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ABSTRACT 
In object-oriented software development, requirements of 
different stakeholders are often manifested in use case mod- 
els which complement the static domain model by dynamic 
and functional requirements. In the course of development, 
these requirements are analyzed and integrated to produce 
a consistent overall requirements specification. Iterations of 
the model may be triggered by conflicts between require- 
ments of different parties. 

However, due to the diversity, incompleteness, and infor- 
mal nature, in particular of functional and dynamic require- 
ments, such conflicts are difficult to find. Formal approaches 
to requirements engineering, often based on logic, attack 
these problems, but require highly specialized experts to 
write and reason about such specifications. 

In this paper, we propose a formal interpretation of use 
case models consisting of UML use case, activity, and col- 
laboration diagrams. The formalization, which is based on 
concepts from the theory of graph transformation, allows 
to make precise the notions of conflict and dependency be- 
tween functional requirements expressed by different use 
cases. Then, use case models can be statically analyzed, and 
conflicts or dependencies detected by the analysis can be 
communicated to the modeler by annotat ing the model. 

An implementation of the static analysis within a graph 
transformation tool is presented. 

Keywords 
requirements specification, use cases, UML, unified process, 
graph transformation 
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The development of software consists in a repetition of 
analysis and synthesis activities. Following the separation 
of concerns principle a complex problem or model is de- 
composed into different aspects or views, which are refined 
separately and integrated again. While most engineers seem 
well trained to the decomposition task, the re-integration of 
partial models still presents great challenges. A well-known 
instance of this problem is the integration of scenario de- 
scriptions in terms of UML sequence diagrams or message 
sequence charts into statecharts specifying the behavior of 
individual classes or components [6, 15]. Another instance, 
which shall be the focus of this paper, is the integration and 
consistency of requirements models expressing the views of 
different users, like clerks and customers, or different aspects 
of the problem, like static and dynamic requirements. Simi- 
lar problems arise when separately evolved models shall be 
re-merged [25]. 

Requirements engineering is the process of gathering and 
structuring information both on the problem domain and 
on expectations toward the new (or improved) system. This 
activity is relevant for the construction of complex software 
systems which cannot be handled by small, highly inter- 
active teams of programmers, but  require large groups of 
developers specialized in different roles. In particular, sev- 
eral analysts will be busy capturing requirements of differ- 
ent stakeholders, resulting in a set of overlapping and partly 
conflicting requirements models. Then, these partial mod- 
els have to be integrated toward a single consistent require- 
ments document. This document is extremely important as 
it provides the basis for all relevant development decisions. 
In fact, the detection of requirements errors late in the devel- 
opment process causes very expensive re-iterations through 
all phases [2, 30]. 

In object-oriented software development, the UML [27] 
has become the standard notation for software models at 
different levels, including the requirements specification. In 
particular, class diagrams are used to capture static require- 
ments and use cases are employed for dynamic and func- 
tional requirements. For this paper we will align (but not 
restrict) our terminology and argument to the UML-based 
Unified Process [19], although our approach can be com- 
bined with other use case-driven development processes, too. 

The result of the requirements capture workflow in the 
Unified Process consists of a single domain model (a class 
diagram) and a collection of use cases. To build this com- 
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mon model, all analysts have to compare and integrate their 
separately developed partial models. For the synthesis of a 
consistent domain model, describing what are the relevant 
concepts of the problem domain, we may rely on techniques 
and tools developed for database schema integration based 
on the entity-relationship model [29]. They provide means 
to detect, for example, homonyms and synonyms, and to re- 
solve structural conflicts by refactoring of models. Use cases 
represent both dynamic and functional requirements. The 
dynamic aspect- -when something should be done-- is  cap- 
tured by sequences of actions of the system and the user 
which interact to fulfill a certain user-goal. They can be 
modeled by sequence or activity diagrams. The functional 
aspect--how it should be done-- is  described by pre- and 
post-conditions of actions in natural language. In particu- 
lar, the functional aspect is not formally integrated with 
the static domain model. Thus, intended connections be- 
tween static structures and activities can only be indicated 
by giving meaningful names to use cases or activities. As a 
consequence, no tool support can be provided for detection 
and elimination of conflicts, which relies entirely on the in- 
tuition of experienced modelers. This applies to two kinds 
of consistency problems. 

C o n s i s t e n c y  of  a s p e c t s :  Dynamic and functional re- 
quirements expressed by use cases and their annota- 
tions may refer to terms from the problem domain that  
are not captured in the static domain model, or that  
have been renamed or redefined in the integration of 
the static model. The intended effect of executing a 
use case may violate constraints of the static model. 

C o n s i s t e n c y  o f  v iews :  Semantic overlap may exist be- 
tween use cases expressing requirements of different 
stakeholders. This may be intended if interaction is re- 
quired to perform a common task, but it may also be a 
consequence of conflicting interests of different parties 
in the real world, or of undocumented dependencies 
between different use cases. We distinguish conflicts, 
where the execution of one activity may prevent the 
execution of another one, and dependencies, where the 
execution of one activity may require the prior execu- 
tion of another activity. 

Technically, we define aspects at the language level (e.g., 
statechart diagrams specify the dynamic aspect) while views 
are more generally related to users' concerns. Many authors 
speak in both cases of views [26, 13]. 

