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Abstract. The creation and manipulation of multiple related models is common 
in software development, however there are few tools that help to manage such 
collections of models. We propose a framework in which different types of model 
relationships -- such as submodelOf and refinementOf -- can be formally defined 
and used with a new type of model, called a macromodel, to express the required 
relationships between models at a high-level of abstraction. Macromodels can be 
used to support the development, comprehension, consistency management and 
evolution of sets of related models. We illustrate the framework with a detailed 
example from the telecommunications industry and describe a prototype 
implementation. 
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1   Motivation 

In Software Engineering, it is common to model systems using multiple interrelated 
models of different types. A typical modeling paradigm provides a collection of 
domain specific modeling languages, and/or multi-view languages such as UML. The 
modeling languages are typically defined through a metamodel, however only very 
limited support is typically provided for expressing the relationships between the 
models.  

Existing approaches to supporting model relationships tend to focus on how the 
contents of specific model instances are related (e.g. [7, 10]), rather than on the 
models themselves. Those approaches that do provide abstractions for expressing 
relationship between models typically concentrate on a limited set of relationship 
types required to support model transformation (e.g. [2, 4]) and/or traceability (e.g. 
[1]). In contrast, we argue that a rich, extensible set of relationship types for relating 
models is needed, to capture the intended meaning of the models and the various ways 
that models in a collection can constrain one another.  

UML suffers from a similar limitation. The UML metamodel defines a number of 
diagram types as projections of a single UML model. However, developers rarely 
manipulate the underlying UML model directly - they work with the diagrams, and 
the intended purpose of each new diagram is only partially captured in the UML 
metamodel. For example, a developer might create an object diagram showing 
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instantiations of a subset of the classes, chosen to be relevant to a particular use case 
scenario. The relationships of these objects to the classes in the model is captured in 
the metamodel, but the relationship between this particular object diagram and the set 
of behaviour models (e.g. sequence diagrams) that capture the scenario is left implicit.  

The key point is that each model in a collection is created for a specific purpose, 
for example to capture important concepts, or to elaborate and constrain other models. 
Each model therefore has an intended purpose and a set of intended relationships with 
other models. Such relationships might include submodels, refinements, aspects, 
refactorings, transformations, instantiations, and so on. A precise definition of these 
intended relationships is needed to fully capture the intended meanings of the models.  

We propose a framework for systematically extending a modeling paradigm to 
formally define model relationship types between model types and we introduce a 
new type of model, called a macromodel, for managing collections of models. A 
macromodel consists of elements denoting models and links denoting intended 
relationships between these models with their internal details abstracted away. The 
framework provides a number of benefits:  

1. Understandability. When large models are decomposed into smaller ones, the 
representation of relationships is essential for understandability [9], thus, making 
the underlying relational structure of a set of models explicit helps comprehension.  

2. Specifying constraints on models, even for models yet to be created. When 
constituent models change, they are still expected to maintain the relationships 
expressed in the macromodel, because the macromodel captures the intentions of 
the modelers on how the set of models should be structured.  

3. Consistency checking. The macromodel can be used to assess an evolving set of 
models for conformance with modeler intentions even when mappings between 
models are incomplete. 

4. Model evolution. A change to the macromodel can be taken as a specification for 
change in the collection of models it represents – either involving the removal of 
some models, changes in model relationships, or additions of new models. Thus, 
a macromodel can be used to guide model evolution. 

In a short paper [14], we introduce the basic concepts of the framework. In this 
paper, we elaborate the details, provide a formal semantics for macromodels and 
describe a new implementation that integrates the framework with the model finder 
Kodkod [16] to support automated model management activities such as consistency 
checking and model synthesis.  

The structure of this paper is as follows. Section 2 introduces the framework 
informally and then Section 3 provides a formal treatment. In Section 4, we describe a 
prototype tool implementation and Section 5 describes the application of the 
framework to a detailed example from the telecommunications domain. In Section 6 
we discuss related work and finally in Section 7 we state some conclusions and 
discuss future work. 

