
Differences between Versions of UML Diagrams

Dirk Ohst
ohst@informatik.uni-

siegen.de

Michael Welle
welle@informatik.uni-

siegen.de

Udo Kelter
kelter@informatik.uni-

siegen.de
Praktische Informatik

Fachbereich Elektrotechnik und Informatik
Universitaet Siegen, D-57076 Siegen

ABSTRACT
This paper addresses the problem of how to detect and vi-
sualise differences between versions of UML documents such
as class or object diagrams. Our basic approach for showing
the differences between two documents is to use a unified
document which contains the common and specific parts of
both base documents; the specific parts are highlighted. The
main problems are (a) how to abstract from modifications
done to the layout and other (document type-specific) de-
tails which are considered irrelevant; (b) how to deal with
structural changes such as the shifting of an operation from
one class to another; (c) how to reduce the amount of high-
lighted information. Our approach is based on the assump-
tion that software documents are modelled in a fine-grained
way, i.e. they are stored as syntax trees in XML files or
in a repository system, and that the version management
system supports fine-grained data. Our difference computa-
tion algorithm detects structural changes and enables their
appropriate visualisation. Highlighting can be restricted on
the basis of the types of the elements and on the basis of the
revision history, e.g. only changes which occurred during a
particular editing session are highlighted.

Categories and Subject Descriptors
D.2.2 [Design Tools and Techniques]: Computer-aided
software engineering (CASE); D.2.9 [Management]: Soft-
ware configuration management; D.3.2 [Language Classi-
fications]: Design languages

General Terms
Management, Documentation, Design

Keywords
fine-grained data model, versions, configuration, design
transaction, software engineering environments, differences,
UML diagrams
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1. INTRODUCTION
Software configuration management (SCM) is an indis-

pensable part of high-quality software development pro-
cesses. SCM is a well established and common practice in
the later phases of software development, notably during
programming and integration. An advantage of using SCM
systems is that one can create versions of a document and
detect the differences between them. SCM is a less common
practice during the early phases, i.e. analysis and design.
Only a few SCM systems support versioning of analysis or
design documents and can visualise the differences between
such documents.

Existing SCM systems are not well suited for the detec-
tion and visualisation of differences between documents in
the early phases. A large number of SCM systems and con-
cepts are available [6], however most of them (incl. systems
such as RCS, CVS and SCCS) only work with text files,
i.e. files containing lines of text in pretty-printed format.
In contrast to this, software documents in the early phases
are not text, but diagrams (e.g. different types of UML di-
agrams). Diagrams are also mostly stored in files. In the
case of binary formats, conventional SCM systems cannot
detect differences at all. If the diagrams are stored in print-
able formats (e.g. XML formats), other problems arise. For
example, in a file representing a class diagram, each class
might be represented by a few lines of text. The order of
these sections of text is irrelevant. The position where a class
symbol appears in the diagram is explicitly stored in layout
data. Therefore, diagram editors can store the sections rep-
resenting the classes or other diagram elements in arbitrary
order. After a short editing session, the editor can com-
pletely reshuffle the files content and cause a large number
of significant textual differences. Different file contents can
actually represent the “same” diagram. Conventional SCM
systems cannot reasonably handle this situation. Tools are
needed which take the logical structure of the document into
account.

The visualisation of the differences is another point which
needs to be addressed. Differences in textual data can easily
be shown by arranging corresponding blocks side-by-side in
two adjacent columns and highlighting the differences. Dia-
grams cannot be reasonable displayed in such manner. One
has to distinguish between differences in the layout and dif-
ferences in the (conceptual) diagram elements. Hence usual
methods for displaying differences are not applicable.

Another issue is the number of differences between two
documents. There are usually groups of small modifications
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in a document which belong together. These modifications
lead to a large number of differences between “distant” ver-
sions of a document. As a result of this, developers have
problems identifying the context of single differences.

This paper presents concepts for detecting and visualising
differences between versions of UML documents and meth-
ods to reduce the amount of highlighted differences. One
basic assumption is that the documents are modelled in a
fine-grained way, one feature of this approach is that it can
distinguish between objects deleted and later created again
and those shifted (e. g. an operation is shifted from one class
to another).

The basic concepts presented here are applicable inde-
pendently of the data management system (XML files, re-
lational or object-oriented databases). Our implementation
uses a repository system known as H-PCTE [8], a struc-
turally object-oriented DBMS.