Both kinds of inconsistencies may lead to severe misdevel- 
opments which are only detected much later in the process. 
In fact, since the workflow of requirements capture is followed 
by the decomposition activities of the analysis workflow, un- 
resolved consistency problems tend to persist until the next 
big synthesis step: the design. It is thus advisable to de- 
tect and eliminate (or at least manage [26]) inconsistencies 
from the requirements model before progressing further in 
the development of the system. 

In this paper, we approach the first problem by propos- 
ing a diagrammatic specification of pre- and post-conditions 
of actions by UML collaborations which are formally in- 
terpreted as graph transformation rules. Based on concepts 
from the theory of graph transformation, we approach the 
second problem by formalizing the intuitive notions of con- 
flict and dependency of use cases with the aim of providing 

Customer IJ----gJ[ Bill ~ Shop [ 
I [total [ ~ / 0 1  11 ]1 

oa,h I°07' 0 r 

I Cart 

F i g u r e  1: C lass  d i a g r a m  of  t h e  s h o p  

an analysis technique and tool support. In this way, we com- 
bine the technical benefits of formal requirements specifica- 
tions using, e.g., a logic-based language, with the intuitive 
usability of a visual technique. In fact, the logic-based ap- 
proaches discussed in [23] are mainly targeted at the area of 
safety-critical systems, where the costs of employing highly- 
specialized experts for creating and verifying formal specifi- 
cations are justified. In the context of business applications, 
however, it is more important  that  models can be commu- 
nicated to both domain experts and developers. Therefore, 
our aim is not formal verification of consistency, but detec- 
tion of potential consistency problems. We shall demonstrate 
by means of an example how the results of our analysis can 
be used to annotate use cases and activity diagrams and to 
trigger a re-iteration of the requirements model to eliminate 
the undesired effects. 

The paper is organized as follows: Section 2 introduces our 
running example and motivates the use of UML collabora- 
tions as functional specifications in UML use case models. 
Section 3 gives a formal interpretation of these models by 
means of graph transformation, which is used in Section 4 to 
formalize conflicts and dependencies. Analysis method and 
tool support are introduced in Section 5, while Section 6 is 
dedicated to the application and interpretation of the analy- 
sis results in terms of our running example. The concluding 
Section 7 summarizes our results and points out ideas for 
further work on this topic. 

2. INTEGRATED MODELING OF STATIC 
AND DYNAMIC REQUIREMENTS 

Object-oriented requirements specifications represent 
both static requirements concerning the objects of the prob- 
lem domain, and dynamic requirements concerning the in- 
tended workflows. They can be expressed, respectively, by 
UML class and activity diagrams. Use case diagrams are em- 
ployed to identify actors and system boundaries. Thereby, 
they structure the overall workflow into clusters of activities 
corresponding to the actor's goals, while abstracting from 
the actual subtasks necessary to reach these goals. Collabo- 
rations are used to model pre- and post conditions of actions 
in activity diagrams thus providing an integration of static 
and dynamic aspects. 

Static model. Employing the UML, static requirements are 
specified by a class diagram. The class diagram in Figure 1 
represents part of the business model of a shop which will be 
used as a running example to illustrate our approach. The 
shop provides racks carrying goods and shopping carts for 
the customers. Customers hold a certain amount of cash, as 
does the cash box of the shop. Bills list the goods collected 
by the customers together with the overall total of the prizes. 

Since we are at the level of requirement specification, 
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F i g u r e  3: U s e  case  d i a g r a m  o f  t h e  s h o p  

classes do not have method signatures associated with them, 
i.e., the class diagram specifies only classes, associations, at- 
tributes, and constraints [19, 7]. An instance of this class 
diagram, as shown in Figure 2, represents a snapshot of our 
model. 

Dynamic model. Dynamic requirements, like business pro- 
cesses, are described by means of activity diagrams (see Fig- 
ure 3) consisting of action states (oval vertices) connected 
by transitions modeling the flow of control. The behavior of 
the shop is to allow customers to buy goods. Therefore they 
take a cart, select goods by placing them into the cart, and 
proceed toward the cash box. There, a clerk is waiting to 
sell the goods. An entry on the bill is created for each good, 
the goods are taken out of the cart and, with the settlement 
of the bill (the payment by the customer), the ownership 
of the goods is transferred from the shop to the customer. 
These facts have been captured in the use cases displayed in 
Figure 3. The dashed lines represent the annotation of each 
use case by a UML activity diagram. 

Functional model. So far, the only link between static and 
dynamic requirements is given by the names of use cases 
and action states, like buy goods or take cart, which make 
reference to the classes in the class diagram. A more formal 
integration can be achieved by a description of the pre- and 
post-conditions of the actions and use cases. Such functional 
requirements are often specified in natural  language as part 
of a use case model (see, e.g., [19]). Some approaches, like 
xUML [20], provide means for formal action specification us- 
ing a high-level action notation. However, such formal nota- 
tions, require familiarity with programming concepts. Thus, 

I :oust°met I I :cust°mer I 

I :Ca" I I :C~" I 

V~ZC] V ~ q  

F i g u r e  4: A c t i o n  s p e c i f i c a t i o n s  for use  case  buy goods 
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:Bill I ~ G o o d  :Bill :Good t . . . .  M . :  n I,o,.,=x , 

F i g u r e  5: A c t i o n  s p e c i f i c a t i o n s  for use  case  sell goods 

for discussing requirements with domain experts or users, a 
diagrammatic action specification is more suitable. Cataly- 
sis [7], for example, advocates the use of collaborations for 
this purpose. The idea goes back to the Fusion method [3] 
where actions are specified by snapshots of the object con- 
figuration before and after the operation. 