2   Framework Description 

In the framework we assume that at the detailed level, the relationship between two 
(or more) models is expressed as a special kind of model that contains the mapping 
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relating the model elements. Furthermore, these relationships can be classified into 
types and that they can be formalized using metamodels. For example, Figure 1 shows 
an instance of the objectsOf relationship type that can hold between a sequence 
diagram and object diagram in UML. Each object symbol in the sequence diagram is 
mapped to an object symbol in the object diagram that represents the same object (via 
the identity relation id) and each message in the sequence diagram is mapped to the 
link in the object diagram over which the message is sent (via the relation sentOver). 
In addition, the mapping is constrained so that both id and sentOver are total functions 
and the mapping must be consistent in the sense that the endpoint objects of a 
message should be the same as the endpoint objects of the link to which it is mapped.  

The benefit of defining different relationship types such as objectsOf is that their 
instances express the relationships between models at two levels of abstraction. At the 
detail level, it shows how the elements of the models are related. At the aggregate, or 
macro level, it expresses a fact about how the models are related as a whole and 
conveys information about how a collection of models is structured. Thus, we can use 
these to express meaningful macromodels such as the one in Figure 2 that shows the 
relationships between some of the models and diagrams of a hypothetical library 
management system. Here we have added the relationship types caseOf that holds 
between a sequence diagram and its specializations, actorsOf that holds between a 
model and an organization chart and diagramsOf that holds between a collection of 
UML diagrams and the UML model they are diagrams of.   

 

id idsentOver sentOver sentOver 
id id f:objectsOf 

             Fig. 1. A relationship between a sequence diagram and an object diagram 
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Borrow Book:
SequenceDiagram

Return Book:
SequenceDiagram

Media Transaction:
SequenceDiagram

Customer Interaction: UMLDiagrams

Library Management System
Design: UML

HumanResources:
OrgChart Lending Desk:

ObjectDiagram

f2:caseOf
f3:objectsOf f4:caseOf

f1:objectsOf

f5:diagramsOf

f6:actorsOf

 

Fig. 2. Partial macromodel of a library system specification 

A macromodel also has a metamodel and can contain well-formedness constraints 
on the valid configurations of models. For example, in Figure 2, a macromodel of 
type UMLDiagrams can only contain symbols denoting UML diagrams.    

The symbols in a macromodel are realized by actual models and mappings. As the 
development of the library management system proceeds and as these artifacts evolve 
we expect the relationships expressed in the macromodel to be maintained. Thus, the 
macromodel provides a new level of specification in which the intentions of  
the modelers are expressed at the macroscopic level as models that must exist and 
relationships that must hold between models. Since these constraints are formalized 
using the metamodels of the relationship types involved, they can be leveraged by 
automated support for model management activities such as consistency checking and 
change propagation. We illustrate this in Section 5 with the prototype MCAST 
(Macromodel Creation and Solving Tool).  

The application of the framework to a particular modeling paradigm involves the 
following steps: 

1. The relationship types that are required for relating model types are defined using 
metamodels.  

2. The metamodel for macromodels is defined in terms of the model and 
relationship types.  

3. For a given development project within the paradigm, an initial macromodel is 
created expressing the required models and their relationships. As the project 
continues, both the macromodel and the constituent realizations of the models 
and relationships (i.e. mappings) continue to evolve. During the project, the 
macromodel is used as a way of supporting the comprehension of the collection 
of models in a project, specifying extensions to it and for supporting model 
management activities with tools such as MCAST. 

 
We describe the formal basis for these steps below. 

3   Formalization 

The problem of how to express relationships between models has been studied in a 
number of different contexts including ontology integration [6], requirements 
engineering [10, 11] and model management [3]. Bernstein [3] defines the 
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relationship in terms of the semantics of the models: two models are related when the 
possible interpretations of one model constrain the possible interpretations of the 
other model. Thus, it is a binary relation over the sets of interpretations of the models.  