The rest of this paper is organised as follows. In sec-
tion 2 we discuss the characteristics and kinds of differ-
ences between versions of UML diagrams. In section 3 we
then presents our concept of how to visualise differences
between diagrams. The computation of differences is de-
scribed briefly in section 4. Section 5 addresses the problem
of reducing the complexity of the highlighted differences.
Section 6 gives a short overview about other concepts of de-
tecting differences between documents. Concluding remarks
are given in section 7.

2. DIFFERENCES BETWEEN UML DIA-
GRAMS

This section discusses and classifies the types of differences
which occur in different types of UML diagrams.

2.1 Mental vs. Physical Models of UML Dia-
grams

What are differences between diagrams? We approach
this from a developer’s point of view: every detail which a
developer might perceive as a difference between two ver-
sions of a diagram must be covered. In order to describe
these details, we must assume a mental model in which di-
agrams are represented and which enables a developer to
describe the differences.

In order to further structure this discussion, we distin-
guish between a diagrams layout and model data. Roughly
speaking, layout data are the positions and the sizes of the
nodes in a diagram or the positions of corner-points in edges,
essentially everything which would be considered irrelevant
in the textual representation of the diagrams content. The
remaining data are model data, they express the semantics
of the document. The UML specification [15] similarly dis-
tinguishes between semantics and notation in chapter 2 and
chapter 3.

Chapter 2 of [15] defines the abstract syntax of complete
and correct diagrams using class diagrams and other means;
the model data of a diagram can thus be thought of as a
set of instances of the types defined in these class diagrams.
Such a model is called fine-grained because it represents all
the details of the syntactical structure of the document.

UML tools, notably diagram editors, can use a similar
data structure for representing a document at run-time in
main memory, and a similar schema to store documents in
an object oriented database. However, the structure of these

“physical models” depends a lot on the programming lan-
guage or the database model; moreover, tools must be able
to handle incomplete and incorrect documents. In any case,
the physical model of a document must be able to represent
the more abstract mental model of a document.

Chapter 3 of [15] defines many details about how abstract
documents should be represented on screen, and leaves many
details open; it is at the discretion of tool developer as to
how these details are designed. Consequently, the struc-
ture of layout data (both in a mental model and a physical
model) may be specific for a tool. This leads to the (unpleas-
ant) observation that the notion of a difference between two
documents may be tool-dependent.

Differences in layout are mostly considered irrelevant for
the developers. For example, the creation of another corner-
point in an edge in a class diagram is normally not consid-
ered a “real change”.

The rest of this section, analyses UML diagrams and dif-
ferences between them at the mental model level; later, when
the actual computation of differences is discussed, a physical
model will be assumed.

2.2 Characteristics of UML Diagrams
This section discusses facets of UML diagrams which can

be relevant for differences.

2.2.1 Semantics of the Layout
The diagram types of the UML can be divided into two

categories, namely diagrams whose layouts are semantically
relevant and those whose layouts are considered irrelevant.
Sequence diagrams belong to the first category1. All other
diagram types belong to the other category, which is the
only one which we will discuss in detail in this paper.

2.2.2 Structure of Diagrams
All diagrams except sequence diagrams represent a graph.

To be specific they contain nodes and relationships connect-
ing them.

The node types depend on the diagram type, e.g. in class
diagrams, there are classes, interfaces and comments, in ac-
tivity diagrams there are actions, forks and joins, etc.

The structure of a node depends on its type. Most node
types have only a few attributes (mostly only their name),
while some node types have a complex structure. Exam-
ples of nodes with names only are forks and joins in activ-
ity diagrams. Examples of nodes with a name and further
attributes are classes, operations, object attributes, states
and transitions. Names also appear as attributes of rela-
tionships, e.g. the name of a role.

2.2.3 Kinds of Attributes
Most attributes are simple attributes, e.g. names, prop-

erties like {abstract} of a class, etc.
Some attributes, e.g. multiplicities, have an internal

structure and could be regarded as multi-valued or even a
complex component. However, for the purposes of showing
differences, it is more sensible to consider them as strings.

The list of attributes or operations of a class, the set of
attribute assignments on an object, the list of internal ac-
tions of a state and similar examples can be regarded as

1The order of operation calls is represented by the graphical
arrangement of the corresponding arrows. Changes of the
layout can thus change the order of operation calls.
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multi-valued attributes or, if the order is relevant, as list-
valued attributes. In most cases, each entry of the list has a
fine-grained structure; however, it is normally more sensible
to consider them as strings.

