Enriching Megamodel Management with
Collection-Based Operators

Rick Salay, * Sahar Kokaly, T Alessio Di Sandro, * and Marsha Chechik *
* University of Toronto, Canada
{rsalay, adisandro, chechik}@cs.toronto.edu
T McMaster University, Canada
kokalys@mcmaster.ca

Abstract—Megamodels are often used in MDE to describe
collections of models and relationships between them. Typical
collection-based operations — map, reduce, filter — cannot be
applied directly to megamodels since these operators need to take
relationships between models into consideration. In this paper,
we propose adapted versions of these operators, demonstrating
them on four megamodeling scenarios. We then analyze their
applicability for handling industrial-sized megamodels. Finally,
we report on a reference implementation of the operators and
experimental results using it.

I. INTRODUCTION

The use of models can benefit software engineering practice;
however, a proliferation of models creates accidental complex-
ity that must be managed. The field of Model Management [1]
has emerged to address this challenge. Model management
focuses on a high-level view in which entire models and
their relationships (i.e., mappings between models) can be
manipulated using specialized operators to achieve useful
outcomes. For example, a model match operator [1] finds
correspondences between the elements of two models and
packages these as a mapping between the models. A merge
operator [1] can then be used to combine the content of the two
models using the correspondence information in the mapping.
Model management approaches typically use megamodels [2]
to represent sets of models and their relationships in this high-
level view. For example, a megamodel could be a graphical
model that uses nodes to represent models and edges to
represent relationships.

Model management has been studied from many perspec-
tives including algebraic properties of operators [3], [4],
categorical foundations [5], type theory [6], megamodeling
languages [7], [8] and practical implementations [9], [10], [4],
[11]. In these investigations, the focus is on the general manip-
ulation of models rather than specifically on the manipulation
of megamodels — since these are kind of models, general model
operators apply to them equally well. Yet other operators
are needed due to the special role of megamodels in model
management. Specifically, megamodels function as collections
(of models and relationships) and so their manipulation should
be like that of other collection types (e.g., lists, graphs,
etc.) commonly found in modern programming languages. In
particular, three collection operators are widely used: map for
applying a function to every element of a collection, reduce for

aggregating elements in a collection and filter for extracting a
subset of the collection using a property as a selector. These
operators would have great utility if available in the model
management context. But while megamodels bear similarity
to collections in programming, they also have their unique
challenges that limit our ability to apply these techniques
without some adaptation. We illustrate these below.

A Motivating Scenario. A company uses a megamodel to
track its modeling artifacts (models and relationships between
them). The company identified a particular construct of some
of its models as undesirable (e.g., multiple inheritance in class
diagrams), and now (1) would like to identify all models
that are of type class diagram and contain this construct, (2)
refactor them using a predefined transformation to remove
the construct, and (3) merge the modified class diagrams in
order to compare the result to the merged version of the
original bad class diagrams. A natural way to execute these
steps is to (1) use filter to extract the bad class diagrams
and the relationships between these, (2) use map to apply
the refactoring transformation to these and also allow the
use of the corresponding refactoring transformation for the
relationships and, (3) use reduce with a merge transformation
to combine all the refactored models pairwise, correctly taking
into account the relationships between them. The reduce with
merge also can be used to combine the original models. Thus,
we need collection operators to manipulate the entire graphs of
related models rather than just lists of models. Furthermore, we
need to allow invoking map and reduce with transformations
that can accept graphs of models and relationships as input
and produce these as output.

Contributions. We make the following contributions:
(1) We define the set of megamodel collection operators
which treat relationships between models as first class entities:
e map - for applying a transformation to the elements of
a megamodel;
e reduce — for aggregating the elements of a megamodel
using a transformation; and
o filter — for extracting a subset of elements of a
megamodel that satisfy a property.
(2) We analyze the complexity of the operators and discuss
their applicability to industrial scale contexts.

Typed Node

A
-
A x

%gnd% Relationship l

Mega 1"*out; Transformation
Transable gin MegaA

l Megamodel)f.e;nd% Megarel l

Model

Fig. 1. Metamodel of an mgraph.

(3) We demonstrate the approach by using them to express
several non-trivial megamodel management scenarios.
(4) We report on an implementation of the operators.

The rest of this paper is organized as follows: After fixing
the terminology in Sec. II, we define the three collection
operators for megamodels in Sec. III. Sec. IV illustrates these
on four practical scenarios. Sec. V analyzes the complexity
of the operators. Sec. VI describes tool support. We compare
our approach with related work in Sec. VII and conclude in
Sec. VIII with summary of the paper and a discussion of future
research directions.

II. PRELIMINARIES

A modeling environment typically consists of various mod-
eling artifacts stored in a repository. A megamodel is a model
whose elements refer to artifacts in the repository. In this
section, we formalize the concept of megamodel and give other
necessary definitions.

Basic Types. We define the concept of “mega-graphs” —
mgraphs. A megamodel is an mgraph whose nodes refer to
artifacts in the repository.

Definition 1 (mgraph): An mgraph is a structure that is an
instance of the metamodel in Fig. 1. Given an mgraph G, we
write G¢ to denote the set of nodes in node class C'. When
C' is omitted, the node class is Node. We use abbreviations
Mod and Rel for node classes Model and Relationship,
respectively. For n € G, we write n.R to denote the set of
nodes on the other end of reference R from node n.

In this paper, we limit our focus to megamodels that can
refer to artifacts corresponding to the concrete node classes
in Fig. 1. A relationship is a mapping between two or more
models on its ends. A transformation application is the record
of having performed a given transformation on a set of input
models and relationships to produce a set of output models
and relationships. We make no further assumptions about the
way models, relationships or transformation applications are
represented or what they contain. The “mega” versions of these
artifacts: megamodels, megarels and megaApps are defined
below. We assume the existence of a repository.

Definition 2 (Repository): A repository Z is a store for
artifacts that is itself structured as an mgraph of artifacts (i.e.,
rather than an mgraph of symbols). Thus, a relationship has
references to the models on its ends, etc.