At the syntactic level, this relationship can be expressed by embedding the models 
within a larger relator model that contains the mapping showing how the elements of 
the models are related. Figure 3 shows how the objectsOf relationship type between 
sequence and object diagrams shown in Figure 1 is defined using metamodels. Note 
that these are simplified versions of portions of the UML metamodel that correspond 
to the content of these diagrams. In order to formally relate these metamodels, we 
exploit the following similarity between metamodels and logical theories: a 
metamodel can be taken to consist of a pair 〈Σ, Φ〉 where Σ defines the types of 
elements used in a model and is called its signature while Φ is a set of logical 
sentences over this vocabulary that define the well-formedness constraints for models. 
Thus, a metamodel is a logical theory and the set of finite models of this theory, in the 
model-theoretic sense, is also the set of models that the metamodel specifies. We 
designate this set Mod(Σ, Φ). 

Institution theory [5] provides a general way to relate logical theories by mapping 
the signatures of the theories in such a way that the sentences are preserved. We take 
a similar approach for metamodels and define the notion of a metamodel morphism 
between two metamodels as follows: a metamodel morphism f:〈ΣA, ΦA〉→〈ΣB, ΦB〉 is a 
homomorphism of the signatures fΣ:ΣA → ΣB such that  ΦB  f(ΦA) - where we have 
abused the notation and have used f as a function that translates sentences over ΣA to 
sentences over ΣB according the mapping fΣ:ΣA → ΣB. Thus, by establishing a 
metamodel morphism from metamodel A to metamodel B we both map the element 
types and set up a proof obligation that ensures that any B-model contains an A-
model that can be “projected” out of it.  

In the example of Figure 3, the metamodel morphisms pOD and pSD map in the 
obvious way into the relator metamodel of objectsOf and the fact that they are 
metamodel morphisms ensures that every well-formed instance of objectsOf contains 
a well-formed instance of ObjectDiagram and of SequenceDiagram that it relates.  In 
particular, an instance of objectsOf constrains the SequenceDiagram to have a subset 
of the objects of the ObjectDiagram, and it contains a functional association 

sentOver:Message → Link  that satisfies the consistency constraint that when it maps 

a message to a link then the endpoint objects of the message must be endpoint objects 
of the link. Thus,  

ΦobjectsOf  = pOD(ΦObjectDiagram) ∪ pSD(ΦSequenceDiagram) ∪   

{∀m:Message.  

(linkStart(sentOver(m)) = messageStart(m) ∧  

     linkEnd(sentOver(m)) = messageEnd(m)) ∨  

(linkEnd(sentOver(m)) = messageStart(m) ∧ 

 linkStart(sentOver(m)) = messageEnd(m))} 
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Fig. 3. Defining the objectsOf relationship type 

The key benefit of using metamodel morphisms for  relating metamodels is that the 
approach can be formulated in a way that is independent of the metamodeling 
language since each metamodeling language can define its own type of metamodel 
morphism. Furthermore, institution theory provides a formal means to relate different 
logics using Institution morphisms [5] and thus our approach extends similarly to 
multiple metamodeling formalisms; however, we do not pursue this direction further 
in this paper as it is secondary to our interests here. 

In addition to “custom defined” relationship types such as objectsOf there are a 
variety of useful generic parameterized relationship types that can be automatically 
constructed from the metamodels for the associated model types. We discuss two of 
these briefly as they are used in Section 5. 

Given any model type T, we can define the relationship type eq[T] where 
eq[T](M1, M2) holds iff there is an isomorphism between M1 and M2 and where we 
interpret corresponding elements as being semantically equal – i.e. they denote the 
same semantic entities. A second parameterized type is merge[T]. Given a collection 
of models K consisting of T-models, merge[T](K, M) holds iff M is the smallest T-
model that contains all of the models in K as submodels. Note that a unique merge M 
may not always exist. 

3.1   Macromodels 

Now that we have an approach for defining relationship types we can characterize a 
macromodel type in terms of the model types and relationship types  it contains. A 
macromodel is a hierarchical model whose elements are used to denote models that 
must exist and the relationships that must hold between them. Like model and 
relationship types, a macromodel type is defined using a metamodel. Figure 4 depicts 
a simple example of this. The upper part shows a macromodel metamodel 
SimpleMulti  (left side) and the set of metamodels for the model and relationship 
types it can depict (right side). The axioms of the macromodel metamodel limit the 
possible well-formed collections of models and relationships that the macromodel can 
represent. The notation for macromodels expresses binary model relationship types as 
directed arrows between model types however they should be understood as 
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consisting of a relator model and two metamodel morphisms. The simple illustration 
in Figure 4 does not depict hierarchy but Figure 9 shows a more complex one that 
does that we used in the example of Section 5.  