Another kind of attribute can (or should) be regarded as
a reference to an attribute in another diagram. For exam-
ple, the objects and operations in object diagrams or col-
laboration diagrams contain the names of the correspond-
ing class or operation. These names should be regarded as
mirrored values of attributes of the class or operation. The
collaboration diagram contains only references to the orig-
inal attributes. The following diagram types can also have
references into other diagrams: state chart and activity dia-
grams (the events or operations), deployment diagrams and
component diagrams (the interfaces).

Yet another kind of attributes are derived attributes. The
only relevant example are sequence numbers in collabora-
tion diagrams (and in sequence diagrams, if they are shown
there). The mental model of these attributes depends a lot
on how editors are assumed to work: If an editor for collab-
oration diagrams supports the insertion of a new operation
call into an existing sequence of operation calls, with the au-
tomatic renumbering of all affected sequence numbers, then
the mental model of the operation sequence is just a se-
quence, and the insertion or deletion of an element are the
basic modifications of the sequence. The sequence numbers
are only derived values. On the other hand, if sequence
numbers can (or must) be edited directly by a developer,
they are normal simple attributes.

2.2.4 Complex Nodes
Some node types have a complex structure. e.g. they

can group other nodes or they can contain an entire sub-
diagram. Examples are package diagrams (which contain
packages, classes and components), deployment diagrams
(containing components) or states (may contain a state
chart). In fact, the contents of such a node is often shown
as a separate diagram.

2.3 Classification of Differences
Diagrams can be changed in several ways. Parts of a dia-

gram can be created, deleted or shifted. The individual
differences (or deltas) between two versions of one diagram
can be classified as follows:

• intra-node differences: these are differences within a
node of the graph, for example, the name of a state in
a state chart might change, or an additional attribute
could be added/deleted from a class

• differences in the structure of the graph, for example,
nodes are shifted, created or removed.

The creation and the deletion of nodes result in differences
which can be easily visualised, see section 3. The other
changes will be discussed in more detail. As already men-
tioned above, we will not consider differences in sequence
diagrams.

2.3.1 Intra-Node Differences
Intra-node differences are differences between attributes

of two corresponding nodes in different versions of a dia-
gram. Intra-node differences are not considered differences
between the node as a whole; instead the node as such is

considered a “common” part of both diagrams and the in-
ternal differences are shown inside the node symbol. The
details depend on the kind of attribute:

• simple (single-valued) attributes: the only possible dif-
ferences are changed values

• multi-valued or list-valued attributes: possible differ-
ences are created or deleted elements, e.g. an operation
is added in a class

• reference attributes: the only difference considered rel-
evant is a modification of the reference. A change of
the value of the referenced attribute is not considered
relevant.

2.3.2 Shifting Elements within a Diagram
Diagram elements cannot only be created or deleted, they

can also be shifted within a diagram. There are four kinds
of shifts:

• modifications to the layout: shifting classes around in
the diagram

• structural shifts: one end of an edge representing a
relationship between diagram elements is shifted from
one element to another; e.g. a class C which is subclass
of class A can be made a subclass of class B in this way

• inter-node shifts: e.g. shifting operations or attributes
between classes

• position shifts: e.g. reordering the list of attributes or
operations of a class (e.g. one attribute is shifted from
the last to the first position in the list).

Modifications to the layout do not change the semantics
of the diagram; they can be regarded as some kind of pretty-
printing. Such shifts can be addressed by layout algorithms
(see also section 3.3).

Structural shifts modify the structure of the graph rep-
resented by the diagram. This kind of shift means that an
edge between two nodes A and C is deleted and that a new
edge between nodes B and C is created. These shifts are
visualised by colouring the edges between the nodes in an
appropriate way; the involved nodes are not affected.

Inter-node shifts are semantical changes and therefore al-
ways relevant. The problem distinguishing between the
shifting of a diagram element and the deletion and later
re-creation of an element. Shifts can only be detected ef-
ficiently if this is supported by the editors. This can be
achieved by associating surrogates with diagram elements,
and is in fact implemented in our tools. The shifted element
is coloured in a slightly brighter hue than other insertions
and deletions.

Changing the position of an entry in an ordered list is rel-
evant. The straightforward approach is to consider a shift
as a deletion and an insertion and to show the shifted ele-
ment at both positions in different colours. However, this
approach does not work well if several elements are shifted
and leads to ambiguities. Position shifts should rather be vi-
sualised by ordering the entries according to their position
in one of the base documents. The index of the position of
the entries in the other document is printed in front of each
entry. The index is coloured appropriately. Stereotypes in
the lists are handled in the same way.
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3. PRESENTATION OF DIFFERENCES
The most widely applied paradigm for showing differences

between textual documents is to use two columns. Each doc-
ument is shown completely in one of the columns, identical
parts in both documents are arranged side-by-side, differing
parts are somehow highlighted.

