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Abstract

Informal and graphical modeling techniques enable de-
velopers to construct abstract representations of systems.
Object-oriented modeling techniques further facilitate the
development process. The Unified Modeling Language
(UML), an object-oriented modeling approach, could be
broad enough in scope to represent a variety of domains and
gain widespread use. Currently, UML comprises several
different notations with no formal semantics attached to the
individual diagrams. Therefore, it is not possible to apply
rigorous automated analysis or to execute a UML model
in order to test its behavior, short of writing code and per-
forming exhaustive testing. We introduce a general frame-
work for formalizing a subset of UML diagrams in terms of
different formal languages based on a homomorphic map-
ping between metamodels describing UML and the formal
language. This framework enables the construction of a
consistent set of rules for transforming UML models into
specifications in the formal language. The resulting spec-
ifications derived from UML diagrams enable either exe-
cution through simulation or analysis through model check-
ing, using existing tools. This paper describes the use of this
framework for formalizing UML to model and analyze em-
bedded systems. A prototype system for generating the for-
mal specifications and results from an industrial case study
are also described.

Keywords: Object-oriented modeling, formal specifica-
tions, model checking

1. Introduction

Object-oriented modeling techniques, typically semi-
formal and graphical, enable developers to construct ab-
stractions that are domain- and application-specific. As a re-
sult, object-orientation has been increasingly used for large-
scale systems development as a means to manage complex-
ity and facilitate reuse. The Unified Modeling Language
(UML) [18], an object-oriented modeling approach, could
be broad enough in scope to represent a variety of domains
and gain widespread use. Currently, UML comprises sev-
eral different notations with no formal semantics attached to
the individual diagrams. Therefore, it is not possible to ap-
ply rigorous automated analysis or to execute a UML model
in order to test its behavior, short of writing code and per-
forming exhaustive testing.

We introduce a general framework for formalizing a sub-
set of UML diagrams in terms of different formal languages
based on a mapping between metamodels describing UML
and a formal language. This framework enables the con-
struction of a consistent set of rules for transforming UML
models into specifications in the formal language. The
resulting specifications derived from UML diagrams en-
able either execution through simulation or analysis through
model checking, using existing tools.

A given application domain determines what kind of for-
mal semantics should be attached to the UML diagrams
(since it is possible for a given set of UML diagrams to
have more than one interpretation). Therefore, the intent
of our formalization framework is to produce a semantics
for a set of UML diagrams for modeling systems in a given
domain, not the definitive semantics for UML for modeling
all types of systems. For example, a UML state diagram
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used to model the behavior of a management information
system (MIS), such as a financial investment system, will
require different formal semantics than a state diagram used
to model a flight controller. In order to increase the likeli-
hood of industrial use of our formalization framework, we
chose to model embedded systems.

Embedded systems are typically 10 to 100 times more
common than their desktop counterparts [5], residing in sys-
tems ranging from engines, to toasters, to autopilots. The
software for embedded systems is, in general, more diffi-
cult to write and debug because it usually involves time-
dependent sections in difficult to instrument situations. Fur-
thermore, embedded systems usually must achieve a higher
level of robustness and reliability because they control real-
world physical processes or devices upon which we depend,
frequently, in a critical way. Consequently, methods for
modeling and developing embedded systems and rigorously
verifying behavior before committing to code, are increas-
ingly important.

Currently, much of the embedded systems industry use
ad hoc development approaches [6]. Frequently, there are
few, if any, intermediate steps between high-level, prose
descriptions of requirements and code written in the tar-
get implementation language, such as C. We contend that
object-oriented methods are one remedy to the development
of embedded systems software. The gains are in part due to
the often close correlation between real components in the
physical system and software objects, although other factors
such as data hiding, encapsulation, etc, also contribute.

Our formalization of UML follows the well-established
method of mapping a semi-formal language to a formal lan-
guage. Two significant problems with this formalization ap-
proach, however, are completeness and consistency of the
rules that map one language to another. While there is no
“incorrect” semantics,1 inconsistent mapping rules can in-
troduce unexpected behavioral consequences.