Models, relationships and transformation applications are
typed by model types, relationship types and transformations,

respectively. We assume that type compatibility (e.g., via
subtyping) is given by a relation TypeComp.

Definition 3 (Type compatibility): Given a type compatibility
relation TypeComp, TypeComp(T', T") indicates that an artifact
of type T can be used wherever the type T” is required. The
relation TypeComp must be reflexive.

Mappings between mgraphs are called mgraph homomor-
phisms.

Definition 4 (mgraph homomorphism): Given mgraphs
G,G' and type compatibility relation TypeComp, an mgraph
homomorphism f : G — G’ is a function fyoge : Guoge —
Ghioae that satisfies the following conditions for preserving all
node classes C, references R and types:

1) Vn e G- n € Ge = froae(n) € G

2) Vn,n' € G- n' € n.R = frode(n') € froae(n).R

3) Vn € Grypeanode - TypeComp(n.type, fuoae(n).type)

A typed mgraph homomorphism is one where TypeComp is
equality. An mgraph isomorphism is one where fyoqe iS a
bijection.

Condition (1) ensures that f preserves node classes and
condition (2) ensures that f preserves the endpoints of refer-
ences. These are standard conditions for a homomorphism to
be a structure-preserving mapping. Condition (3) additionally
ensures that for typed nodes, f preserves type compatibility
of nodes. Note that, node names need not be preserved by f.
Mega Types. Intuitively, all the mega types represent collec-
tions of artifacts.

Definition 5 (Megamodels): Let a model repository &% of
artifacts be given. A megamodel is a pair (G, d), where G is
an mgraph and d : G — Z is a typed mgraph homomorphism,
called the dereferencing mapping, that maps the nodes of GG
to the artifacts they represent in Z.

When it is clear from the context, we will use a megamodel
interchangeably with its mgraph.

Definition 6 (Megarel): A megarel is a megamodel restricted
to containing only Relationship and Megarel nodes but
end references of these nodes are contained within the ends
of the megarel.

Thus, a megarel is a “relationship-like” collection that itself
has megamodels on its ends.

Definition 7 (megaApp): A megaApp is a megamodel re-
stricted to containing only Transformation Application
and Transformation MegaApp nodes but the in and out
references of these elements are contained within the input
and output connections of the megaApp. That is, both megarel
and megaApp artifacts are connected to other artifacts in %

Fig. 2 gives an example of a repository including three
megamodels, a megarel (as well as other artifacts shown as
shaded boxes). To avoid visual clutter in this example, the
dereferencing mappings are not shown but are implied by the
names; however, in general, names across the mapping may
be different. The examples of the megamodels and megarels
show the concrete syntax we use for illustrations in this
paper. Models are shown as boxes, relationships are shown
as diamonds with binary relationships shown optionally as a

R2:CDrel

XT XR K B B3
m—:: c:cd
E:CD .@ oo | R

Fig. 2. An example of a repository including megamodels and a megarel
showing the concrete syntax.

line. A transformation application is given as an oval, with the
input elements connected with arrows pointing into the oval
and output elements connected with arrows pointing out of the
oval. All models, relationships and transformation applications
have a label of form name:type, where the name is optional.
Megamodels, megarels and megaApps are shown similarly
as their non-“mega” counterparts but with thick borders.
Furthermore, these elements are not typed. For example, in
megamodel X at the top of the figure, the box with label
C : CD refers to the class diagram with name C. The diamond
R2 : CDrel refers to the corresponding CRrel artifact with
name R2, the thick bordered box labeled X1 refers to the
megamodel X1 shown below it which itself refers to models B
and E, etc. No megaApp is shown but this will be illustrated
in the subsequent sections of the paper.

Properties and Transformations. Models can satisfy proper-
ties and participate in transformations. We define these below.

Definition 8 (Property): A property is a constraint on an
artifact. Given an artifact A and a property P, we write A |= P
to denote that A satisfies P. Every property is defined for an
artifact of a specific type. If A has type 7', P has type T’ and
the type compatibility relation TypeComp is given, the follow-
ing condition must hold: (A = P) = TypeComp(T,T").
Thus, we assume that artifacts not compatible with the type
of the property do not satisfy the property.

Definition 9 (Transformations): A transformation is a func-
tion that maps an mgraph of models and relationships to
another mgraph of models and relationships. Given a trans-
formation F, the signature of F' is a pair (I,O) where] UO
is an mgraph, I is an mgraph called the input signature and
O is a set of mgraph nodes called the output signature.

Note that we make no assumptions about what language is
used for expressing properties or defining transformations.

Fig. 3 gives an example of the signature for a trans-
formation CDMerge that accepts two class diagrams and a
relationship between them and produces the merged class
diagram with relationships back to the original two class
diagrams. The input signature consists of the models a,b
and relationship r and the output signature has model ab
with relationships ra and rb. Written textually, the signature
consists of I = {a:CD,b:CD,r(a,b):CDrel}, and O =
{ab: CD,ra(a,ab) : CDrel, rb(b,ab) : CDrel}. Even though
a relationship is an output of a transformation, it can connect

ra:CDrel

P >
---- CDMerge)--->
7 <>

/

Fig. 3. Signature of a transformation CDMerge for merging class diagrams.

input elements. For example, both output relationships ra and
rb are connected to inputs.

Definition 10 (Transformation binding): Given transforma-
tion F' with signature (I, O), a binding K of F is a megamodel
(I,dy) where d; is an mgraph homomorphism (rather than a
typed mgraph homomorphism). We write F(K) to denote the
corresponding megamodel (I U O, d;uo) giving the result of
applying I’ to K. We say that F' is commutative if for every
pair of isomorphic bindings K, K’ (i.e., mgraph isomorphisms
of I), F(K) is isomorphic to F(K").