The lower part of Figure 4 depicts a particular macromodel M:SimpleMulti  and a 
collection of models that conform to it. The asterisk preceding f:objectsOf,  
M2:ObjectDiagram and f1:refines indicate that they are “unrealized” models and 
relationships. This implies that there is no corresponding instance for these in the 
collection of models specified by the macromodel and they are just placeholders used 
to express more complex constraints. The macromodel in Figure 4 expresses the fact 
that the collection should contain models M1, M3 and M4 and these must satisfy the 
constraint that M4 is a sequence diagram and the object diagram corresponding to 
sequence diagram M1 is a refinement of object diagram M3. Translated into first 
order logic we get the set of sentences shown in Figure 5.  

 

sorts SobjectsOf, Srefines, SObjectDiagram, SSequenceDiagram

pred objectsOf: SobjectsOf , refines: Srefines, ObjectDiagram: SObjectDiagram,
SequenceDiagram: SSequenceDiagram

func pod: SobjectsOf → SObjectDiagram, psd: SobjectsOf → SSequenceDiagram,

pod1: Srefines → SObjectDiagram, pod2: Srefines → SObjectDiagram,
M1, M4: SSequenceDiagram, M3: SObjectDiagram

axioms
SequenceDiagram(M4),
SequenceDiagram(M1),
ObjectDiagram(M3),
∃f: SobjectsOf, f1: Srefines,m2: SObjectDiagram. objectsOf(f ) ∧ psd(f) = M1 ∧ pod(f) = m2

∧ refines(f1) ∧ pod1(f1) = m2 ∧ pod2(f1) = M3 ∧ ObjectDiagram(m2)

 
Fig. 5. Example translation 

SequenceDiagram

objectsOf 

ObjectDiagramObjectDiagram 

SequenceDiagram 

M1:SequenceDiagram 

M3:ObjectDiagram

M4:SequenceDiagram

M1:SequenceDiagram 

M3:ObjectDiagram 

M4:SequenceDiagram 

M:SimpleMulti 

refines 

Fig. 4. A macromodel metamodel and an instance of it 
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pod2 



148 R. Salay, J. Mylopoulos, and S. Easterbrook 

Here we are using projection functions with the same name as their corresponding 
metamodel morphisms to associate relator models with the models they relate. Each 
connected set of unrealized elements in the macromodel is translated to an existential 
sentence with the unrealized models and relationships as existentially quantified 
variables. We will use this translation approach for defining the semantics of 
macromodels in general, below. 

3.2   Macromodel Syntax and Semantics 

We now define the syntax and semantics of macromodels formally. Figure 6 shows 
the abstract syntax and well-formedness rules of the macromodel language1. The 
notation of macromodels is summarized as follows: 

o A Model element is represented as a box containing the model name and type 
separated by a colon. When the name is preceded with an asterisk then it is has 
the realized attribute set to false. 

o A Relation element is represented with an arrow, if binary, or as a diamond with 
n legs, if n-ary. It is annotated with its name, type and with optional Role labels. 
When the name is preceded with an asterisk then it is has the realized attribute set 
to false. 

o A sub-Macromodel element is represented as a box containing its name and type. 
It optionally can show the sub-macromodel as the contents of the box. 

o A Macrorelation element is represented with an arrow, if binary, or as a diamond 
with n legs, if n-ary. It is annotated with its name, type and with optional 
Macrorole labels. It can optionally show its contents as a dashed oval linked to 
the main the arrow or diamond symbol. 

 

Assume that we have a macromodel K which has metamodel T. To define the 
formal semantics of macromodels we proceed by first translating T to a first order 
signature ΣT reflecting the different model and relationship types in it and then 

translating  K to the theory 〈ΣT ∪ ΣK, ΦK〉 where ΣK consists of a set of constants 

 

(R1) A Macromodel cannot contain itself
∀m:Macromodel. �TC(contains(m, m))

(R2) There is a unique root Macromodel
∀m, m1:Macromodel.