Building on the latter approach, we propose a rule-based 
specification of pre- and post-conditions and effects of ac- 
tions by means UML collaborations. In Section 3, this use of 
collaborations shall be formalized by means of graph trans- 
formation rules (el. [21, 17]). 

For each of the actions of the activity diagrams in Figure 3, 
their pre- and post-conditions are described as collaboration 
rules, i.e., pairs of collaborations representing transforma- 
tions on object configurations (see Figures 4 and 5). The 
precondition of an action is satisfied in a given state (an in- 
stance of the class diagram) if the object pattern forming the 
left-hand side of the corresponding rule has an occurrence 
in this instance diagram. In this case, the action consists in 
replacing this occurrence by a copy of the right-hand side 
pattern. For example, the action bill good specified in Fig- 
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b~ good 
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tota = tota +x value = x 

F i g u r e  6: C o n d e n s e d  p r e s e n t a t i o n  o f  t h e  c o l l a b o r a -  
t i o n  ru l e  for  bill good 

ure 5 is applicable if in the current object configuration there 
exist (instances of) Customer, Cart, Bill, and Good such that  
the Customer is associated with a Bill and a Cart containing 
a Good. As a result of the application, the Good is removed 
from the Cart and added to the Bill. Also, the total of the 
Bill is increased by the value of the Good (see also Figure 7). 

In order to make our point, we have included two inconsis- 
tencies which shall later be formalized and detected by for- 
mal analysis. The first is between pay bill and settle bill. Both 
actions include the transfer of ownership of the goods, as de- 
scribed by the redirection of the owns links from the Shop 
to the Customer. This represents an overlap of responsibil- 
ities which requires further negotiations. Second, Customer 
and Clerk even seem to come from different continents: Use 
case buy goods uses European standards where customers 
have to collect their shoppings by themselves after paying 
the bill. Use case sell goods acts according to the American 
way where goods are packed into bags while they are entered 
on the bill. 

Alternatively to the rule-based notation stressing the dis- 
tinction between-pre- and post-conditions we can adopt a 
more compact presentation by plain UML collaborations 
where pre- and post-conditions are jointly represented in 
one diagram. In order to distinguish those items that  are 
deleted or newly created, constraints {destroyed} and {new} 
are used. For the collaboration rule bill good in Figure 5, the 
corresponding condensed presentation is shown in Figure 6. 
The decision, which representation is more appropriate in a 
given situation, depends on the amount of change between 
the pre- and the post-collaboration. In the sequel we stick 
to the rule-based notation. 

Like the textual action notations in [20], collaboration 
rules for action specification provide an executable model 
which can visualize the behavior of a high-level requirements 
specification as a sequence of snapshots. In the following sec- 
tion, we shall formalize these notions and explain how such 
a sequence is actually produced. 

3. TYPED GRAPH TRANSFORMATION 
AS SEMANTIC MODEL 

In this section, some basic concepts and constructions 
from the theory of graph transformation are presented in 
order to formalize the requirements models discussed above. 

Graphs as states. Graphs are often used as abstract rep- 
resentation of diagrams, e.g., in the UML meta model [27]. 
Formally, a graph consists of a set of vertices V and a set of 
edges E such that  each edge e in E has a source and a tar- 
get vertex s(e) and t(e) in V, respectively. Variations include 

hypergraphs, where edges can be attached to an arbitrary 
sequence of vertices, at tr ibuted graphs [24], whose vertices 
and edges are decorated with textual or numerical informa- 
tion, or more complex object-oriented or hierarchical graph 
models. The theory described below is largely independent 
of the notion of graph, which can be chosen to reflect as 
closely as possible the concepts of the modeling language. 
In fact, most of the notions and constructions can be (and 
have been) described at the level of high-level replacement 
systems [9], an axiomatization based on category theory of 
the so-called double-pushout approach to graph transforma- 
tion [10], which can be instantiated to a variety of differ- 
ent graph models. In the following we deal with at tr ibuted 
graphs. 

In object-oriented modeling graphs occur at two levels: 
the type level (given by the class diagrams) and the instance 
level (given by all valid object diagrams). This idea can be 
described more generally by the concept of typed graphs [4], 
where a fixed type graph TG serves as abstract representa- 
tion of the class diagram. Its instances are graphs equipped 
with a structure-preserving mapping to the type graph, for- 
mally expressed as a graph homomorphism. 

For example, the instance diagram in Figure 2 can be 
mapped to the class diagram in Figure 1 by defining 
type(o) = C for each instance o : C in the diagram. Extend- 
ing this to links, preservation of structure means that,  for 
example, a link between objects Ol and o2 must be mapped 
to an association in the class diagram between type(ol) and 
type(o2). By the same mechanism of structural compatibil- 
ity we ensure that  an at tr ibute of an object is declared in 
the corresponding class, etc. 