Thus, a binding K of F' assigns artifacts to the nodes
of its input signature I and then F(K) can be evaluated
to assign newly created artifacts to the nodes of the output
signature. CDMerge in Fig. 3 is an example of a commutative
transformation — given any two class diagrams M1, M2 related
by a relationship R, the merged output is the same regardless
of whether we use the binding {a := M1,b:=M2,r :=R} or
{a:=M2,b: =M1, r:=R}.

Definition 11 (binding with megamodel): Given megamodel
X = (Gx,dx) and transformation F with signature (I, O),
a binding of F within X is the megamodel (I, dx o b) where
b is an injective mgraph homomorphism b : I — X.

That is, a binding of F' within X is formed by finding a set

of nodes in X that match /.
Traditional Megamodeling Operators. As discussed in
Sec. I, a number of model management operators have been
defined, with match, merge, diff, and slice among them. For
the illustrations in this paper, we require only one of them —
a simple type of megamodel merge that we call union. We
define it in more detail below. The union operator combines
the content of a set of megamodels into a single megamodel
in which elements that refer to the same artifact are merged
into a single element.

There are two possibilities for the set of input megamodels:
(1) either they are an mgraph of megamodels and megarels, or
(2) they are a set of megarels that share the same endpoints.
Fig. 4 illustrates both cases. In case (1), the result is a
megamodel while in case (2) it is a megarel with the same
endpoints as the inputs.

The union process can cause conflicts coming from the
following two sources. If megamodel elements refer to the
same artifact but the names of these elements differ, it is not
clear which name to use for the merged element. To resolve
this, we assume that the names in the union is a combination
of the original names. Another conflict occurs when different
artifacts are referred to by different elements using the same
name. In this case, we assume that the names are made distinct
in the union. Both of these conflict scenarios are illustrated at
the bottom of case (1) in Fig. 4. Both A and D refer to the

Fig. 4. An illustration of the union operator applied to (1) an mgraph
of megamodels (megamodel contents shown underneath), and (2) a set of
megarels that share the same endpoints.

same model and in the union the name A_D is used. However,
the element C in X2 refers to a different model than C in X3
and the latter is assigned the name C_1 in the union.

III. MEGAMODEL COLLECTION OPERATORS

In this section, we define the set of megamodel collection
operators we are proposing in this paper: map — Sec. III-A,
reduce - Sec. IlI-B and filter — Sec. III-C. Their signatures
are map(T] : (M) —» P (M), reduce[T] : M — M,
and filter[P] : M — M, respectively, where T is the set of
model transformations, M is the set of megamodels, P is the
set of model properties and & is the powerset operator. All
three are higher-order operators that accept a transformation or
a model property as a parameter (indicated in square brackets).
We describe each operator as follows: first the standard usage,
then the special adaptation needed to handle megamodels and
finally, the behaviour defined as an algorithm.

A. Operator map

Background: Standard Usage. The usual behaviour of a
map operation is to traverse a collection (e.g., list, tree, etc.)
and apply a function to the value at each node in the collection.
The result is a collection with the same size and structure as
the original with the function output value at each node. For
example, given the list of integers L = [10,13,4, 5] and the
function Double that takes an integer and doubles it, applying
map with Double to L yields the list [20,26,8,10]. If the
function has more than one argument, the mapped version can
take a collection (with the same size and structure) for each
argument, and the function is applied at a given node in the
collection using the value at that node in each argument in the
collection.

Adaptation for Megamodels. Since a transformation in-
put signature is an mgraph, applying it to each node of a
megamodel is not possible. Instead, the map operator for

megamodels applies the transformation for every possible
binding of the input signature in the input megamodel(s). The
collection of outputs from these applications forms the output
megamodel.

When the transformation signature consists of a single input
and output type and uses a single input megamodel which
happens to be a set (i.e., no relationships) of instances of
the input type, then our map produces the same result as a
standard map operator applied to a set. However, in the general
case, map is more complex and differs from the behaviour
of the standard map. In particular,

(1) The output megamodel may not have the same structure
as the input megamodel since the structure is dependent on
the output signature of the transformation.

(2) The size of the output may not be equal to the size of the
input. For example, if a transformation FF takes two models as
input and produces one as its output, applying map to it on a
megamodel with n models will produce as many as n.x (n—1)
output models since each pair of input models may be matched
in a binding. At the other extreme, if no input models form a
binding then the output will be the empty megamodel.

(3) When there are multiple input megamodels, each binding
of the input signature is split across the input megamodels in
a user-definable way.

(4) When the transformation is commutative, we (may) want
to avoid replication in the output due to isomorphic bindings.
For example, if the transformation FF is commutative, we will
get each output model twice since there are two ways to apply
FF to a pair of models.

In what follows, we propose an operator map for handling

megamodels while avoiding the above problems.
Definition. map[F]|({ X.|e € I}) applies a model transforma-
tion F' with a signature (I, O) to a set of input megamodels
{Xc|e € I}. Note that the megamodels X. need not be
distinct; thus multiple input arguments can be taken from the
same megamodel. map produces an output megamodel for
each element of the output signature O. The behaviour is
defined by the algorithm in Fig. 7.

We explain the algorithm using the illustration in Fig. 6(1)
of applying map to the CDMatch transformation given in
Fig. 5. The input signature consists of {a:CD,b: CD} and
the output signature is {r(a,b) : CDrel}. The diagram at the
top of Fig. 6 shows map(CDMatch) applied to megamodels
X1 and X2 to produce an output megarel XR. Thus, the input
megamodels are X, := X1 and X, := X2 and the one output,
Y,., corresponding to the output signature element r, produces
the value for XR .