The concept of using two columns works well with most
textual documents, but fails if the lines of text are long
(more than about 100 characters). It does not work well
with graphical documents such as state charts, class dia-
grams, etc.: these documents (more specifically their graph-
ical representation) are both “wide” and “tall” and cannot
easily be split into corresponding sections which can be equal
or differing (e.g. a class in two versions with different oper-
ations or attributes).

We have therefore adopted a different paradigm: the two
documents are shown one over the other, they are so to say
two transparencies arranged in two layers. The paradigm
can also be used for text files. It is intuitively simple, but
it leads to a number of non-trivial conceptual and technical
problems, which we address in the following. The documents
between which the differences should be shown will be called
base documents.

3.1 The Unified Document
Obviously, the “common parts” of both documents should

only be shown once. The complete picture thus consists of:

1. the common parts and

2. the specific parts of each base document.

Different colours can be used to distinguish these parts. If
we disregard the colours, we see another document; it can
be considered a representation of a “unified” (or “mixed”)
document of both base documents. We avoid the notion of
a merged document here since merging is often associated
with removing conflicts; in that sense, a unified document is
not a merged document. However, it can be used as a basis
to create a merged document.

Our unified document will usually have a new graph struc-
ture, which is similar, but not identical to the graph struc-
ture of either base document.

In the case of single-valued attributes, both versions are
shown in different colours. In the case of multi-valued at-
tributes, the two lists are compared, a common part is iden-
tified and parts appearing only in one version are coloured
appropriately. List-valued attributes have already been dis-
cussed.

3.2 2- vs. 3-Way Differences
2-way differences are computed on the basis of two base

documents. Three colours are sufficient here to show which
parts appear in both, only the first or only second base doc-
ument.

3-way differences are computed using a third document
which is a common predecessor of both base documents (i.e.
the base documents lie in parallel branches of a version tree,
they are variants of each other). Five colours are neces-
sary here: one for the common parts, two for insertions and
deletions in the first branch and two for the changes in the
second branch. This may be a bit too colourful, and it
appears questionable whether a developer can maintain an
overview of the bulk of information. Some experiments [22]

have shown that too many colours confuse the developers.
Because of this we do not consider 3-way differences here2,
and we do not use the words “insertion” or “deletion” in the
rest of this text, we rather speak of the specific parts of the
base documents.

3.3 Layout of Diagrams
Changes to the layout of a diagram are normally consid-

ered irrelevant3.
The unified document generally has a new graph struc-

ture; therefore, it cannot have the layout of one of the base
documents. Its layout should be similar to the layout of
one of the base documents chosen by the developer, because
normally a developer has to edit the parts of the document
where differences occur, so he or she should be able to easily
find these parts.

A layout of the unified document generated by a usual
algorithm for automatic graph will hardly fulfil this require-
ment. Thus new algorithms are needed which produce a
layout similar to the layout of one of the base documents.
An ad-hoc approach employed in our prototype is to start
with the layout of one base document (usually the one with
the larger number of nodes) in order to keep the layout of
the nodes and edges unchanged, and to place the remaining
nodes of the unified document around them.

The development of more sophisticated layout algorithms
is not subject of this paper. In any case, one should not
expect a perfect solution. We conclude that one should be
able to manually improve an initial, automatically generated
layout.

3.4 An Example
Figure 2 and figure 3 show two class diagrams which could

result from editing the class diagram shown in figure 1.
In figure 2, a common super class HTMLDocElem has been
added and the operation add has been deleted in the classes
HTMLList, HTMLCombo and HTMLForm. In figure 3, three new
classes Export, HTMLExport and LaTeXExport have been cre-
ated and an operation dumpCont has been added to the class
HTMLDocElem and to the subclasses. The operation dump has
been shifted from HTMLDoc to Export. Note that the opera-
tion was not deleted at the old class and than re-created at
the new class, but was shifted (see section 2.3.2).

Figure 4 shows the resulting unified diagram. Different
line styles have been used in this diagram to represent differ-
ent colours (colours would not be visible in black-and-white
copies of this paper).

The classes HtmlDoc, HtmlForm, HtmlList and Html-

Combo are examples where some operations and attributes
have been added, deleted or shifted.