Consistency and completeness of the rules are addressed
by basing the diagram formalizations on mappings between
metamodels of the modeling notations. A metamodel is a
model of the notation itself, depicted in the class-structure
notation, where “classes” represent syntactic components of
the modeling language. A homomorphic mapping is estab-
lished between the metamodels of the semi-formal (source),
UML and the formal (target) languages. We require each
mapping rule to conform to the homomorphic mapping be-
tween metamodels. The resulting specifications derived
from UML diagrams enable either execution through simu-
lation or analysis through model checking, using existing
tools. The mapping process from UML to a target lan-

1There is also no absolute “correct” semantics. “Correct” and “incor-
rect” are in terms of what a designer reasonably expects to happen for a
given syntactic construct for a particular problem domain.

guage has been automated in a tool called Hydra. Using
this framework and Hydra, we have successfully performed
an industrial case study involving the design of an embed-
ded system from the automotive domain. In order to lever-
age existing specification languages and tools that are ap-
plicable to the embedded systems domain, we have formal-
ized UML in terms of VHDL [13] and Promela for use with
the SPIN model checker [11]. (This paper introduces the
Promela formalization, and the VHDL formalization is de-
scribed in [13].)

The remainder of this paper is organized as follows. In
Section 2 we briefly review UML and metamodels, and
review Promela/SPIN, one of two target specification lan-
guages that we have investigated. A supporting piece for
this framework is the formalization of the class diagram
and the notation used to depict the metamodels, which is
presented in Section 3. Section 4 discusses the practicali-
ties of the metamodel mapping between UML and existing
specification languages. Section 5 describes how the ho-
momorphic mapping and formalization rules work together
to provide semantics, and Section 6 discusses the use and
applications of the overall framework. Section 7 reviews
related work. Finally, we give concluding remarks and dis-
cuss current and future investigations in Section 8.

2. Background

This section overviews the source semi-formal language
and a target formal language that we have explored. One
overarching goal of this research, motivated by technology
transfer objectives, is to enable developers to continue to
use widely accepted development techniques, both in terms
of modeling languages as well as the target specification
language. The framework that we have developed permits
UML diagrams to be formalized in terms of a variety of for-
mal languages. While UML offers several different nota-
tions, our preliminary investigations indicate that for mod-
eling requirements and high-level design, the class and state
diagrams are usually sufficient for modeling embedded sys-
tems, although sequence diagrams can often also be useful.

2.1. UML

The Unified Modeling Language (UML) [18] is de-
scribed as a “general-purpose visual modeling language that
is designed to specify, visualize, construct, and document
the artifacts of a software system”. UML is based on a series
of diagrams that depict the class structure, dynamic prop-
erties, and event sequencing for an object-oriented (OO)
software system. UML is an extension and melding of sev-
eral modeling languages, most notably the Object Modeling
Technique [17] (OMT) and StateCharts [9]. UML class dia-
grams and dynamic model diagrams use notation similar to
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OMT. Unlike OMT, UML has no functional model to depict
dataflow.

UML contains several distinct types of diagrams: Class
Diagrams, Use Case Diagrams, Dynamic Models (state di-
agrams), Interaction Diagrams (sequence and collaboration
diagrams), Activity Diagrams, and Deployment Diagrams.
In this paper we deal primarily with the class diagram and
the state diagram: The class diagram depicts the classes and
the interrelations between the classes. Figure 1 shows how
the class diagram notation is used for depicting a metamodel
(the description of the metamodel is given in the next sec-
tion). Classes are drawn as rectangles with relationships be-
tween classes drawn as annotated lines between the rectan-
gles. There are four types of relationships between classes.
Association is a binary relationship between two classes.
Multiplicities on associations are written as a number at
each end, with the number applying to instances at that end
of the line. An optional instance is denoted by “0..1”, “*”
indicates many, and “1..*” denotes one or many. Three ad-
ditional relationships are subtype, aggregation, and compo-
sition. Subtyping is denoted by a small hollow triangle on
the superclass end of the association. The derived class end
of the subtype relationship is not marked. Filled and empty
diamonds are placed on the aggregate end of composition
and aggregation relationships, while the classes that con-
stitute the parts of the aggregation are not marked. Both
aggregation and composition indicate collections where the
part plays a role in the behavior of the whole, but composi-
tion is the stronger relationship because the existence of the
part depends on the existence of the whole. In aggregation,
this dependency does not hold.