In line 1, the output megamodels are initialized to the empty
megamodel. In our example, Y, = (. Lines 2-5 iterate over
all possible bindings of I in the input megamodels. In line
2, a fresh binding (i.e., previously unmatched) for the input
signature of F' is found in the input megamodels. Thus, in this
example, a binding for a is drawn from X1 and a binding for
b — from X2. Assume this is K := {K, := A, K}, := C}. Lines
3-4 check whether isomorphic bindings should be ignored
because F' is commutative. Binding isomorphisms do not

:CDMatch

:CDMatch

X2

2)

@D

Fig. 6. 1) An illustration of applying map to the CDMatch transformation
using two input megamodels (megamodel content shown underneath); 2) using
the same input megamodel for both arguments.

occur in this example, so we illustrate them separately below.
In line 5, the output of applying the transformation to the
combined input binding is added to the output megamodels.
Thus, in our example, CDMatch is applied to K and the
resulting CDrel relationship R2 is added to Y,.. Line 6 returns
the resulting output.

In our example, there are only two matches; thus, the
resulting megarel contains two relationships. However, con-
sider the alternative application of map to CDMatch shown
in Fig. 6(2). Here both input elements are taken from the
input megamodel X. Assume that X contains all three models
{A:CD,B:CD,C:CD}. In that case, there are six possible
ways to match the input signature. However, since CDMatch is
designated as commutative, a binding {K, := m, K} := n}
produces the same output as { K, := n, Kp := m}; thus, only
three matches are used to produce the output.

B. Operator reduce

Background: Standard Usage. There are different variants
of the reduce (also called fold, aggregate, etc.) operator used
in programming languages but it typically accepts a binary
function F' and applies it over values x1,Z2,...,Z, in a
recursive collection (e.g., list, tree, etc.) by accumulating the
intermediate values, e.g., F(x,, F(..., F(z3, F(x2,z1)). For
example, applying reduce with the “+” operator to the list
[1,3,1,9] produces the sum 14.

Adaptation for Megamodels. In a similar way, we expect the
reduce operator to accept a transformation F' and use this to
combine the elements of the input megamodel. Our approach
is to view F' as a rewrite rule, by repeatedly applying F' in-
place and deleting the input elements until it can no longer be
applied. First, we must consider several issues:

Algorithm: Apply map
Input: transformation F' with signature (I, O),
megamodels {X,|e € I}
Output: set of megamodels {Y.|]e € O}
for e cO) {letY. =0}
2: for (fresh binding K in {X.|e € I}) {
3 if F'is commutative then
4: if isomorphism of K already done then continue;
5
6

—_—

for (e € O) { add element e of F(K) to Y. } }
return {Y_|e € O}

Fig. 7. Algorithm defining behaviour of the map operator.

(1) What should be the criteria that /' must satisfy for this
process to terminate?

(2) Since a megamodel is not a recursively defined structure
and has no well-defined ordering on its elements, we cannot
rely on a specific traversal path. Thus, ' must be confluent —
the final result of reduce should be same regardless of the
order in which we apply F' to the megamodel.

(3) Since the input elements may have relationships to other
neighbouring elements in the megamodel, we must be careful
to preserve this information when the relationships are deleted.

We will address issues (1) and (2) in the definition of

reduce below with appropriate assumptions on F'. We address
issue (3) by using relationship composition operators to con-
struct new relationships to neighbouring elements as needed.
As an illustration, assume we are using reduce with the
CDMerge transformation (See Fig. 3) to merge a megamodel
of class diagrams and CDRel relationships. Fig. 9 shows one
iteration of the reduction. In step @, CDMerge is applied to
an arbitrarily chosen pair of models (in this case, B and C)
to produce a new class diagram BC. In step @, composition
operators are invoked to connect BC to the neighbours of B and
C. Finally, in step @, the original models B and C are deleted
together with all of their relationships.
Definition. We now define a new operator reduce[F](X)
aimed to apply a transformation F' to reduce the content of
a megamodel X. We begin by making the following assump-
tions: (I) We assume availability of predefined relationship
composition operators for all relationship combinations we
encounter, together with a library function getCompOp that
provides such an operator given a pair of relationship types.

(II) In order to achieve confluence, F' is required to be com-
mutative and associative with itself and with all relationship
composition operators used in item (I).

(IIT) In order for the reduction process to terminate, we
put the constraint on F' that it must be strictly reducing in
output types: for every model type in the input signature, there
must be fewer models of that type in the output signature;
and, for relationship type in the input signature, there must be
fewer relationships of that type in the output signature that are
connected to output models on both (or all, for n-ary) ends.

Fig. 8 gives the algorithm for defining the behaviour of
reduce. In line 1, Y is initialized to the same value as the
input. Lines 2-9 iterate for each binding of F' in Y until no

Algorithm: Apply reduce
Input: transformation F' with signature (I, O),
megamodel X
Output: megamodel Y
I: letY :=X
2: for (binding K in Y) {
3 apply F(K) generating output K';
4 for (m € Kyoa,m' € Kjjoq,7(m,m’) € Kiop) {
5 for (m” € Yyoa, 7' (m",m) € Yze1) {
6: let comp := getCompOp(type(r’), type(r));
7 let "/ (m’,m") := comp(r',r);
8 add " to Y }}
9 delete elements in K from Y }
10: return Y

Fig. 8. Algorithm defining behaviour of the reduce operator.

g : A:CD
f1:CDrel [==-<
f1B:CDrel
BC:CD
f2:CDrel
f3C:CDrel
f3:CDrel [==--
f3C:CDrel
D:CD

Fig. 9. An illustration of one iteration of reduce. First the merge is applied
non-deterministically (step 1). Then the relationships to the neighbours of
the merged models are computed using appropriate composition operators.
Finally, all input elements are deleted.

more can be found and the algorithm terminates returning Y
(line 10). In the loop, for a given binding K (line 2), F' is first
applied to get K’ line 3. Then lines 4-9 perform the steps as
described in Fig. 9 to connect the neighbours of input models
in K to the output models in K’ using composition operators
and then deleting the input models in K. For each output
model m’ with a relationship 7 to an input model m (line
4), and for each neighbour model m” of input model m with
relationship 7’ (line 5), a new relationship r” is constructed
directly from m” to m’ by composing r’ and r (line 7). The
operator to compose a relationship of type(r’) with one of
type(r) must be “looked up” using getCompOp (line 6).