In order to formalize, in an abstract way, the notion of 
constraints (like upper and lower bounds for the multiplic- 
ity of associations), we assume for each type graph TG a 
class of constraints Constr(TG) that  could be imposed on 
its instances. A class diagram is thus represented by a type 
graph TG plus a set C C Constr(TG) of constraints over 
TG. The class of instance graphs over TG is denoted by 
Inst(TG) while we write Inst(TG, C) for the subclass sat- 
isfying the constraints C. Thus, if (TG, C) represent a class 
diagram with multiplicity constraints as in Figure 1, an in- 
stance like in Figure 2 is an element of Inst(TG, C) (see [11] 
for an elaboration of this concept). 

In particular, we will be interested in negative constraints 
which enjoy the following monotonicity property: Given a 
graph G and a subgraph Go C_ G, if G satisfies a negative 
constraint c then so does Go. That  means, negative con- 
straints, once violated in a configuration, cannot become 
valid again when the configuration is placed into bigger 
context. Typical examples include upper bound multiplic- 
ity constraints like 0_1, but also more complex properties 
like the absence of certain paths or cycles. 

Rules and transformations. After having defined the valid 
object configurations as instances of a type graph satisfying 
the constraints, the idea of collaboration rules describing 
the evolution of such configurations is formalized in terms 
of graph transformation. A graph transformation rule p : 
L --+ R consists of a pair of TG-typed instance graphs L, R 
such that  the union L 0 R is defined. (This means that,  e.g., 
edges which appear in both L and R are connected to the 
same vertices in both graphs, or that  vertices with the same 
name have to have the same type, etc.) The left-hand side 
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F i g u r e  7: A p p l i c a t i o n  o f  t h e  ru l e  bill good 

L represents the pre-conditions of the rule while the right- 
hand side R describes the post-conditions. Usually, we omit 
the identities of objects and links in the collaboration rule, 
assuming that  the intended intersection between a rule's left- 
and right-hand side is obvious from the layout. 

A graph transformation from a pre-state G to a post-state 

H, denoted by G P(~ H, is given by a graph homomorphism 
o : L O R --~ G U H, called occurrence, such that 

• o(L) C G and o(R) C H, i.e., the left-hand side of the 
rule is embedded into the pre-state and the right-hand 
side into the post-state, and 

• o(L \ R) = G \ H and o ( R \  L) = H \ G, i.e., precisely 
that  part of G is deleted which is matched by elements 
of L not belonging to R and, symmetrically, that  part 
of H is added which is matched by elements new in R. 

Operationally, the application of a graph transformation 
rule like bill good in Figure 5 is performed in three steps. 
First, find an occurrence OIL of the left-hand side L in the 
current object graph G. Second, remove all the vertices and 
edges from G which are matched by L \ R. Make sure that  
the remaining structure D := G \ o(L \ R) is still a legal 
graph, i.e., that  no edges are left dangling because of the 
deletion of their source or target vertices. In this case, the 
dangling condition [10] is violated and the application of the 
rule is prohibited. Third, glue D with R \ L to obtain the 
derived graph H. Figure 7 shows a sample application of the 
rule bill good. Its occurrence is given by the bold objects and 
links. 

Altogether, the static and functional aspects of a model 
can be formally represented as a typed graph transformation 
system ~ = (TG, C, P, 7r) consisting of a type graph TG, a 
set of constraints C C Constr(TG), a set of rule (or action) 
names P, not necessarily finite, and mapping 7r associating 
with each rule name p E P a rule 7r(p) = L ~ R over TG. In 
this case, we write p : L ~ R E G. Infinite sets of rules are 
necessary because collaboration rules with multi objects, like 
pay bill, represent rule schemes which expand to a countably 
infinite set of graph transformation rules, one for each legal 
multiplicity of the multi object. When applying these rules 
to a given graph, always the maximal rule is chosen among 

all applicable ones (cf. [32 D. 

A transformation G P(~ H in G is a transformation using 
a rule p E G such that  whenever G satisfies the constraints C 
expressed in the class diagram, so does the resulting graph 
H. This can be checked at runtime or verified statically [18]. 
It ensures that  only consistent configurations are reachable 
from a consistent starting configuration. The behavior of 

is given by the set of its transformation sequences Go m(~) 

• .. P ~ ' )  Gn, i.e., sequences of consecutive transformations 
in G starting from a consistent graph G E Inst(TG, C). 

The dynamic model selects among the transformation se- 
quences in G those which are compatible with the ordering of 
actions as specified in the activity diagrams. It is possible to 
encode this selection into the same formal model by "com- 
piling" activity diagrams into sets of graph transformation 
rules. (This is similar to an encoding of finite automata into 
(string) grammars, where the nodes of an automaton are 
turned into non-terminals.) Since our focus is on the anal- 
ysis of functional requirements, we do not elaborate such 
encoding but refer the interested reader to [22] where a sim- 
ilar construction is shown for statechart diagrams. 

Use cases as views. A use case represents a view of the 
overall model corresponding to the requirements of a partic- 
ular actor (or a group of actors). A view on a graph transfor- 
mation system representing the complete model is defined 
by a subgraph of the type graph (modeling the relevant frag- 
ment of the class diagram) and a subset of the rules [12].1 

In our example, the view corresponding to the use case by 
goods comprises the rules take cart. select good, and pay bill. 
The relevant fragment of the class diagram includes every- 
thing except for the CashBox class, its at tr ibute and asso- 
ciation with the shop. On the other hand, the use case sell 
goods consists of the rules create bill, bill good, and settle bill 
and all classes, associations and attributes, except for the 
cash attr ibute of class Customer. 