The dynamic model is based on Statechart [9] conven-
tions and describes dynamic behavior of objects through the
use of Statechart-like notation. States are drawn as rounded
rectangles with transitions between states drawn as arrows
between the boxes, which indicate the direction of the tran-
sition. Transitions are labeled with a transition event, which
has its own syntax. Composite states may contain further
sets of state diagrams. Concurrency of composite state ma-
chines is indicated by separating the composite states with
dotted lines.

The syntax of each type of UML diagram is described
by a metamodel. An instance of a metamodel is a UML di-
agram just as an instance of a UML class diagram is a set
of objects in a system. In order to explicitly address the
integration of the class diagrams and the dynamic model,
we composed, or integrated, their respective metamodels,
as shown in Figure 1, where a dashed line delimits the class
metamodel. The dynamic model portion of the metamodel
describes the interrelationship between states, transitions,
events and the other parts of the UML dynamic model.
Classes decorated with italics are abstract, and therefore
are not realized by actual components in a UML dynamic
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Figure 1. Metamodel of a UML dynamic model.

model diagram. The triangle pointing to class State in Fig-
ure 1 signifies a specialization association between “State”
and “CompositeState”, or “SimpleState”. Since “State” is
abstract, components of type “State” will not appear in a
dynamic model but components of types “CompositeState”
or “SimpleState” will appear wherever a type “State” is re-
quired.

Based on the metamodel in Figure 1, a “Behavior” is
constrained to be an aggregation of “State Vertex” that are
realized as “CompositeState” and/or “SimpleStates”. A
“CompositeState” is further specified to be an aggregation
of “State Vertex”, each of which is either a “State” or a
“PseudoState”, forming a recursive containment relation-
ship. “StateVertex” has two required associations with tran-
sitions, one in an outgoing role and another in an incoming
role.

2.2. Promela/SPIN

We have formalized UML in terms of Promela, the sys-
tem description language for SPIN [11]. A specification
written in Promela can execute in a simulation environment,
or model checking techniques can be applied to verify a
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range of properties. We are particularly interested in ex-
ploring how simulation and model checking can be used in
tandem to analyze and validate specifications for embedded
systems.

The syntax of Promela is loosely based on the C lan-
guage. Promela programs consist of processes, channels,
and variables. Processes are global objects running asyn-
chronously and can be created dynamically. Channels and
variables may either be local or global. The language was
influenced significantly by the Dijkstra “guarded command
language” [4] and CSP [10]. There are, however, impor-
tant differences. Dijkstra’s language has no primitives for
process interaction. CSP was based exclusively on syn-
chronous communication, constructed in Promela as an un-
buffered channel, but Promela also permits buffered chan-
nels allowing the construction of message queues. Also in
CSP, the type of statement that can appear in guards is re-
stricted, while Promela has no restrictions.

3. Metamodel Formalization

Unless the class model itself is formalized, the mappings
developed between metamodels will not rest upon a rigor-
ous basis. This section presents a brief description of the
formalization of the class model, which enables the formal
description of homomorphic mappings between metamod-
els.

The class model, upon which the metamodel is built, has
been formalized by Bourdeau and Cheng [1]. They showed
that a class model2 can be formalized using algebraic spec-
ifications and specific algebras related to OMT instance di-
agrams. In their formalization, classes are represented as
types, and associations between classes are formalized as
relations with various properties. We draw upon their work
by also representing classes as types and associations as re-
lations, but we do not use algebras.

Specifically, a class model is formalized as a set of typed
entities where the class of the entity corresponds to the en-
tity type. Class membership can therefore be expressed with
a typing predicate. We write Tclass for a class predicate, and
therefore for a component x, in class y, Ty(x) is true.

In UML, types and classes are not exactly the same [19],
although they behave almost identically. The differences
lie in realization, where an object may be of several types
but of only one class. For the discussion of metamodels we
associate a type with each class.