(�∃m2:Macromodel. contains(m2, m)) ∧

(�∃m3:Macromodel .contains(m3, m1)) º m = m1

(R3) If any of its arguments are unrealized then a
Relation is unrealized.

∀r:Relation∃ri:Role. ri.Relation = r ∧

ri.Model.realized = false º r.realized = false.Role Relation

Model
realized = {true, false}
type
name

1..*

*

1..*
{ordered}

*

MacroRelation

Macromodel
name
type

**
1..*

*

1..*

*

{ordered}

**

MacroRole

 

Fig. 6. Abstract syntax and well-formedness constraints of macromodels 

                                                           
1 TC(pred(x, y)) denotes the transitive closure of pred(x, y). 
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corresponding to the realized models and relationships in K and ΦK is a set of axioms. 
Figure 5 is the result of performing the translation to the example in Figure 4. We 
then construct a “universal” interpretation JT of ΣT that consists of all possible models 
and relationships using these types. Any collection M of models and relationships 
conforms to K iff it is an assignment of the constants in ΣK to elements of the 
appropriate types in JT  such that ΦK are satisfied. 

Figure 7 shows the algorithms involved. Note that in the translation algorithm for 
K, the connected sets of unrealized Model and Relation elements are obtained by 
treating the macromodel as a graph and forming the maximally connected subgraphs 
consisting of unrealized elements.  

4   Prototype Implementation: MCAST 

The prototype implementation MCAST is built in Java on the Eclipse-based Model 
Management Tool Framework (MMTF) described in [12] and leverages the Eclipse 
Modeling Framework (EMF) and related components. Figure 8 shows the architecture 

The translation algorithm for T is as follows: 
   ΣT is initially empty, then, 

o For each metamodel X = 〈ΣX, ΦX〉 denoted by a Model or Relation element, add a sort 
symbol SX and a unary predicate symbol X:SX to ΣT 

o For each metamodel morphism p:〈ΣX, ΦX〉→〈ΣY, ΦY〉 denoted by a Role element,  add a 

function symbol p:SY→SX  to ΣT 

 

The interpretation JT is constructed as follows: 
o To each sort symbol SX assign the set Mod(ΣX, ∅) 
o To each predicate symbol X:SX assign the unary relation defined by the set Mod(ΣX, ΦX)  
o To each function symbol p:SY→SX assign the function p: Mod(ΣY, ∅) →Mod(ΣX, ∅) 

induced by the signature morphism pΣ:ΣX → ΣY 
 
The translation algorithm for K is as follows: 
  ΣK and ΦK are initially empty, then, 

o For each realized Model or Relation element M of type X add the constant M:SX to ΣK 
and the axiom ‘X(M)’ to ΦK. 

o For each Role element of type p from realized relation R to a realized model M, add the 
axiom ‘p(R) = M’ to ΦK. 

o For each connected set S={M1, …, Mn} of unrealized Model and Relation elements, add 
the axiom ‘∃m1, …, mn. φS’ to ΦK where φS is a conjuction constructed as follows: 

φS is initially empty, then,  
o For each element Mi of type X add the conjunct ‘X(mi)’ to φS. 
o For each Role element of type p from  relation Mi to realized model M, add 

the conjunct ‘p(mi) = M’ to φS. 
o For each Role element of type p from  relation Mi to model Mj, add the 

conjunct ‘p(mi) = mj’ to φS. 
o For each Role element of type p from  realized relation R to model Mi, add 

the conjunct ‘p(R) = mi’ to φS. 

Fig. 7. Semantic interpretation algorithms 
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of MCAST. MMTF already provides a simplified version of a macromodel called a 
Model Interconnection Diagram (MID) used as an interface for invoking the model 
manipulation operators and editors that can be plugged into the framework. MCAST 
extends this to a full macromodel editor and provides the Solver module that utilizes 
the Kodkod [16] model finding engine to solve model management problems 
expressed using annotated macromodels. We now revisit the three steps for utilizing 
the framework as described in Section 2 and describe how these steps are 
implemented using MCAST.  