C. Operator filter

Background: Standard Usage. Many languages provide a fil-
tering operation to extract a portion of collection that satisfies
some condition. For example, filtering the list [2,5,6,8,9,1]
using the property isEven produces the list [2, 6, 8].

Adaptation for Megamodels. The filter operator is similar
and applies to megamodels. A property is given as the filtering
condition, and the subset of elements that satisfy the property
is used to produce the output. We distinguish between model
and relationship properties and treat them independently. Thus,
a model property filters only models and keeps all relationships

Algorithm: Apply filter
Input: property P, megamodel X
Output: megamodel Y
1: letY :=0;
2: for (m S XMod) {
3 if P is a model property then
4 if m |= P then add m to Y;
5 else add m to YV }
6: for (r € Xze1) {
7 if P is a relationship property then
8 if = P then add r to Y;
9 else if r.end NY # () then add r to Y }
10: return Y,

Fig. 10. Algorithm defining behaviour of the filter operator.

between the remaining models. A relationship property filters
only relationships and does not affect the models.

filter differs from map and reduce in that it does not
create new models or relationships; it just creates new refer-
ences to existing models and relationships. Thus, all elements
of the output megamodel refer to artifacts that are already
referred to by elements of the input megamodel. This aspect
of filter makes it an inexpensive operation compared with
map or reduce.

If a property P, defined for a model or relationship type
T, is used for filter, then it selects all elements of type T
(or its compatible types) that satisfy the constraints in P (See
Defn. 8). It is also possible to give a type 1" as the property
which is interpreted as the property frue, satisfied by any
instance of 1" (or its compatible types).

Definition. filter[P](X) filters megamodel X to produce the
least sub-megamodel of X containing all the elements of X
that satisfy property P.

The behaviour of filter is given by the algorithm in Fig. 10.
Line 1 initializes the output to the empty megamodel. Lines
2-5, iterate over the model elements in X. If P is a model
property then the model is only added to the output if passes
the satisfaction check (line 4). If P is not a model property, all
models are added to the output (line 5). A similar algorithm
is followed in lines 6-9 that iterate over relationship elements.
The only difference is that if P is not a relationship property
(and so it must be model property), only those relationships
are added to the output that already have their endpoints in
the output due to the filtering in lines 2-5.

IV. APPLICATION SCENARIOS

In this section, we illustrate our collection-based megamodel
management operators using several scenarios.

A. Experiment Driver

The goal of this scenario is to apply a transformation
on a megamodel and perform some kind of experiment on
the result of its application. Specifically, given a megamodel
XCD containing a set of class diagrams, we wish to apply
transformation CD2Java that translates a class diagram to its

2
T P o :map(ECheck) -

C 3
:

,,

Fig. 11. Experiment driver scenario illustration.

[xcol-> et >{x1}->napnaica>
<Betwrnar>-fiaf-—& 5[]

Fig. 12. Mass refactoring scenario illustration.

equivalent Java code and produces a CD2JavaRel traceability
relationship from the CD to the Java code. Then, we wish to
apply evaluation transformation ECheck on each CD2JavaRel
in the megarel resulting from the transformation application.
ECheck computes the number of classes in each transformed
class diagram that do not have Java counterparts. Finally, we
would like to sum these up via a Sum operation to learn
the total number of incidents where this occurs. If this is
greater than zero, then we will identify a problem in the
transformation. Fig. 11 shows the chain of operators required
to accomplish this via the following steps:

(1) Apply map|[CD2Java](XCD) to produce X1 which con-
tains the Java code and XR which is the megarel containing all
relations between XCD and X1.

(2) Apply map|ECheck]|(XR) to produce megamodel X2
which contains the evaluation ECheck for each rel in XR.

(3) Apply reduce[Sum|(X2) to produce the final result X3
containing a single value which is the sum of the results of
map[ECheck](XR). A value is greater than zero indicates that
there was a problem in the transformation application.

B. Mass Refactoring

We are given a megamodel XCD that contains unrelated
class diagrams, a property PubAtt that represents models with
public attributes and its negation NoPubAtt. We wish to find
models satisfying PubAtt and refactor them so that public
attributes become private attributes with public getter methods
using refactoring transformation PubGet. Fig. 12 illustrates
this scenario via the following steps:

(1) Apply filter[PubAtt](XCD) to produce a megamodel
X1 containing the sub-megamodel of XCD with models where
property PubAtt holds.

(2) Apply filter[NoPubAtt](XCD) to produce a megamodel
X2 containing the sub-megamodel of XCD with models where
property PubAtt does not hold.

(3) Apply map[AddGet](X1) to transform the models with
the undesirable property using a refactoring transformation
AddGet which produces a megamodel X3.

(4) Return a megamodel X4 = union(X2,X3) (see Sec. II)
which represents the refactored version of the original s.t. the
property PubAtt no longer holds on any of its models.

C. Megamodel Transformation

We are given an input megamodel XCD consisting of class di-
agrams (CDs) related by class diagram relations (CDrels), and

=4

2) r1: CD2ERrel
| al _%l ‘\ |_|b1.ER|
ra:CDrell_____ > Chrel2ERral - 2 rb:ERrel
— h .
[22:c0}—-shaERmar 102:ER

Fig. 13. Illustration of transformation signatures for megamodel trans-
formation scenario. (1) Class Diagram (CD) to Entity Relationship (ER)
transformation, (2) CD relation to ER relation transformation.

1
.....

XCD

\

™ ri™,

N, \
\,
NN

N

W B ' -
:map(CDrel2ERrel) -

Fig. 14. Megamodel transformation scenario illustration.

we wish to transform it to a megamodel XER consisting of ER
diagrams (ERs) related by ER diagram relations (ERrels). We
are also given the transformations CD2ER and CDrel2ERrel
(See signatures in Fig. 13) which transform CDs to ERs and
CDrels to ERrels, respectively. We would like to use our
operators to accomplish this.