One use case in isolation does not show meaningful behav- 
ior because it represents an incomplete view of the function- 
ality from the perspective of a single actor. Thus, interaction 
is required between different use cases. For example, the ex- 
ecution of the action bill good of the clerk should depend 
on the previous execution of the action select good of the 
customer. One important integration problem is to fix these 
interactions. More dramatically, there may be conflicts be- 
tween the use cases resulting from different opinions of the 
stakeholders about the intended behavior or the scope of 
their responsibility. The next section is devoted to the anal- 
ysis of such conflicts and dependencies. 

4. CONFLICTS AND DEPENDENCIES 
BETWEEN FUNCTIONAL REQUIRE- 
MENTS 

Our analysis is based on the notion of independence of 
graph transformations which captures the idea that, in a 
given situation, two transformations are neither causally de- 
pendent nor in conflict. We distinguish parallel indepen- 
dence (absence of conflicts) and sequential independence 

1This notion can be extended to include the possibility for 
renaming, extension, or refinement of types and rules. These 
issues, which are studied, for example, in [16, 14], are ignored 
here for simplicity. 
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F i g u r e  9: A c o n f l i c t  b e t w e e n  pay bill a n d  s e t t l e  bill 

(absence of causal dependencies). For both notions there 
exist a weak, asymmetric, and a strong, symmetric version 
(see, e.g., [5] for a recent survey). 

Parallel Independence. Given two transformations 

G pl(~) H1 and G p2~) H2 like in Figure 8, G P ~ )  Hi  

is (weakly parallel) independent of G P ~ )  H2 if the occur- 
rence ol(L1) of the left-hand side of pz is preserved by the 
application of p2. This is the case if Ol(L1)No2(L2 \R2) = O, 
that  is, ol (L1) does not overlap with objects that  are deleted 
by p2. If the two transformations are mutually independent, 
they can be applied in any order yielding the same result. 
In this case we speak of parallel independence. Otherwise, if 
one of two alternative transformations is not independent 
of the second, the second will disable the first. In this case, 
the two steps are in conflict. 

An example of a conflict between transformations of pay 
bill and settle bill is given in Figure 9: Both transformations 
destroy the owns links between the goods and the shop. 
Thus, they overlap in items that  are deleted. As a conse- 
quence, each of the two disables the other one, i.e., they 
cannot be part of the same transformation sequence. This 
is unfortunate because both transformations capture impor- 
tant  aspects of the intended overall behavior. For example, 
pay bill updates the cash attr ibute of the Customer while set- 
tle bill does the same for the amount at tr ibute of the Shop. 
We will see in the next section how these different sides of 
the same coin can be integrated. 

Sequential Independence. Given a sequence of two trans- 

formations G P ~ )  H1 p2(~) X like in Figure 8, H1 p2(~) X 

is (weakly sequential) independent of G m(~) H1 if the 
occurrence o2(L~) of the left-hand side of p2 is already 
present before the application of P2. This is the case, if 
o2(L2) A ol(Ra \ Li) = 0, that  is, o2(L2) does not over- 
lap with objects that  are created by pl.  Otherwise, if the 
second transformation is not independent of the first, the 
first causes the second. 

If, moreover, p2 does not delete objects that  are needed 
for the application of pi,  that  is, oi(L1) N o2(L2 \ R2) = 0, 
the two applications can be exchanged without affecting the 
overall result of the sequence. In this case, we say that  the 
two steps are sequentially independent• 

We observe for future reference that  the notions of par- 
allel and sequential independence as well as conflict and de- 
pendency are exchangeable. Due to the symmetry of both 
rules and transformations (which is clearly visible in the set- 
theoretic formulation in Section 3), for each rule p : L --~ R 
an inverse rule p-a  : R --~ L can be build so that  every 

-1 o • p ( o  . , ,  p ) 
transformatmn G P(~ H has an undo H ~ G. Using 

this, transformations G m(~) H1 p2(~) X are sequentially 

independent if and only if H1 p ~ l )  G and Ha P ~ )  X are 
parallel independent. For example, the sequence pay bill-a; 
settle bill is not sequentially independent because the first 
step creates two owns links which are consumed by the sec- 
ond. 

The above conditions for parallel and sequential indepen- 
dence, resp. their negations, have to be checked for given 
graphs and occurrences, that  is, at run-time. This could be 
done, for example, in a simulation environment for debug- 
ging purpose. The focus of this paper, however, is on static 
analysis of potential conflicts and dependencies, rather than 
on run-time analysis. Therefore, the above notions have to 
be lifted to the level of rules. 

Potential conflicts and dependencies. For two given rules 
pl : L1 ~ R1 and p2 : L2 ~ R2 we say that  

pl may be disabled by p2 if there exist transformation 

steps G P~=~=~) H1 and G P ~ )  H2 like in Figure 8, such 

that  G m(~) H1 is not independent of G p2(~) H2, 

pl may cause P2 if there exist transformation steps 

G m(~) H1 p2(~) X like in Figure 8, such that  

H1 p2(~) X is not independent of G P ~ )  H1. 

Thus, a potential conflict or dependency is witnessed by a 
pair of transformations, either alternative or consecutive, 
which provide a counterexample to parallel or sequential in- 
dependence, respectively. 