Step 1: Defining relationship types. In the formal treatment of section 3, 
relationship types are expressed using a relator metamodel plus metamodel 
morphisms. In the implementation we exploit the fact that EMF metamodels (i.e. 
Ecore) can directly reference other metamodels and thus rather than replicate the 
endpoint model types within the relator metamodel they are referenced as external 
metamodels. Axioms are expressed using a textual representation of Kodkod’s 
relational logic language. Metamodels for model types are also expressed in this way.   

Step 2: Defining a macromodel metamodel. MCAST allows metamodels for 
macromodels to be defined as Ecore metamodels that extend the base metamodel 
shown in Figure 6. Each model and relationship type is given as subclass of classes 
Model and Relation, respectively. In order to implement the mapping in the top part 
of Figure 4, these are annotated with references to the Ecore metamodels they denote.  

Step 3. Managing the evolution of model collections. The Solver takes as input, a 
macromodel with a subset of the model and relationship elements annotated with 
references to existing models and relationships (i.e. relator models). It then transforms 
this into a Kodkod model finding problem and uses it to find solutions that assign the 
remainder of the elements to new models and relationships in such a way that the 
constraints expressed by the macromodel are satisfied. This can be used in two ways: 

o Simple Conformance Mode: If the input consists of all of the realized elements 
assigned to existing models and relationships then a solution exists to the Kodkod 
problem iff this is a conformant collection and hence the Solver can be used for 
conformance checking. 

o Extensional Conformance Mode: If simple conformance mode yields the result 
that the collection is non-conformant, some of the assigned models and 
relationships can be marked as “incomplete” and the Solver will allow these to be 
extended in order to find a conformant solution.  

 

Eclipse Services
(GMF, EMF, etc.)

MMTF Services
(operator/editor plugin support)

Macromodel
Editor

Kodkod

Ecore Metamodel
Editor

Solver

 

Fig. 8. MCAST Architecture 
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Table 1. Example Solver scenarios 

Case Input Output

1 As in Figure 1, all marked
complete.

Conformant

2 As in case 1 but sentOver
relations removed from
mapping f:objectsOf.

Non-conformant
violates constraint that sentOver is a
function.

3 As in case 2 but f:objectsOf
marked incomplete

f:objectsOf can be uniquely extended to
conformance

4 As in case 3 but the link from
:Desk to Loans:DB removed.

f:objectsOf cannot be extended due to
violation of the endpoint preservation
axiom.

 
 
In extensional conformance mode, when new models and relationships are 

constructed as part of finding a conformant solution they are guaranteed to be 
consistent with the existing models/relationships but of course, this does not mean 
they are necessarily correct because there may be many possible consistent 
extensions. When the solution is unique, however, then it must be correct and hence 
this provides a way to do model synthesis. On the other hand, if a solution cannot be 
found, this indicates that there is no way to consistently extend the incomplete 
models/relationships and so this provides a way to do consistency checking with 
incomplete information.  

Note that since Kodkod finds solutions by exhaustively searching a finite bounded 
set of possible solutions, the above results are valid only within the given bounds. 
Fortunately, there are common cases in which it is possible to compute upper bounds 
for model extension that are optimal in the sense that if a conformant extension 
cannot be found within the bounds then one does not exist. MCAST allows a 
metamodel to specify such bounds computations using special annotations within the 
metamodel. 