When a class has been deleted or added the entire class is
coloured (in this example the classes HtmlDocElem, Export,

HtmlExport and LaTeXExport). The same also applies for
relationships between classes.

2This argument is only valid for the visualisation of differ-
ences. A merge tool should use 3-way merging.
3If they are considered relevant, the paradigm of transparen-
cies will not longer be applicable. If we arranged the trans-
parencies in such a way that common parts lie over each
other, the non-common parts could overlap and be unread-
able. This would not be an acceptable representation, and
one would be forced to abandon the idea of representing
common parts only once.

230



dump (): void

HTMLList HTMLCombo

HTMLDoc

HTMLForm

toString (): String

submit : SubmitType
script : URL

add (HTMLList): void
add (String): void

name : String
size : Dimension
name : String

toString (): String

add (String): void
add (String): void

multiSel : Boolean
size : Dimension

name : String

toString (): String

Figure 1: Example of a class diagram

HTMLList

HTMLDocElem

HTMLCombo

dump (): void

HTMLDoc

HTMLForm

<<abstract>>

add (String): void

name : String

toString (): String

size : Dimension

add (HTMLList): void
toString (): String

script : URL
submit : SubmitType

toString (): String

size : Dimension
multiSel : Boolean

Figure 2: Class diagram of figure 1 extended with
inheritance

4. COMPUTING THE DIFFERENCES

4.1 Data Model and Version Model
Our method of computing the differences between two

base documents assumes that both documents are available
in the form of a fine-grained physical data model (see sec-
tion 2.1), which roughly resembles a syntax tree. All ele-
ments of a UML diagram are modelled as separate objects,
for example the document, all classes, all operations, all at-
tributes and all parameters of operations. Figure 5 shows a
simplified meta model for fine-grained data models of UML
class diagrams. There are component relationships between
the object types, e. g. a document contains classes, a class
contains operations and attributes, and so on. Further kinds
of relationships between object types which represent classes
can express inheritance or association between classes. The
whole document is represented as a directed acyclic object

dump()  : void

LaTeXExport

toString (): String

Export

HTMLDoc

HTMLFormHTMLList

dumpCont (): void

HTMLExport

dump()  : void
script : URL

HTMLDocElem

submit : SubmitType

<<abstract>>

dump()  : void
closeFile()  : void
openFile()  : void

dumpCont (): void
add (String): void

name : String

toString (): String
add (HTMLList): void
dumpCont (): void

multiSel : Boolean
size : Dimension

size : Dimension

toString (): String

dumpCont (): void

HTMLCombo

Figure 3: Class diagram of figure 2 extended with
export functionality

shifted method

green solid line / text
red solid line / text

HTMLList

size : Dimension

size : Dimension
name : String

HTMLCombo

toString (): String

add (String): void

dumpCont (): void

LaTeXExport

Export

closeFile()  : void

dump()  : void

HTMLExport

dump()  : void

HTMLDoc

dump()  : void

openFile()  : void

<<abstract>>

toString (): String
add (String): void
dumpCont (): void

HTMLDocElem

name : String

multiSel : Boolean
name : String

toString (): String

submit : SubmitType
script : URL

add (HTMLList): void

HTMLForm

add (String): void

dumpCont (): void

name : String

add (String): void
dumpCont (): void

dump (): void

Figure 4: Unified document showing the differences
between the base documents

graph with a root object. The composition relationships
form a spanning tree of this graph.

The object attributes contain data describing the classes,
operations, etc. Examples are the name or the type of an
element, or layout information belonging to one diagram.
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For example, the object graph shown in figure 6 partially
represents the class diagram shown in figure 1; it uses the
meta model from figure 5. Every component of a class is
represented by an object of the appropriate type. Due to
space considerations, the object graph shown in figure 6 does
not contain all objects needed to represent the class diagram.
The objects representing the class HTMLCombo, the operations
and the attributes of the class HTMLForm and some attributes
of the class HTMLList have been omitted.

In our prototype the documents are stored in the repos-
itory system H-PCTE [8] which is extended by versioning
functionality [14]. Diagram editors based on H-PCTE work
directly on the object graph, that is all editing commands
are performed as operations upon the object graph.