The essence of such a counterexample is a pair of objects 
or links (Xl, X2) with Xl E Pl and x2 E p2 such that  Oi(Xl) : 
o2(x2) and 

• Xl C L1 and x2 E L2 \ R 2 ,  in this case (xl,x2) repre- 
sents a conflict, or 

• x2 E L2 and xz E R1 \ L 1 ,  in this case (xl,x2) repre- 
sents a dependency. 
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In the next sections, we will show how potential conflicts 
and dependencies between two (sets of) rules can be detected 
by a tool and presented to the modeler. 

5. STATIC ANALYSIS OF CONFLICTS 
AND DEPENDENCIES 

Given two use cases, we are interested in potential con- 
flicts and dependencies between their functional specifica- 
tions. In technical terms this amounts to compute for two 
graph transformation systems G1 and G2 all pairs of rules of 
pl E ~1 and p2 E G2 such that  pz may be disabled by p2, or 
pl may cause p2, or vice versa (cf. Section 4). The results of 
the analysis shall be presented to the modeler via an anno- 
tation of the model. If further explanations are requested, 
minimal counterexamples can be provided. 

The computation of conflicts and dependencies is based on 
the idea of critical pair analysis which is known from term 
rewriting. Usually, this technique is used to check whether a 
rewriting system has a functional behavior, i.e., if it is conflu- 
ent. Critical pairs have been generalized to graph rewriting 
in [28]. They formalize the idea of a minimal example of a 
conflicting situation. From the set of all critical pairs we can 
extract the objects and links which cause conflicts or depen- 
dencies. In the following, we discuss the analysis technique 
and its implementation in the AGG tool. 

Criticalpair analysis. A critical pair is a pair of transfor- 
mations 

Hi  P ~ )  G P ~ )  H2 

which are in conflict, and such that  graph G is minimal, i.e., 
a gluing G = o1(L1) U o2(L2) of the left-hand sides of the 
rules pl and p2. This ensures that  the set of all critical pairs 
for two given rules Pl and P2 is finite. It can be computed 
by overlapping L1 and L2 in all possible ways, such that  
the intersection Ol(L1) N o2(L2) C_ G contains at least one 
item that  is deleted by one of the rules and both rules are 
applicable to G at their respective occurrences. 

The set of critical pairs represents precisely all potential 
conflicts, that  is, there exists a critical pair like above if, 
and only if, pl may disable p2 or, vice versa, p2 may disable 
pl. The (obvious) reason is that  every pair of conflicting 
transformations contains a critical pair consisting of all links 
and objects that  are matched by the rule's left-hand sides. 

As we have mentioned in Section 3, a collaboration rule 
containing a multi object is interpreted as a rule schema 
yielding an infinite number of graph transformation rules. 
Apparently, this presents an obstacle to an exhaustive pair- 
wise analysis. However, since rules resulting from the same 
schema differ only in the number of copies of the correspond- 
ing multi object, it is enough to consider the instance where 
the multi object is represented by one normal object. It can 
be shown that  every critical pair using a rule with more 
copies can be reduced to one with just a single representa- 
tive. 

Consider, for example, the critical pair in Figure 9 be- 
tween two instances of pay bill and settle bill each containing 
two copies of the multi object Good. The pair can be re- 
duced by dropping, in all three graphs, e.g., the Good object 
with value = 30 together with its links. The resulting trans- 
formations still represent a critical pair because they still 
share one owns-link in G that is deleted. 

By means of the duality between conflicts and dependen- 
cies noticed in Section 4, we can also use critical pair analysis 
to find all potential dependencies among rules. In fact, a rule 
pl may cause p2 (or vice versa) if, and only if, there exists 
a critical pair 

G P ~  ~) H1 P ~ ) X  

using the inverse of pl. This follows from the discussion in 
Section 4 and the analogous statement for critical pairs and 
potential conflicts above. 

Tool support. Critical pair analysis is implemented in the 
graph transformation engine A G G  (see h t t p : / / t f s . c s .  
t u - b e r l i n ,  de/agg).  The tool provides several graphical edi- 
tors to create and manipulate graph transformation systems, 
an interpreter for executing the systems and animating the 
transformation process, and a debugger. Recently, an ini- 
tiative has been started to implement static analysis tech- 
niques for graph transformation. The critical pair analysis is 
offered through a graphical user interface to browse through 
the computed pairs. In Figure 10, a screen dump of AGG 
shows all critical pairs of the rules pay bill and settle bill. 
The left-hand sides of both rules are depicted in the upper 
part, while three overlapping graphs are shown in the lower 
part. Note, that  AGG is not an UML tool, i.e., although the 
graph representation looks similar, it does not strictly follow 
the UML notation. Nevertheless, presentational differences, 
like directed edges vs. undirected links (whose ends could be 
named in order to distinguish them) do not affect the results 
of the analysis. 

For the overlapping graph in the lower right, the occur- 
rences of the left-hand sides in this graph are indicated by 
numbers. Of the three critical pairs shown in Figure 10, only 
this one is actually relevant: The other two violate the neg- 
ative constraint that  each Good must have at most one link 
to a Bill (cf. the class diagram in Figure 1). As discussed in 
Section 3, such negative constraints, once violated, remain 
so under embedding into bigger context. Thus, all conflict- 
ing situations containing these critical pairs will also violate 
the multiplicity constraint. 