Class relationships are formalized as binary predicates
between members of each class. For example, in Figure 1

2Bourdeau and Cheng’s work pertained to OMT class models but the
differences between OMT and UML class models are minor and mostly
related to multiplicity notations. Most symbols are common between UML
and OMT.

a model component x of type “State Vertex” and a com-
ponent y of type “Transition” are related by the predicates
incoming(x; y) and outgoing(y; x).

Class specialization, also called subclassing, is con-
strained by requiring each object of a subclass to be a mem-
ber of the superclass’s type. Formally, for subclass C and
superclass P ,

8x (TC(x) =) TP (x)): (1)

Expression (1) also expresses the relation between virtual
classes, containing no objects themselves, and subclasses.
Additional details of the class formalization are not in-
cluded due to space constraints [14].

4. Semantics For Semi-Formal Models

Supplying precise semantics to a semi-formal UML
model is achieved by describing a set of mapping rules from
UML to the target formal language. In order to be complete
and consistent, each rule is constrained by a homomorphic
mapping between metamodels of the source and target lan-
guages.

4.1. Homomorphic Mappings on Metamodels

Homomorphic mappings have the important property
that they preserve structural relationships between entities
in two different systems. This property enables composi-
tional, semantic-preserving mappings from one system to
another.

In algebras, a homomorphic mapping maps one algebra
to another with the property of preserving operations [8].
For algebra A with binary operation�, algebra B with op-
eration 
, and a homomorphic mapping h that maps ele-
ments of A to B, we have

a; b 2 A h(a� b) = h(a)
 h(b):

We define a homomorphic mapping from the source
metamodel to the target metamodel that preserves relation-
ships. The homomorphism maps one metamodel class to
another and one predicate relation to another. For example,
suppose the source language metamodel contains classes
(types) A and B that are mapped by homomorphism h to
classes (types) A0 and B0 in the target language metamodel.
Also assume there exists a relation R between A and B that
is mapped by h to R0. Then we require h to satisfy:

8x; y (TA(x) ^ TB(y) ^ R(x; y) =)

R0(h(x); h(y)) ^ TA0(h(x)) ^ TB0(h(y))) (2)

Expression (2) requires classes A and B that are associated
by R to map to classes A0 and B0, respectively. Expres-
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sion (2) further requires the existence of an associationR 0 in
the target metamodel connected to R by h between classes
A0 and B0. We note in passing that h is not necessarily in-
jective, and with actual metamodels, is very rarely so. In
the above example, there may be other relations between
A0 and B0 other than R0, but minimally, R0 must exist.

4.2. Handling Structural Differences

It is rarely the case that the source metamodel and tar-
get metamodel are structurally identical. In general, we are
given a metamodel of the source language, but since the
goal is to produce a mapping to supply semantics to the
source language, we have some flexibility when construct-
ing the target metamodel to choose and arrange the parts of
the target language that are semantically relevant. In order
to make the mapping straightforward, when possible, a tar-
get class is constructed for each source class in the source
metamodel. Since the function is homomorphic, it need not
be surjective, therefore, there may be more classes in the tar-
get than in the source. For example, we develop the Promela
metamodel shown in Figure 2, and it contains subtypes of
“ActionSequence” that are not in the UML metamodel in
Figure 1. Similarly, there may be more associations in the
target than in the source. The intent of the mapping is to
produce a correspondence between the source language and
the target language, and not to be a generator (from a gram-
mar standpoint) of the target language.

4.3. Target Metamodel Templates

The target languages that we have typically selected are
at least executable in simulation and therefore often have
statements that describe more details of execution than the
constructs in the source UML metamodel. For example,
when using the target language Promela, a UML meta-
model class “SimpleState” maps to Promela metamodel
class “State Block” represented as a series of Promela state-
ments presented as a template.3 Each template represents a
parameterized series of target language statements. Tem-
plates contain metaterms, denoted by angle brackets, as
placeholders for statements that are either extracted directly
from the UML diagram or are generated by other rules.
Rule Promela 1 in Figure 4 (explained below), shows an ex-
ample of a template for “State Block”. In the template for
Rule Promela 1, <entry actions> is a placeholder for
Promela statements mapped from actions contained on an
“entry” declaration for that state in a UML dynamic model.
Using detailed templates permits the automatic generation
of target language specifications that are executable. More

3By template, we do not mean template class as found in C++, but
rather a specific pattern of target language statements.

examples of templates are presented in the following sec-
tion.