The steps to perform this transformation are illustrated in
Fig. 14 and involve the following steps:

(1) Apply map|[CD2ER|(XCD) which based on its signature
applies only to the (CDs) in XCD and produces the megamodel
X1 consisting of the ER versions of all the CDs in XCD as well
as the megamodel relation XR1.

(2) Apply map|[CDrel2ERrel|(XCD) which based on its
signature applies only to the CDrels in XCD and produces the
megamodel relation XR2 consisting of a set of ERrels with
endpoints in X1. Note that the other arguments come from the
megamoodel relation XR1 which contains the applications of
the CD2ER transformation.

(3) Apply union(X1, R) to produce the final megamodel
XER which contains the corresponding ERs and the ERrels
between them.

D. Motivating Example from Sec. 1

Recall the motivating example in Sec. I: given a megamodel
XCD which contains class diagrams and an undesirable property
Mi that represents class diagrams with multiple inheritance,
we aim to identify all models that are of type class diagram
and contain this property, refactor them using a predefined
transformation to remove the property, and merge the modified
class diagrams. Fig. 15 shows the chain of operators required
to accomplish this scenario:

(1) Apply filter[Mi](XCD)to produce a megamodel X1 con-
taining the sub-megamodel of XCD with models where property
Mi holds.

(2) Based on the megamodel transformation pattern de-
scribed in Scenario C: apply map[RemoveMi|(X1) to pro-

:map(RemoveMi) Y

bl
. . @

\ @ ;N i \
:map(RemoveMiRel) _D--=------=; @

Fig. 15. Motivating example illustration.

map[F]({X}) | O(n* x Cr(m))
reduce[F](X) | O(n? x Cr(m))
filter|P|(X) O(n? x Cp(m))

Fig. 16. Worst case complexity of the operators.

duce X2 which is the refactored version of X1 that no
longer contains the undesirable property, and (3) apply
map|RemoveMiRel](XR1) to produce the megamodel XR2
containing the relations between the refactored models. (4)
Apply union(X2, XR2) to produce X3 which is the megamodel
containing the refactored models and relations between them.

(5) Apply reduce[CDMerge](X3) which applies the
CDMerge operation described in Sec. III on class diagrams
with relation CDRel between them and produces a megamodel
X4 where all the related class diagrams are now combined. The
final result can now be compared with the result of merging
the pre-refactored models which can be achieved by using
reduce[CDMerge](XCD).

Although the scenarios we have presented address specific
types of megamodels, transformations and properties, they
can be generalized as design patterns for similar reoccurring
problems. For example, the mass refactoring scenario can
be generalized for any problem that involves a megamodel
which may contain elements with a certain property which
should be removed. Similarly, the megamodel transformation
scenario can be generalized for any problem that involves a
transformation of one type of megamodel to another, given the
appropriate transformations between source and target models
and source and target relations. We have observed that in the
case of the megamodel transformation pattern, the relation
transformation can be induced from the model transformation;
however, further analysis is outside the scope of this paper.

V. ANALYSIS

In this section, we analyze the worst case complexity of the
three operators we propose — see the summary in Fig. 16 —
and discuss the implications of this for scalability.
Complexity of map. For the algorithm in Fig. 7, the iteration
in line 2 over possible bindings of input signature I can
execute up to n* times, where n is the number of models
input megamodels and k, the number of models in I. If F is
commutative with ¢ isomorphisms of I, the loop can execute
(n*)/q times. Thus, the complexity is O(n* x Cr(m)) where
Cr(m) is the complexity of executing F in terms of a size
metric m of the input binding to I. We assume that there is
at most one relationship of each type between any given set
of models in input megamodels.

Megamodel Editor M

Relationship)
Editor

Type Megamodel

Type Support Runtime 3
(Model, Relationship, Transformation) ,’:

Fig. 17. Architecture of MMINT .

Complexity of reduce. Line 2 of the algorithm in Fig. 8
iterates over all possible bindings of input signature I, but
each time, the input models and relationships are deleted.
Thus, each input element participates in at most one binding.
Furthermore, due to the assumption that F' is strictly reducing,
each iteration reduces the number of models and relationships.
Thus, the number of iterations is bounded by n, the number of
models in X — as with map we assume there is at most one
relationship of each type between a given set of models. The
internal loops lines 4-8 iterate once for every neighbour of a
model M in [and relationship of M to a model in O. This can
iterate up to rn times where r is the number of relationships
between O and [. Since r is a constant for a given F’, the
complexity is O(n? x Cr(m)).

Complexity of filter. For a property, the algorithm in Fig. 10
iterates n times while for a relationship property over a g-
ary relationship, it iterates wn? times, where n is the number
of models in X and w is the number of g-ary relationship
types. Since we assume w is a constant, the complexity is
O(n? x Cp(m)) where Cp(m) is the complexity of checking
P in terms of a size metric m of the input relation.
Discussion. The analysis results in Fig. 16 show that the
operators scale reasonably for certain classes of applica-
tion scenarios. Specifically, the complexity is no worse than
quadratic (modulo the transformation/property complexity) in
the size of the input megamodel when map is applied to a
transformation with two or fewer input models, in all cases for
reduce and when filter is applied to either a model property
or to a binary relationship property. Some scenarios exceed
these limits (e.g., scenario C in Sec IV); we discuss future
work for addressing scalability in Sec. VIIIL.

VI. TOOL SUPPORT
A. MMINT Overview

The megamodel collection operators described in this paper
has been implemented on the MMINT (Model Management
INTeractive) workbench. MMINT is implemented' in Java
and extends the MMTF model management framework [10].
MMINT uses the Eclipse Modeling Framework (EMF) [12] to
express models and the Eclipse Graphical Modeling Frame-
work (GMF) to create custom editors for editing models and
relationships. The overall architecture of MMINT is illustrated
in Fig. 17.