To allow the exchange with other tools, graph transforma- 
tion systems and critical pairs are stored in the XML-based 
Graph Transformation Exchange Language (GTXL) and 
Critical Pair Exchange (CPX) format, respectively. These 
formats are part of an initiative to integrate graph-based 
tools via common exchange formats for graphs (GXL) and 
graph transformation systems (GTXL) (see h t t p : / / t f s .  
cs. tu-berlin, de/proj ekt e/gxl-gtxl, html). 

To apply AGG for the static analysis of UML use case 
models, transformations between G T X L / C P X  and the XML 
Metadata  Interchange (XMI) format shall be provided based 
on the Extensible Stylesheet Language (XSL). Then, models 
defined in a UML CASE tool with XMI export can be trans- 
formed into graph transformation systems in GTXL format 
following the formalization in Section 3. These provide in- 
put for the AGG tool performing the critical pair analysis. 
Although the computed pairs can be inspected within the 
tool itself, it is more natural to visualize the analysis results 
directly on the original models. For this purpose, the com- 
puted pairs have to be exported in CPX format and further 
transformations have to be performed in order to annotate, 
e.g., use case diagrams with the conflicts and dependencies 
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Figure  10: Crit ical  pair interface of  A G G  

112 



/ <<disables>~ 

<<refine>> \~<refine>> 

oa, 

/ <<causes>~ 

o°s,om r i~ 
~/<<refne>> \~<refine>> 

c a l  }s>> K<causes>> 

~>J / "  ¢<causes>> ~;: ~se~le b ~ ~ i ~  Causes>" 

F i g u r e  11: Conf l i c t s  b e t w e e n  use  c a s e s  buy goods a n d  
sell goods 

shown in Figure 11 and 12. 
The modeler can then browse these annotated models 

with the original CASE tool, changing the model, ignor- 
ing or deferring detected conflicts according to their priority 
and interpretation.For the time being the feasability of auto- 
matic conflict detection is shown. A smooth tool integration 
based on XML technology is under development. 

The next section is devoted to the interpretation of the 
analysis results in the case of our shopping example. 

6. APPLICATION TO THE EXAMPLE 
In Section 2, when introducing the shopping example we 

have sketched two possible conflicts between the use cases 
buy goods and sell goods. Now, we discuss the results of 
the analysis in detail and consider possible iterations of the 
model. 

Analysis. Figures 11 and 12 show the use case diagram of 
Figure 2 enriched by potential conflicts and causal depen- 
dencies between activities, as well as their abstractions at 
the level of use cases. The inter-use case conflict captures 
exactly the two conflicts we already noticed in Section 2 be- 
tween bill good and pay bill as well as between pay bill and 
settle bill. As discussed in Section 5, in the case of pay bill vs. 
settle bill only one "real" critical pair exists, which is shown 
in the lower right graph of Figure 10. In a larger context the 
same overlapping is shown in the graph G of Figure 9. The 
essence of this critical pair is the owns-link between the Shop 
and the Good which is deleted by both transformations. This 
formalizes the expectations of Section 2. 

Figure 12 shows the causal dependencies within and be- 
tween the two use cases. The dependencies between activi- 
ties inside each of the use cases follow largely the specified 
control flow, except of the iteration of selecting and billing 
goods. These activities are required to be performed sequen- 
tially although there are no causal dependencies. Thus, they 
could also be executed in parallel. Figure 12 also shows inter- 
use case dependencies. For example, the customer has to 
take a cart and to select goods before the goods are billed 
and the bill is settled. Moreover, all goods have to be billed 
before the bill is payed. Since no further dependencies have 
been found, this means that, e.g., a bill may be created even 
if the customer has not yet selected any good. Whether  or 

F i g u r e  12: C a u s a l  d e p e n d e n c i e s  b e t w e e n  use  c a s e s  
buy goods and  sell goods 

F i g u r e  14: R e v i s e d  v e r s i o n  o f  pay bill 

not this is a mistake depends on the intention of the modeler, 
how the activities of the two use cases should be interleaved 
to perform the overall task. 

In order to understand better  the results of the analysis, 
the modeler might be interested in the objects and links re- 
sponsible for the causal dependencies. For this purpose, a 
combined presentation of control flow and data dependen- 
cies is helpful. Consider, for example, the use case diagram 
in Figure 13 where the causal dependencies between activi- 
ties are depicted together with the essential objects or links 
where these dependencies manifest themselves. The notation 
is similar to Petri nets with read arcs where activities play 
the role of transitions while objects and links act as places. 
Thus, a dashed arrow from an activity like take cart to a 
link like the one between Customer and Cart represents the 
fact that  this link is created by this activity. Symmetrically, 
an edge from a link or object to an activity indicates that  
the item is deleted. Read access is denoted by dashed lines 
without arrow heads. Thus, the customer first has to take 
a cart, producing the corresponding link, before goods may 
be selected or billed, where the link is required, etc. Like 
the annotations of the use case diagrams in Figure 11 and 
Figure 12, also these annotations can be extracted from the 
critical pairs produced by the analysis. 