5. Formalization Rules For UML

With the formalization of the homomorphism between
metamodels established, we can describe the construction
of rules mapping UML to a target specification language. A
UML formalization consists of a 4-tuple (S; T; h;R). S and
T are the metamodels of the source and target languages, re-
spectively, and h is the homomorphism between S and T as
described earlier. The formalization rules, R, provide the
specific mappings of the semi-formal source to a target for-
mal specification language. Each rule specifies what target
language construct(s) shall be derived for a given source
language construct. As described earlier, this is generally
accomplished with a template showing how target language
statements are arranged for a given class or classes in the
target metamodel. The constraints for the application of
rules are also explicitly enumerated and describe how the
metaterms in the templates are formed. Rules mapping one
or more source components to target components must be
consistent with the homomorphism by preserving relation-
ships in the target language metamodel. Each rule must
have a direct correspondence with the homomorphic map-
ping, h, between metamodels. Since we claim the homo-
morphism preserves structure and provides consistency, the
rules constructed for the mapping between source and target
languages must also preserve structure and be consistent.

In order to illustrate the interaction between metamod-
els, a homomorphism, and a set of mapping rules, we ex-
amine portions of two rules from the formalization of UML
with Promela. Space does not permit entire rules (templates
are shown) or the inclusion of the entire mapping rule set,
but this is not needed to show how the homomorphism con-
strains the rules.

The metamodel for Promela is shown in Figure 2. Unlike
UML, the Promela metamodel does not pre-exist. Since we
have some freedom in the structure of the target language
metamodel, the target metamodel can be structured to make
the homomorphism as simple as possible without loss of
generality.

Figure 3 gives an abbreviated portion of the homomor-
phic mapping from the UML metamodel shown in Figure 1
to the metamodel given in Figure 2.

In Figure 2, a UML “SimpleState” is a state that con-
tains no states, while a “CompositeState” can contain “Sim-
pleStates” and other “CompositeStates”. Figure 4 shows
Rule Promela 1 for mapping “SimpleState” (Figure 1) to
“StateBlock” (Figure 2). Rule Promela 1 calls for a “Sim-
pleState” to be formalized as a State Block constructed from
the template shown in Figure 4. In this template, state-
name is the name of the state, object-name is the name
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Figure 2. The metamodel for SPIN/Promela
metamodels.

of the enclosing object, and composite-state-name
is the name of the enclosing composite state (or object
if this is the highest level). The metaterms <transi-
tion event expression j> are channel receive ex-
pressions for <event-name j> described in other rules.
Metaterm <guard list j> is the placeholder for the
construction of transition guards also described by other
rules. <action list j> is a list of Promela statements
for the action on the transition, and <send list j> is
a list of channel send operations for messages sent by the
transition. The second line of the template is present only if
a history state is present in the enclosing composite state.

Figure 3 shows that the homomorphism maps UML
metamodel class “SimpleState” to “State Block”. Simi-
larly, “State” is mapped to “State” and “ActionSequence”
is mapped to “ActionSequence”. Since the relationship is
homomorphic over relationships, the relationships entry
and exit between “State” and “ActionSequence” in the
UML metamodel (Figure 1) must be preserved between
“State” and “ActionSequence” in the Promela metamodel

UML Metamodel ) Promela Metamodel

Model )Model
Class ) Object-Proctype
Relationships ) Relationships
State Vertex ) State Vertex
Transition ) Transition
Pseudostate ) Pseudostate
State ) State
CompositeState ) Proctype
SimpleState ) State Block
ActionSequence ) ActionSequence

Figure 3. A few of the homomorphic map-
pings of components from the UML meta-
model to the Promela metamodel.