We illustrate both usage modes using a macromodel consisting of the models and 
objectsOf mapping in Figure 1. Table 1 shows four cases in which we applied Solver. 
In case 1 we passed the models and mapping of Figure 1 (all marked as complete) and 
Solver determined that they satisfied the constraints and hence were conformant. In 
case 2 we removed all sentOver relation instances from the mapping and Solver found 
the models to be non-conformant because the constraint that sentOver is a total 
function from Message to Link was violated.  Case 3 is the same except that the 
mapping was marked as incomplete and hence we use extensional conformance mode. 
In this case, we used an upper bound based on the fact that every objectsOf 
relationship is bounded by the models it relates and these would not be extended (i.e. 
they are marked complete). Solver responded by generating an extension of the 
mapping that filled in the missing sentOver links. In this case, Solver identified it as 
the unique extension that satisfied the constraints, thus it must be the correct one and 
so it had automatically synthesized the missing part of the mapping. In case 4, we 
modified the object diagram to remove the link from :Desk to Loans:DB. Now Solver 
could not find a conformant extension of the mapping and we can conclude that the 
models (and partial mapping) are inconsistent with the constraint that the objectsOf 
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relationship holds between the models.  Cases 3 and 4 showed that it is possible to 
work usefully with incomplete (or even non-existent) mappings. This is significant 
because the creation of mappings is often given little attention in the modeling 
process and is considered to be overhead.   

5   A Detailed Example 

As a more detailed illustration of the framework we applied it2 to a design project 
taken from a standards document for the European Telecommunications Standards 
Institute (ETSI) [8]. The example consists of three UML models: a context model (4 
diagrams), a requirements model (6 diagrams) and a specification model (32 
diagrams) and details the development of the Private User Mobility dynamic 
Registration service (PUMR) – a simple standard for integrating telecommunications 
networks in order to support mobile communications. More specifically, it describes 
the interactions between Private Integrated Network eXchanges (PINX) within a 
Private Integrated Services Network (PISN). The following is a description from the 
document: 

“Private User Mobility Registration (PUMR) is a supplementary service that 
enables a Private User Mobility (PUM) user to register at, or de-register from, 
any wired or wireless terminal within the PISN. The ability to register enables the 
PUM user to maintain the provided services (including the ability to make and 
receive calls) at different access points.” [pg. 43] 

Figure 9 shows the macromodel metamodel UMLMulti that we constructed and 
Figure 10 shows part of the macromodel that we used it to create it. Note that our 
macromodels include models as well as “diagrams” of these models. We treat a 
diagram as a special type of model that identifies a submodel of the model for which 
it is a diagram. This allows both the diagram structure within a UML model and the 
relational structure across UML models to be expressed within a macromodel. 

Due to lack of space we do not show the definitions of the relationship types of 
UMLMulti. Please see [13] for further details.  
The diagram in Figure 10 shows two sub-macromodels representing the diagrams of 
the context model and a subset of the diagrams of the specification model.  
 

                                                           
2 Note that this example application was performed by hand – as future work we intend to 

implement it using MCAST. 

ObjectDiagram SequenceDiagram
objectsOf

ClassDiagram 

detailOf 

StatemachineDiagram 
detailOf 

overlap

UMLDiagrams UML 

diagramsOf 

refines case
instanceOf 

refines 

Fig. 9. UMLMulti 

detailOf
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55-De-Registration
:SequenceDiagram

58- Registration
:StatemachineDiagram

51-Basic Domain Model
:ClassDiagram

57-PUMR Detailed
Domain Model

:ClassDiagram

61-Identification of PUMR
signaling at QSIG
interfaces:ClassDiagram

52-PUMR Object Model
:ObjectDiagram

*:instanceOf
53-Registration using
the PUM Number

:SequenceDiagram

54-Registration using
Alternative Identifier

:SequenceDiagram

59 -Registration Request
:StatemachineDiagram

Specification Model Diagrams1: UMLDiagrams

40-Context Model Packages
:PackageDiagram

41-Simple PUMR Domain Model
:ClassDiagram

42-Flow between User and PISN
:SequenceDiagram

43-PUMR System Architecture
:ObjectDiagram

*42a:ObjectDiagram
*:instanceOf

*:refines

*:instanceOf

Context Model Diagrams: UMLDiagrams

:refine
s

*:overlap

:caseOf :caseOf

*:objectsOf

:eq:eq

*:objectsOf

*54a: ObjectDiagram

*53a: ObjectDiagram

*55a: ObjectDiagram

*:merge[ObjectDiagram]

*:objectsOf

*:objectsOf

*(PINX:Class):detailOf

Request:State):detailOf
*(Processing PUM Registration *(Home PINX:Class):detailOf

 

Fig. 10. PUMR Macromodel 

 
Relationships are shown both among the diagrams within each UML model and also 
between the diagrams across the models. In the latter case, these are aggregated 
within the refines relationship that holds between the two collections of diagrams.  