Interpretation. Surveying the results of the analysis, the 
modeler has to decide which dependencies or conflicts do 
actually represent errors or inconsistencies in the model. Due 
to the semi-formal and incomplete nature of use case models, 
this decision is based on the intention of the modeler and 
cannot be taken mechanically. Nevertheless, such a walk- 
through can give valuable hints for changing the model in 
the next iteration, or for documenting better  the relevant 
decisions. 

For example, the conflict between the use cases buy goods 
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F i g u r e  13: C a u s a l  d e p e n d e n c i e s  b e t w e e n  a c t i v a t e s  a n d  e s s e n t i a l  o b j e c t s  a n d  l i n k s  

and sell goods contradic ts  the  in tui t ion tha t  bo th  use cases 
have to be per formed in combina t ion  to achieve the  desired 
effect. Having  decided tha t  there  should be no conflicts be- 
tween these two use cases, we have to correct  this at  the  level 
of the  associated act ivi t ies  pay bill and bill good as well as 
pay bill and settle bill, respectively. In our case, the  conflicts 
can be resolved by assigning the  responsibil i t ies for the  dele- 
t ion of the  link between Cart and Good and for the  delet ion 
of the  owns link exclusively to the  opera t ion  settle bill of the  
clerk. The  revised rule pay bill2 is shown in Figure  14. 

Note  tha t  not  every conflict must  represent  an error. If  the  
modeler  decides tha t  two use cases or act ivi t ies  are mean t  
to happen  al ternat ively,  the  conflict s imply reflects this re- 
qu i rement  at the  object  level. In this case, an absence of a 
conflict would indicate  possible errors in the  specification. 
In our example,  the  analysis revealed tha t  the  execut ion of 
pay bill does not  disable select good. So a cus tomer  could 
be able to cont inue shopping even though  he or she a l ready 
paid. As this is regarded as unwanted  behavior ,  we prevented  
this case by delet ing the  link be tween Customer and Cart in 
our improved rule (Figure 14). Thus,  the  ac t iv i ty  of paying 
includes the  re turn ing  of the  cart.  

Concerning the  dependencies  visualized in Figure  12, im- 
provements  of the  model  may  be proposed whenever  the  
dependencies  defer from the  control  flow. While  most  of the  
dependencies  follow the  control  flow specified in the  ac t iv i ty  
diagram,  three  edges run be tween act ivi t ies  of different use 
cases. This  indicates tha t  the  use cases may  be interrelated,  
and it has to be re-considered if the  separa t ion  chosen for the  
use case model  fits the  p rob lem domain.  On  the  o ther  hand,  
two control  flows (the two loops) are not  accompanied  by 
corresponding dependencies.  This  could ei ther  indicate  t ha t  
the  act ivi t ies  may  be per formed concurrent ly  (which even 
advanced buyers can only do to a cer ta in  degree) or t ha t  
the  specification could be enhanced by explici t ly model ing  
the  restr ict ions tha t  lead to a ra ther  sequent ial  execution.  
It  is thus  possible to gain valuable  hints for improving  the  
model  bo th  from the  presence and the  absence of conflicts 
and dependencies.  

7. CONCLUSION 
In this paper ,  basic concepts  from the  theory  of graph 

t ransformat ion  have been used to specify and analyze the  
funct ional  aspect  of U M L  use case models.  The  interest-  

ing tension in this approach is be tween semi-formal  and in- 
comple te  requi rements  on the  one hand,  and their  formal  
analysis on the  o ther  hand. This  leads to a t rade-off  be- 
tween unders tandabi l i ty  and expressivi ty  of model ing  con- 
cepts  which has led us to l imit  ourselves to basic transfor-  
mat ion  rules wi thou t  sophis t icated appl ica t ion condi t ions  
(which are also suppor ted  by the  analysis technique imple- 
mented  in the  A G G  tool).  

For the same reason, we have resisted the  t e m p t a t i o n  to 
propose extensions of use case d iagrams to specify relat ions 
between use cases or wi th  the  under ly ing s ta t ic  model ,  as 
it is done, for example,  in use case maps  [1]. Instead,  we 
use relat ions be tween use cases solely for visual izat ion of 
analysis results. 

Focusing on the  funct ional  aspect ,  our  approach is com- 
p lementary  to o ther  formal izat ion of use case models.  
Stevens [31], for example,  uses labeled t rans i t ion  systems 
to cap ture  the  essence of the  dynamic  aspect  in te rms  of 
sequences of activit ies.  The  paper  also ment ions  the  issue of 
interference be tween different use cases bu t  does not  inves- 
t iga te  it further.  

More generally, our analysis approach complements  ex- 
ist ing mode l  checking techniques  which are also a imed at  
verifying dynamic  proper t ies  of systems ra ther  than  prop- 
erties of d a t a  t ransformat ions .  It  should be interes t ing to 
unders tand  if these two views can be combined.  

Fur ther  work at  this topic will include invest igat ion on the  
impact  of use case relat ions and use case inher i tance  and the  
handl ing of inher i tance  in the  under lying s ta t ic  model.  An  
issue tha t  has to be evalua ted  in for thcoming larger case 
studies is the  necessary selection of useful in format ion  from 
the set of all de tec ted  conflicts. Moreover,  model  inherent  
informat ion like s t ruc tura l  constraints ,  has to be identified 
tha t  decreases the  number  of de tec ted  conflicts considerably 
and leads to more efficient tool  suppor t ,  though.  
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