrial applications. However, to reach its full potential, major
additional breakthroughs still need to happen. In my view, these need to occur in two
principal directions:

1. We need to evolve a systematic theoretical understanding of the various key capa-
bilities that are at the core of MBSE, such as the principles of modeling language
design, model transformations, code generation, automated verification, and so on.
At present, there are many excellent ideas and methods in these areas, contributed
by both industry and research, but they are still not sufficiently understood. Thus,
committing to MBSE in practice still requires a great deal of improvisation, in-
vention, and experimentation and still carries with it significant risk. The objective
must be to transform it into a reliable and well understood engineering discipline.

2. Significant improvements must be made in computer-based automation, which
means mitigating and overcoming all the technical challenges described earlier
(usability, interoperability, and scalability). Undoubtedly, some of these will be
much easier to achieve once a proper theoretical foundation is in place.

As for the cultural factor, one can only hope that the cumulative effect of continuing
successes of MBSE-based projects will eventually create sufficient critical mass to
propel the substantial community of recalcitrant developers to be more open to the
new technologies. It is my belief that, part of the key here lies in developing computer-
based automation that is elegant and sophisticated without being intimidating. The
potential is there, it is time to use it.

References

Brooks Jr., F.: The Mythical Man-Month. Addison-Wesley, Reading (1995). Anniversary edn.
Chamberlin, D.D., Boyce, R.F.: (1974). SEQUEL: a structured English query language. In: Proceedings

of the 1974 ACM SIGFIDET Workshop on Data Description, Access and Control, pp. 249–264.
Association for Computing Machinery (1974)

Eclipse Foundation: Eclipse documentation. http://www.eclipse.org/documentation/ (2008)
Ellsberger, J., et al.: SDL – Formal Object-Oriented Language for Communicating Systems. Prentice Hall,

London (1997)
Frankel, D.: Model Driven Architecture – Applying MDA to Enterprise Computing. OMG Press, Indi-

anapolis (2003)
Graham, I.: Object-Oriented Methods. Addison-Wesley, London (2001)
Greenfield, J., et al.: Software Factories. Wiley, Indianapolis (2004)

http://www.eclipse.org/documentation/

Autom Softw Eng (2008) 15: 379–391 391

Harel, D., et al.: STATEMATE: a working environment for the development of complex reactive systems.
IEEE Transactions of Software Engineering 16(4), 403–414 (1990)

International Business Machines (IBM): Systems reference Library: Report Program Generator (on Disk)
Specifications. http://bitsavers.org/pdf/ibm/14xx/C24-3261-1_1401_diskRPG.pdf (1964)

Magerko, B.: Adaptation in digital games. IEEE Computer 41(6), 87–89 (2008)
MathWorks: MATLAB Function Reference. http://www.mathworks.com/access/helpdesk/help/

techdoc/matlab.html (2008)
Mellor, S., et al.: MDA Distilled—Principles of Model-Driven Architecture. Addison-Wesley, Boston

(2004)
Mernik, M., Heering, J., Sloane, M.: When and how to develop domain-specific languages. ACM Com-

puting Surveys 37(4), 316–344 (2005)
McLuhan, M.: Understanding Media: The Extensions of Man. McGraw-Hill, New York (1964)
Nunes, N.J., et al. (eds.): Industry track papers. In: UML Modeling Languages and Applications – «UML»

2004 Satellite Activities, Lisbon, Portugal, October 2004 (Revised Selected Papers). Lecture Notes
in Computer Science, vol. 3297, pp. 94–233. Springer (2005)

Object Management Group (OMG): MDA Guide, v.1.0.1. OMG document omg/2003-06-01 (2003)
Object Management Group (OMG): Unified Modeling Language (UML) Superstructure Specification,

v.2.1.2. OMG document formal/07-11-02 (2007a)
Object Management Group (OMG): XML Metadata Interchange (XMI), v.2.1.1. OMG document

formal/07-12-01 (2007b)
Object Management Group (OMG): A UML Profile for MARTE: Modeling and Analysis of Real-Time

Embedded Systems, v.Beta 2. OMG document ptc/08-06-09 (2008a)
Object Management Group (OMG): OMG MARTE Information Day (June 2008b). http://omgmarte.org/

Events.htm
Selic, B., et al.: Real-Time Object-Oriented Modeling. Wiley, New York (1994)
SPSS Inc: SPSS 15.0 Command Syntax Reference, Chicago IL (2006)
Weigert, T., Weil, F.: Practical experience in using model-driven engineering to develop trustworthy com-

puting systems. In: Proceedings of the IEEE International Conference on Sensor Networks, Ubiqui-
tous, and Trustworthy Computing, vol. 1, pp. 208–217, 5–7 June, 2006

http://bitsavers.org/pdf/ibm/14xx/C24-3261-1_1401_diskRPG.pdf
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab.html
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab.html
http://omgmarte.org/Events.htm
http://omgmarte.org/Events.htm

	Personal reflections on automation, programming culture, and model-based software engineering
	Abstract
	Introduction
	Fourth-generation computer languages
	CASE tools
	Model-based software engineering (MBSE)
	Pragmatic issues with computer automation in MBSE
	On the influence of programming culture on MBSE
	Additional opportunities for automation in MBSE
	What the future holds
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