Whenever a diagram editor is launched a new editing ses-
sion is initialised, and all objects modified during that ses-
sion are versioned automatically4. The versions created in
an editing session form a so-called configuration. Internally,
a configuration has a unique identifier and collects all rele-
vant data.

x
y
size

Layout
specification

Class

specification
name
documentation
is_abstract

is_static
default_value

type
name

Attribute

constraints
is_static
implementation
return_type
name
is_abstract

author

Inheritance

Association

Method

name

Document

Figure 5: Meta model of a fine-grained data model

has_method

has_attribute

HTMLDoc : Class

composition

add : Method

HTMLList : ClassHTMLForm : Class

name : Attribute toString : Method

: Document

has_class has_class

Figure 6: Example of an object structure

4.1.1 Effects of Shifts
The four kinds of shifts discussed in section 2.3.2 have

different effects on the physical model of the diagram.
Shifts in the layout change only the object attributes stor-

ing the position and size of the nodes and edges. Structural
shifts affect the relationships representing inheritance, ag-
gregations or associations between classes. Creating an edge
in the diagram results directly in creating a relationship of
the appropriate type in the model5.

4Unmodified objects are not versioned in an editing session.
5In our repository system H-PCTE, relationships have (a)
a key (unique within the scope of the source object) and (b)

Inter-node shifts (e. g. shifting an operation between
classes) affect the component relationships in the model.
The shifting of an operation between two classes results in
the shifting of the object representing the operation from
one parent object to another. That means one node of the
spanning tree is shifted across the tree.

The effects of position shifts depend a lot on the chosen
physical model. If explicit consecutive position numbers are
used, then an insertion or deletion leads to the renumber-
ing of all elements at the succeeding positions. Another
approach would be the use of floating point values which
express the positions by their relative values. A position
shift can be achieved in most cases by simply modifying the
position value. Details are beyond the scope of this paper.

4.2 The Difference Operation
The difference operation computes the differences between

the model data of two base documents and creates a differ-
ence document containing all information necessary to visu-
alise the unified document. We assume that the root object
of the document is unchanged except for its attributes and
components.

The difference operation traverses the spanning tree of the
object graph of both base documents simultaneously. For
each level of the spanning tree the corresponding sub-trees
have to be found. The corresponding sub-trees are identified
by the unique identifier of their root object6. Each pair of
root objects of corresponding sub-trees is inserted in a queue
and processed one after the other. Only the attributes and
relationships (but not the component relationships which
build the spanning tree) of the root objects are compared.
After a pair of root nodes has been processed, a new object
representing this pair is created in the unified document.
The new object contains the unchanged attribute values,
information about the changed attribute values and infor-
mation about the relationships. Then the corresponding
sub-trees of the current root objects are processed.

Sub-trees of one base document without a corresponding
sub-tree in the other base document could have been:

1. created/deleted in one of the base documents or

2. shifted across the syntax tree.

One can distinguish between these two cases as follows: for
each base document, we collect the sub-trees which are con-
tained only in this base document. After processing the en-
tire syntax trees these two sets are searched for correspond-
ing sub-trees. Pairs of corresponding sub-trees are due to
shifts in the diagram. All sub-trees without a correspond-
ing sub-tree have been created or deleted in one of the base
documents.

Our version management system provides additional in-
formation which allows us to simplify this search consider-
ably and directly detect shifts across the syntax tree; this
subject is beyond the scope of this paper.

As discussed in section 3.3 it does not make sense to com-
pute the differences between the layout data of both docu-

attributes. Relationships are versioned independently of the
source object.
6In storage systems where object identifier are not avail-
able one has to find corresponding objects by using heuristic
methods based on the single- and multi-valued attributes of
the nodes. This problem is not in the scope of this paper.
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ments. Layout data must be handled in a special way. Be-
cause of the fine-grained modelling we can easily ignore lay-
out data during the computation of the differences. The
layout data of the unified document are computed in a sec-
ond computation step. In the case of class diagrams we use
an automatic layouter which starts with the layout data of
one class diagram and places the classes belonging only to
the other diagram at the border of the unified diagram. The
user can layout the unified diagram manually as well.

An important observation at this point is that the com-
putation of differences is document type-specific. Because
layout data are usually stored in dedicated attributes, it is
easy to ignore them during the first phase of the construc-
tion of the unified document; in fact, one can use a generic
algorithm to which the set of layout attributes is passed
as an argument. Things are more complicated in the second
phase, the generation of the layout: in order to achieve good
results, one has to use document type-specific heuristics.

5. RESTRICTING THE NUMBER OF
COLOURED DIFFERENCES

The visualisation of differences using colours is only use-
ful if the compared versions do not contain too many differ-
ences. If the document has evolved over a longer period of
time or if the compared versions are variants of each other
there can be a large number of coloured differences. This can
lead to a unified diagram which is too colourful and therefore
useless. Figure 4 shows an example of such a diagram.