We found two interesting cases where we needed to express complex relationships 
using unrealized models. The relationship between sequence diagram 42 and class 
diagram 41 is expressed using the unrealized object diagram *42a and this is also 
used to show that object diagram 43 is a refinement of the objects in diagram 42. 
Another example is the one between the three sequence diagrams 53, 54, 55 and the 
object diagram 52. The macromodel shows that 52 is the smallest superset (i.e. the 
merge) of the object diagrams corresponding to each of these sequence diagrams. 

Even without understanding the details of the PUMR domain, it should be clear 
how the expression of the relationships helps to expose the underlying structure in this 
collection of models and diagrams. In the process of constructing the macromodel, we 
observed that it significantly helped us to understand how the collection of diagrams 
contributed toward creating an overall model of the PUMR domain.  Unfortunately, 
since this example involved an existing completed collection, we were not able to 
assess the hypothesis that the macromodel can be used throughout the development 
lifecycle to assess conformance and guide development. In order to do this, we are 
planning to do a more in depth case study that uses our framework from project 
inception through to completion. 
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6   Related Work 

Existing work on dealing with multiple models has been done in a number of different 
areas. The ViewPoints framework [10] was an influential early approach to multiview 
modeling. Our approach differs from this work in being more formal and declarative 
rather than procedural. Furthermore we treat relationships as first class entities and 
provide support for typing of relationships. 

More recently, configurable modeling environments have emerged such as the 
Generic Modeling Environment (GME) [7]. None of these approaches provide 
general support for expressing model relationships or their types; hence, they have 
limited support for defining and expressing interrelated collections of models. 
Furthermore, the focus of these approaches is on the detail level (i.e. the content of 
particular models) rather than at the macroscopic level.  

Process modeling approaches like the Software Process Engineering Metamodel 
(SPEM) [15] bear some similarity to our notion of a macromodel metamodel; 
however, our main focus is in the use of a macromodel at the instance level to allow 
fine-grained control over the ways in which particular models are related rather than 
the activities that consume and produce them. However, we believe that macromodels 
could complement process models by providing a means for specifying pre and post 
conditions on process activities. 

The emerging field of Model Management [3] has close ties to our work but our 
focus is different in that we are interested in supporting the modeling process whereas 
the motivation behind model management is primarily model integration. 

The term “megamodel” as representing models and their relationships at the 
macroscopic level emerged first in the work of Favre [4] and also later as part of the 
Atlas Model Management Architecture (AMMA)  [2]. Macromodels bear similarity to 
these two kinds of megamodels, but the intent and use is quite different – to express 
the modeler’s intentions in a development process. 

Finally, the work on model traceability also deals with defining relationships 
between models and their elements [1]; however, this work does not have a clear 
approach to defining the semantics of these relationships. Thus, our framework can 
provide a way to advance the work in this area. 

7   Conclusions and Future Work 

By its very nature, the process of software development is an activity involving many 
interrelated models. Much of the research and tools for modeling is focused on 
supporting work with individual models at the detail level. Working with collections 
of models creates unique challenges that are best addressed at a macroscopic level of 
models and their inter-relationships.  

In this paper we have described a formal framework that extends a modeling 
paradigm with a rich set of model relationship types and uses macromodels to manage 
model collections at a high level of abstraction. A macromodel expresses the 
relationships that are intended to hold between models within a collection. We have 
focused on two main ways that macromodels can support modeling. Firstly, they are 
tools for helping the comprehension of the collection by revealing its intended 
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underlying structure. Secondly, macromodels can be  used to help maintain the model 
relationships as a collection evolves. In this capacity they are used to guide the 
development process by ensuring that modelers intentions are satisfied.  

Finally, we described the prototype implementation MCAST that integrates the 
Kodkod model finding engine [16] as a way to support model management activities 
using macromodels. As part of future work, we are exploring other ways to use a 
macromodel to manipulate collections of models.  
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