(Figure 2). As a consequence, in order for Rule Promela 1
to conform with the Promela metamodel (and the homomor-
phism), the “State Block” template must have relationships
entry and exit with “ActionSequence” (see Figure 2)
by virtue of its inheritance from the virtual class “State”.
Lines 3 and 15 in Rule Promela 1, respectively, show <en-
try actions> and <exit actions> in satisfaction
of the metamodel requirements and conformance with the
homomorphism.

Compare Rule Promela 1 with the template in Rule
Promela 2, the rule for Composite States in Figure 5. Rule
Promela 2 calls for a composite state named composite-
state-name to be formalized as a proctype (a proc-
type defines a Promela process) with a formal parameter
of type mtype. A proctype representing a composite
state is activated in the parent composite state or object with
a run(first-state-name) statement that passes the
name of the state to begin, or value none, when the transi-
tion is to the boundary of the composite state. The tem-
plate shown in Figure 5 is used to construct “Proctype”.
The metaterm <initial state sequence> is either
a history state construct or an initial state construct, as re-
quired. Metaterm <state sequences> is defined in
the rules as an aggregate of bodies of simple states and
transfers to composite states.

In Figure 2, Promela metamodel class “Proctype” in-
herits from “State” just as “State Block” does. Therefore,
“Proctype” must also contain a sequence of statements for
entry and exit actions that must be reflected in the rule
template. “Proctype” also has a recursive containment re-
lationship through classes “State” and “State Vertex” that
must also be preserved in the template. Conformance with
the metamodel is achieved in Rule Promela 2 by specify-
ing that <state sequences> contain “State Blocks” or
calls to other proctypes.
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Rule Promela 1

1 state-name:
2 H composite-state-name = st statename;
3 <entry actions>
4 evt!<event-name 1>, pid;
5 evt!<event-name 2>, pid;
6 .
7 .
8 .
9 evt!<event-name n>, pid;
10 if
11 :: <transition event expression 1>
12 -> <guard list 1>
13 <action list 1>
14 <send list 1>
15 <exit actions 1>
16 goto nextstate
17 :: <transition event expression 2>
18 -> <guard list 2>
19 <action list 2>
20 <send list 2>
21 <exit actions 2>
22 goto nextstate
23 .
24 .
25 .
26 :: <transition event expression n>
27 -> <guard list n>
28 <action list n>
29 <send list n>
30 <exit actions n>
31 goto nextstate
32 fi;

End of Rule Promela 1.

Figure 4. The UML to Promela rule mapping
simple states to equivalent Promela specifi-
cations.

If Rule Promela 2 were formulated without the con-
straint of the Promela metamodel that is itself constrained
by the homomorphism between the UML metamodel and
the Promela metamodel, then it would be easy to over-
look the requirement of entry and exit actions on composite
states. Since “Proctype” and “State Block” are common
descendants of “State” in the Promela metamodel (as re-
quired by the homomorphism), both classes must have sim-
ilar constructs, such as entry actions, exit actions, and the
incoming and outgoing relationships with transitions. Be-
cause of the homomorphism, the structural relationship of
the elements in the UML model match the structure of the
generated Promela specification.

For completeness, every UML metamodel class must
map, via the homomorphism, to some class in the Promela
metamodel. Since relationships between metamodel classes

Rule Promela 2

1 proctype composite-state-name(mtype state)
2 fatomicf
3 <initial state sequence>
4 <entry actions>
5 <state sequences>
6 exit: <exit actions>
7 skip
8 gg

End of Rule Promela 2.

Figure 5. The UML to Promela rule mapping
composite states to equivalent Promela spec-
ifications.

must be preserved, no UML metamodel class is omitted
from the mapping rules.

As a concrete illustration of specifications produced by
this framework using Hydra4, Figure 6 shows a simple
UML model consisting of two classes. The dynamic model
for class “ClassOne” is shown in the same diagram, as indi-
cated by the dashed line. Rule Promela 1, working in con-
junction with other rules, produces the Promela specifica-
tion shown in Figure 7. Rule Promela 1 produces lines 20
to 35, and lines 36 to 44, representing simple states A and
B, respectively, in Figure 6. The label A G on line 24 is
generated as a consequence of a guarded transition by an-
other rule. Lines 1 through 11 are generated by a rule that
establishes global declarations based on the class model.
Lines 12 and 49 show the generation of proctypes as
class containers for classes “ClassOne” and “ClassTwo”, re-
spectively, as dictated by rules that map class structure.