More generally, developers often want to “see” only a sub-
set of all differences. Mostly they are only interested in
changes which meet certain criteria, e.g.:

• changes which affect elements of a particular type, e.g.
changes affecting associations or subtype relationships
in a class diagram, attribute assignments in an ob-
ject diagram etc.; obviously, these selection criteria are
document type-specific

• changes of “original” data; for example, if an operation
is renamed, there is one change at the location where
the operation is defined and maybe a large number of
changes at locations where the operation is used and
its name is referenced; the latter type of change can
be considered irrelevant

• changes which occurred during a particular editing ses-
sion, e.g. the changes caused by the fixing of a bug.
The general problem is that local changes at the same
diagram element (e.g. a class) which occurred in dif-
ferent contexts cannot be distinguished because they
are all highlighted with the same colour. This problem
occurs in the example in figure 4: this unified docu-
ment shows the effects of two major changes which are
basically independent from one another.

Our proposed solution to this problem is to restrict the
coloured differences using information offered by the meta
model and by the version management system. Only the
differences of interest are coloured, all others are painted
grey. The grey elements of the diagram are less eye-catching
as the coloured ones; developers can thus concentrate on
the differences of interest. The set of the differences to be
highlighted can be restricted on the basis of:
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Figure 7: Unified document of figure 4 with grey
parts

• the type of affected elements, e.g. only differences
relating to classes, but no differences relating to at-
tributes or operations are highlighted; here we exploit
the fine-grained data model

• the history of revisions: only differences which
emerged in a particular revision (which corresponds
to a particular session) are highlighted

• inclusion or exclusion of differences relating to refer-
ences.

The selections can be combined, e.g. one can highlight
only the operations changed during a particular session.

5.1 Exploiting Revision Histories
Restricting the colouring of differences on the basis of the

history of revisions is particularly useful if only few changes
occur during a session.

An example of how revision histories can be exploited
is shown in figure 7: only changes which correspond to
the modifications shown in figure 2 are highlighted, while
changes which correspond to the modifications shown in fig-
ure 3 are shown in grey.

In our own implementation, the history of revisions is au-
tomatically generated by the database kernel. Whenever a
document is changed new versions of all modified objects
are created. The newly created versions are combined to-
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gether into a configuration. Each configuration has a unique
identifier.

When the unified document is being created both base
documents are read. Our database kernel delivers not only,
the usual information about the objects and relationships
and values of attributes, but also, for every object, the iden-
tifier of the configuration to which this version of the object
belongs. These additional data are stored in the difference
document and are later evaluated by the tools displaying the
unified document.

5.2 Tool Support
The information about the involved configurations must

be offered to the developer in an appropriate way (see fig-
ure 8). Our own tools7 use a list of configuration identifiers.
If the versions of the document belong to the same branch,
the list contains all configurations between the configura-
tions related to the base documents. If the versions belong
to two branches with a common ancestor we use two lists,
each one with the configurations between the common an-
cestor and the configurations relating to one of the base
documents. These lists are displayed on the right side of the
diagram. The developer can explicitly choose the differences
to be highlighted by selecting the corresponding configura-
tions.

Figure 8: Difference view inside the class diagram
editor (showing the diagram in figure 7)

It should again be obvious that difference tools are doc-
ument type-specific since they must be able to display the
specific forms of nodes, edges and other diagram elements.
A difference tool for a specific document type is similar, but
not identical to a graphical editor for documents of this type:
normal graphical editors cannot evaluate the additional in-
formation contained in the difference document and cannot
display differences (and, of course, do not offer a user inter-
face to control the highlighting of differences). As a result,
the implementation of difference tools can require consider-
able effort.

7We are using a generic framework for the construction of
editors for a range of document types [12, 9].

6. RELATED WORK
There exist a number of algorithms for detecting differ-

ences between two documents, the chosen difference algo-
rithm depends on the kind of data. The algorithm pre-
sented by Myers [13] is usable for textual files. This algo-
rithm looks for the longest common sequence of characters
inside the files. It has some disadvantages which have been
partly solved in further work [7]. One example of such an
improvement is Bdiff [19], which detects block-moves.