MMINT uses a distinguished type megamodel in which
model types, relationship types and transformations are regis-

! Available at: http://github.com/adisandro/MMINT

http://github.com/adisandro/MMINT

C) Mapr.MAPPER> # Reduce<ACCUMULATOR>

@ Fulter<T‘rPE>\/// CDPublicAttributes
@

MIDRel / MID CDNoPublicAttributes
““—‘_ﬂ (23 CDMerge
MIDOper %
4 CDRel ') CDRelComposition

Fig. 18. Type megamodel in MMINT used for the examples in this paper.

Clasleagram

<,_<:3

Model #— ModelRel

tered. Fig. 18 shows a screenshot of the type megamodel used
to implement examples in this paper. Here, boxes represent
model types and links between them are binary relationship
types (thick blue arrows). The sub-typing between types is
shown with the hollow-headed arrows. Transformations are
ovals connected to their input and output types with named
links (names are not shown to avoid clutter). The transforma-
tion signature information can be extracted directly from this
model. Additional metadata such as whether a transformation
is commutative or is a relationship composition relation is also
stored in this model.

The runtime operation of MMINT is centred around a
megamodel editor that allows an engineer to interactively
create models and relationships, invoke transformations on
them and inspect the results. Implementations for supporting
tools such as type-specific editors, validation checkers, solvers
and custom transformation implementations can be plugged in
and are managed by the type support runtime layer. A generic
relationship editor is built into MMINT .

B. Implementation of Collection Operators

In MMINT a megamodel is referred to as a MID (Model In-
terconnection Diagram). All transformations, including higher-
order ones, are registered in the type megamodel. Thus, the
three collection megamodel operators in this paper can be seen
at the top of Fig. 18 with their inputs and outputs connected
to the MID type indicating that they take megamodels as
input and produce them as output. In addition, each accepts a
parameter (within the angle brackets). union can also be seen
as an unparameterized transformation. The type compatibility
relation (see TypeComp from Def. 3) is given by the subtype
relation in the type megamodel.

Properties are implemented in MMINT as a model or re-
lationship subtype that contains additional well-formedness
constraints but does not change the metamodel of its supertype.
For example, the CDPublicAttributes type is used for
scenario B in Sec. IV and contains the following OCL code:

CDPublicAttributes:
Attribute.alllInstances ()->exists(
attribute | attribute.public)

The algorithms in Fig. 7, 8 and 10 for the three operators
(and union) are implemented in Java and plugged into the
type support runtime layer as transformation definitions. At
runtime, when an engineer selects one or more MID elements

e o b
\x fitered0 - MID] Filter<CDPublicAttributes>, X MID

Add Note

File

Filter<CDNoPublicAttributes>

Edit

Delete from Model

Format
Validation > x_filteredl : MID

Edit >

Acceleo >

MMINT Run Operator

ocL > Add/Modify Constraint
Check Constraint

Filter<TYPE>
, Map<MAPPER>

Chrus Dranartiac Viaws Reduce<ACCUM
Fig. 19. Screenshot of megamodel for scenario B in Sec. IV being built in
the MMINT megamodel editor.

TABLE 1
EXPERIMENTAL RESULTS RUNNING map[CDMatch]

‘ # CDs #rels time (sec) MID size (MB)
expl 10 100 0.15 0.2
exp2 100 10000 12.92 20.7
exp3 250 62500 85.74 128.9
exp4 500 250000 422.78 518.7

and right-clicks to see what transformations are available to
apply, they see these operators and can select one to apply.
If it is parameterized, then a second dialog appears showing
the choices for the parameter. For example, Fig. 19 shows
a screenshot of scenario B in Sec. IV being built in the
megamodel editor. Currently, the engineer is on step 3 and
is invoking the map operator.

C. Experiments

The MMINT implementation was used to express each
of the four scenarios described in Sec. IV. Although these
are “toy” experiments, they exercise the different aspects of
the implementation. As a preliminary robustness test of the
implementation, we ran an additional experiment in which
we populated a megamodel with a varying number of class
diagrams. The class diagrams were generated to contain 5
distinct random classes, picked from a pool of 50 available
classes. Thus, many of the class diagrams share classes with
the same name. We then measured the running time of
map[CDMatch], given that map is the most complex of the
operators, and the memory size of its output. The results are
shown in Table I.

Since CDMatch has two input models, the complexity for-
mula in Fig. 16 predicts quadratic time in the number of
models of the input megamodel. The results in Table I are
consistent with this prediction and additionally show that the
space also increases quadratically. Although 422s (~7min)
does not seem excessive to process 500 models, we plan to
improve scalability further (See Sec. VIII).

VII. RELATED WORK

Many model management approaches have been proposed.
For example, Rondo [4] represents models as directed labeled
graphs and supports traditional model management operations
(e.g., match and merge) that work directly on models but

not on the megamodels containing them. Maudeling? offers
advanced query services; however, these are on the modeling
artifacts themselves and not on megamodels. Epsilon [11]
provides a set of domain specific languages for specific model
management operations such as match and merge; however,
no special support is provided for megamodels.

The Atlas Model Management Architecture (AMMA) [13]
has a component AM3 for expressing megamodels and an
OCL-based scripting language MoScript for general model
management scripts including limited support for megamodel
manipulation. Specifically, MoScript [9] provides support for
map by using the OCL ApplyTo and Collect operations and
support for filter using the OCL Select operation; however,
these versions of map and reduce are more limited than what
we propose because MoScript does not treat relationships
between models as first class citizens and the support for
map and reduce is limited to sets of models rather than
graph-like collections in megamodels. In addition, MoScript
does not provide support for the reduce operation. Despite
these weaknesses, we see MDE workflow languages such as
MoScript, UniTI [14], and TraCo [15] as complementary to
our approach and believe they can benefit from incorporating
our megamodel manipulation operations into the language. We
leave the investigation of such integration for future work.

Model search engines such as MOOGLE [16] or Inc-
Query [17] perform queries of model contents. Our filter
operation does not limit which languages or engines can be
used for defining model and relationship properties. Thus,
model search engines are complementary to our approach.