6. Tool Support and Case Study

Since the mapping from UML is concrete and specific to
executable sets of formal language statements, it is possible
to construct an automated tool that will transform a UML
diagram to a specification in the formal language. The spec-
ification can then be used with tools specific to the formal
language. We have constructed such a prototype tool called
Hydra that translates an instance of a UML diagram into

4As mentioned in the introduction, Hydra is our tool using the de-
scribed framework for producing Promela (or other target language speci-
fications) directly from UML diagrams.
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B

ClassOne

int x

ClassTwo

hello()
goodbye()

exit/x := x-1; send(ClassTwo.goodbye)

entry/x := x+1; send(ClassTwo.hello)

A

E2

talks 11

E1[x > 10]

Figure 6. A simple UML model consisting of
two classes. The dynamic model for Class
“ClassOne” is shown in the lower portion of
the diagram.

executable specifications using this framework. Currently,
Hydra can generate either VHDL or Promela specifications.
The resulting specifications can be run in simulation to de-
termine the behavior of the dynamic model described by
the UML model or, in the case of Promela, used with SPIN
model checking analysis tools.

6.1. Industrial Automotive Application

In an industrial case study, we used Promela as the target
language for the design of a “Smart Cruise Control” for au-
tomobiles. Smart Cruise control augments standard cruise
control with a small radar unit to monitor the location of
vehicles ahead of the car. When necessary, the speed of
the car is slowed to maintain a safe trailing distance from
the vehicle ahead. When the leading vehicle is no longer
present, the Cruise Control resumes the initial speed set by
the driver. The system includes numerous checks and warn-
ings that can be issued to the driver when unsafe conditions
are detected.

The formalization of UML enables us to perform struc-
tural as well as behavioral analysis of the diagrams. Struc-
tural analysis includes inter- and intramodel consistency
checks using utilities within Hydra. Example errors include
use of an instance variable without it being declared, use of
a signal/message without it being declared, or expecting a
signal/message that no object sends. The first two errors are
inconsistencies between a class and its corresponding state
diagram, while the third is an inconsistency among the state
diagrams contained in the entire model. We were able, us-
ing Hydra, to move directly from UML class and behavior
diagrams to model checking and simulation. SPIN’s model
checking and simulation capabilities were extremely useful
during the behavior analysis of the Smart Cruise Design.

1 chan evq=[10] of fmtype,intg;
2 chan evt=[10] of fmtype,intg;
3 chan wait=[10] of fint,mtypeg;
4 mtype=fgoodbye, hello, E1, E2g;
5 typedef ClassOne T f
6 int x;
7 g
8 ClassOne T ClassOne V;
9 chan ClassTwo q=[5] of fmtypeg;
10 chan t=[1] of fmtypeg;
11 mtype=ffreeg;
12 proctype ClassOne()
13 f
14 mtype m;
15 int dummy;
16 ClassOne V.x = 1;
17 /* Init state */
18 goto A;
19 /* State A */
20 A: printf("in state ClassOne.A");
21 atomicfClassOne V.x=ClassOne V.x+1;
22 ClassTwo q!hello;; g
23
24 A G:
25 evq!E1, pid;
26 atomic fif :: !t?[free] ->
27 t!free :: else skip fi;g
28 if
29 :: evt??E1,eval( pid) -> t?free; if
30 :: ClassOne V.x>10 ->
31 ClassOne V.x=ClassOne V.x-1;
32 ClassTwo q!goodbye;; goto B
33 :: else -> goto A G
34 fi
35 fi;
36 /* State B */
37 B: printf("in state ClassOne.B");
38 evq!E2, pid;
39 atomic fif :: !t?[free] ->
40 t!free :: else skip fi;g
41 if
42 :: evt??E2,eval( pid) ->
43 t?free; goto A
44 fi;
45 exit: skip
46 g
47
48
49 proctype ClassTwo()
50 f
51 mtype m;
52 int dummy;
53 exit: skip
54 g