Algorithms for textual data are not suitable for struc-
tured data like UML class diagrams [16]. Structured data
can often be represented as trees. Algorithms for finding dif-
ferences between special kinds of structured documents like
LATEX-files, HTML-files or data in CAD databases [4, 3] are
often based on algorithms solving the tree-to-tree correction
problem [2, 23, 18, 17]. These algorithms interpret docu-
ments as ordered or as unordered trees. Ordered trees have
an order between sibling nodes. The difference algorithms
on trees try to find a sequence of atomic operations which
transform one tree into the other. Such sequences are called
edit scripts. The algorithms are based on different sets of
atomic operations. All sets include the basic operations to
create, delete or modify a node of the tree but only some
of them can distinguish between the shift of a node and the
combination of an insert and a delete.

Further algorithms [11, 5, 20] can detect differences be-
tween XML documents. These algorithms are based on the
basic algorithms for text files. The algorithms for XML
documents try to find similar sub-trees of the document and
calculate the differences using matching sub-trees.

The algorithms mentioned above do not assume persistent
node identifiers. In contrast to this objects managed by soft-
ware configuration management systems can have persistent
node identifiers [1, 10]. There are algorithms which exploit
persistent node identifiers of versioned objects when search-
ing for corresponding objects in two versions of a document.
The amount of time required to find a corresponding node is
then only linear to the number of nodes in the involved docu-
ments. But the calculation of differences between unordered
trees without node identifiers is proven to be NP-hard [24].

There are also proposals which describe version manage-
ment systems for software documents like class diagrams
(e.g. [16]). These scientific prototypes offer a merge func-
tion or algorithms for detecting the differences between two
UML class diagrams [25] which are stored in an object struc-
ture. ClearCase [21], a commercial software configuration
management system, also supports the creation of versions
of UML diagrams. ClearCase uses external tools to visu-
alise differences or to merge versions of files in proprietary
formats, e.g. files produced by Rational Rose. An example
of such an external tool is the Model-Integrator, which is
part of the Rose product. The Model-Integrator shows the
differences in a tree; all meta data, e.g. unique identifiers,
are included, positions are shown in the form of coordinates.
This has the advantage that the tool must not address the
layout. But this is also a big disadvantage because the de-
veloper has to map the internal tree representation mentally
onto the external diagram representation. After merging
two versions the resulting version of a diagram can be shown
using Rose but without any information about differences.

Most of the known concepts and tools are generic, i.e. no
special meta model is required to use them (textual differ-
ence tools are applicable on all kinds of texts, however the
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quality of the results is poor). The Model-Integrator and
our concept are specialised to a specific meta model, so that
they are not applicable to arbitrary document types.

We are not aware of algorithms and tools which use
colours for visualising differences between graphical software
documents. Furthermore we are not aware of tools which
enable a designer to control the amount of highlighted dif-
ferences on the basis of several selection criteria, including
one which is based on the version history.

7. CONCLUSION AND FUTURE WORK
We have discussed the UML diagrams and their charac-

teristics. The diagrams represent directed graphs; the lay-
out of the diagrams is irrelevant except for sequence dia-
grams. The diagrams consist of nodes and relationships.
The nodes can contain attributes such as names or lists of
components, groups of nodes or even sub-diagrams. On this
basis we have discussed several kinds of differences and have
presented concepts for computing and displaying differences
between graphical documents. The differences are displayed
in a diagram which can be seen as the union of the two base
diagrams. The common parts of both base diagrams are
painted black and the specific parts are coloured.

One particular feature of the proposed concept is its abil-
ity to detect shifts, e.g. the shifting of attributes or opera-
tions between classes in a class diagram. Another feature is
the document type-specific filtering of highlighted informa-
tion; filtering is based on the type of the elements and on
the revision history.

The concepts have been implemented for UML class di-
agrams. The difference tool has been integrated into the
tool environment PISET [9]. The meta-CASE architecture
of this environment has significantly facilitated the imple-
mentation of the difference tool.

The most significant disadvantage of our approach is that
the algorithms and tools are document type-specific. Dif-
ference tools are comparable to usual graphical editors for
graphical documents; the effort required to implement such
a tool can be significant; meta-CASE architectures and other
technologies can reduce the effort required for implementing
a family of difference tools. It is hard to imagine that one
can find good algorithms and difference tools which are as
“generic” as the algorithms and tools for textual files.

Further work will address the merging of document ver-
sions based on 3-way merging. Virtually all advantages of
our approach are carried forward to the problem of merg-
ing, notably the number of merge conflicts will be reduced.
Merge tools, however, must address a number of additional
problems including document type-specific commands and
the management of the revision history.
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