Graph-based languages and frameworks that provide
collection-based operations on graphs have been proposed.
The map and fold (i.e., reduce) algorithms in [18] generalize
the classic list-based versions of these to graphs but the
assumptions made by these algorithms make them inapplicable
to the megamodel case. Specifically, the map algorithm does
not allow for a “graph” of input arguments to the transforma-
tion as map does with transformation input signatures, and
the fold algorithm only aggregates values on nodes and edges
rather than collapsing the graph structure itself as reduce
does. The MapReduce approaches of Google and others [19]
are intended for the efficient processing of big data; yet these
operate differently from the map and reduce functions found
in many programming languages [20].

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed three new megamodel col-
lection operators: map, reduce, and filter. These operators
are inspired by similar collection manipulation operators found
in many programming languages, but are adapted to address
the special characteristics of megamodels and MDE environ-
ments. Specifically, the operators treat model relationships
as first class entities and address the graph-like structure of
megamodels and of the signatures for model transformations.

2Maudeling:http://atenea.lcc.uma.es/index.php/Main_Page/Resources/
Maudeling

Our future work will explore several issues. First, since our
operators are currently standalone, we want to investigate how
best to integrate them into an MDE workflow language. This
includes approaches for validating workflows that use our op-
erators. Second, we will consider how to extend our operators
to take into account megamodel hierarchical structure. Finally,
since the combinatorial nature of map limits its scalability,
we intend to investigate ways to mitigate this problem. For
example, it may be possible to adapt the highly parallelizable
MapReduce framework used in big data scenarios. Our overall
objective in these investigations is to produce a set of scalable
megamodel manipulation operators that are needed in typical
model management scenarios.

REFERENCES

[1] P. A. Bernstein, “Applying Model Management to Classical Meta Data
Problems,” in Proc. of CIDR’03, vol. 2003, 2003, pp. 209-220.

[2] J. Bézivin, F. Jouault, and P. Valduriez, “On the Need for Megamodels,”
in Proc. of OOPSLA/GPCE Workshops, 2004.

[3] G. Brunet, M. Chechik, S. Easterbrook, S. Nejati, N. Niu, and M. Sa-
betzadeh, “A Manifesto for Model Merging,” in Proc. of GAMMA at
ICSE’06, 2006, pp. 5-12.

[4] S. Melnik, E. Rahm, and P. A. Bernstein, “Rondo: A Programming
Platform for Generic Model Management,” in Proc. of SIGMOD’03.
ACM, 2003, pp. 193-204.

[5] Z. Diskin, S. Kokaly, and T. Maibaum, “Mapping-Aware Megamodeling:
Design Patterns and Laws,” in Proc. of SLE’13, 2013, pp. 322-343.

[6] A. Vignaga, F. Jouault, M. C. Bastarrica, and H. Bruneliere, “Typing
Artifacts in Megamodeling,” J. Software & Systems Modeling, vol. 12,
no. 1, pp. 105-119, 2013.

[7]1 R. Salay, J. Mylopoulos, and S. Easterbrook, “Using Macromodels
to Manage Collections of Related Models,” in Proc. of CaiSE’09.
Springer, 2009, pp. 141-155.

[8] J.-M. Favre, R. Lammel, and A. Varanovich, Modeling the Linguistic
Architecture of Software Products. Springer, 2012.

[91 W. Kling, F. Jouault, D. Wagelaar, M. Brambilla, and J. Cabot, “Mo-

Script: A DSL for Querying and Manipulating Model Repositories,” in

Proc. of SLE’12. Springer, 2012, pp. 180-200.

R. Salay, M. Chechik, S. Easterbrook, Z. Diskin, P. McCormick,

S. Nejati, M. Sabetzadeh, and P. Viriyakattiyaporn, “An Eclipse-Based

Tool Framework for Software Model Management,” in Proc. of Eclipse

Workshop @ OOPSLA’07, 2007, pp. 55-59.

D. S. Kolovos, L. M. Rose, A. Garcia-Dominguez, and R. F. Paige, The

Epsilon Book. Eclipse, 2015.

D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: Eclipse

Modeling Framework. Pearson Education, 2008.

J. Bézivin, F. Jouault, and D. Touzet, “An Introduction to the Atlas

Model Management Architecture,” Tech. Rep. 05.01, 2005.

B. Vanhooff, D. Ayed, S. Van Baelen, W. Joosen, and Y. Berbers, “Uniti:

A Unified Transformation Infrastructure,” in Proc. of MODELS’07.

Springer, 2007, pp. 31-45.

F. Heidenreich, J. Kopcsek, and U. ABmann, “Safe Composition of

Transformations,” J. Object Technology, vol. 7, no. 10, 2011.

D. Lucrédio, R. P. d. M. Fortes, and J. Whittle, “MOOGLE: A Model

Search Engine,” in Proc. of MODELS’08. Springer, 2008, pp. 296-310.

Z. Ujhelyi, G. Bergmann, A. Hegediis, A. Horvéth, B. Izs6, I. Rith,

Z. Szatmdri, and D. Varr6, “EMF-IncQuery: An Integrated Development

Environment for Live Model Queries,” Science of Computer Program-

ming, vol. 98, pp. 80-99, 2015.

M. Erwig, “Functional Programming with Graphs,” ACM SIGPLAN

Notices, vol. 32, no. 8, pp. 52-65, 1997.

J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on

Large Clusters,” Comm. of the ACM, vol. 51, no. 1, pp. 107-113, 2008.

[20] R. Lammel, “Google’s MapReduce Programming Model — Revisited,”

Science of Computer Programming, vol. 70, no. 1, pp. 1-30, 2008.

[10]

[11]
[12]
[13]

[14]

[15]
[16]

(17]

(18]

[19]

Maudeling: http://atenea.lcc.uma.es/index.php/Main_Page/Resources/Maudeling
Maudeling: http://atenea.lcc.uma.es/index.php/Main_Page/Resources/Maudeling