Figure 7. Hydra-generated Promela specifica-
tions produced from the UML class and dy-
namic model shown in Figure 6.
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Simulation is used to validate the behavior of the system and
enables us to focus the model checking efforts on specific
parts of the system exhibiting erroneous behavior. Using
SPIN never claims we verified a number of critical tempo-
ral properties of the system, including safety and freedom
from deadlock. For example, model checking discovered a
missing transition in a series of states entered only when the
cruise system had to be shut down by an exception event.
The missing transition is only needed when a specific set of
events occur in a certain order. Finding the missing transi-
tion through simulation would require either luck or many
simulation runs. Furthermore, being able to visually cor-
relate the behavior diagram and the model checking results
greatly eased the discovery and repair of this problem. Due
to space constraints, details of this case study are not in-
cluded [3].

7. Related Work

This section briefly discusses other projects that have in-
vestigated formalization of UML diagrams using formal tar-
get languages.

Other work has approached this problem from two ma-
jor directions. In the first, UML is mapped to another lan-
guage such as Z, but there is no overarching consistency-
generating framework for the rule generation. The pUML
Project [2, 20] is an effort to formalize the meaning of UML
diagrams using the Z language as its formalization vehicle.
In the second approach, UML models are first mapped to an
intermediate form, then mapped to a formal target language.
For example, Latella, et al. [12] have formalized UML state
diagrams through a mapping to extended automata, but not
in the context of the class diagram. Our homomorphism be-
tween metamodels provides a direct mapping from UML to
the chosen target language.

There have been other attempts to add formality to UML.
For example, when using UML, it is also possible to an-
notate the diagrams with the Object Constraint Language
(OCL) [15] that uses simple logic for specifying invariant
properties of systems comprising sets and relationships be-
tween sets. OCL is intended to be a light-weight formal
specification language, for annotation purposes (e.g., invari-
ants, guards, pre-/postconditions for methods), rather than
to be used as the basis for extensive (automated) behavior
analysis, such as simulation and model checking. In addi-
tion, there is no formal mechanism to integrate the informa-
tion from the different UML models or provide a means to
rigorously trace the requirements down to implementation.
Robbins, et al. have also extended UML notation to enable
architecture-based modeling for languages such as C2 and
Wright [16].

We leverage previous work by Wang and Cheng [22, 21,
23] into the formalization of OMT [17], which in many

ways is the predecessor to UML. Their formalization tar-
geted LOTOS specifications only. In contrast, we have de-
veloped a general framework for formalizing UML that may
have several target languages.

The idea of a homomorphism between metamodels is
closely related to Institution morphisms [7], however, our
homomorphism is most likely not an institution morphism
since UML is not a formal system.5 Also, the idea of a
relational homomorphism does not seem to be a required
feature of an institution morphism.

8. Conclusions

We have presented a framework for formalizing the se-
mantics of a key set of UML diagrams using a mapping
from UML metamodels to formal language metamodels.
The approach has the advantage that no intermediate map-
pings are required. Furthermore, the mapping leads to a set
of rules for constructing specifications in the formal lan-
guage. We have constructed Hydra, a prototype tool to
demonstrate that the rules are sufficiently defined that for-
mal language specifications can be generated automatically
from UML diagrams. Although we do generate executable
specifications, code generation is not the emphasis of this
work. The intent of the generated specifications is to attach
formal semantics to UML diagrams.

Our initial target formal languages are VHDL and
Promela/SPIN, and we have applied the framework to the
analysis of embedded systems. Although a concrete seman-
tics is required for any specific project, it is possible to alter
UML semantics by modifying the mapping rules and the
homomorphism.

While the mappings of UML to VHDL and Promela
provide very similar semantics, there are differences that
may affect analysis in a specific project. VHDL con-
tains the ability to perform precise timing simulations,
while Promela has virtually no timing capability. On the
other hand, the SPIN model checker can be used with
Promela models6 to explore extended behavior, which is
not currently possible directly with VHDL models. Fair-
ness constraints were much easier to achieve in VHDL than
Promela. In fact, fairness was very hard to achieve in
Promela models. From a mapping standpoint, it was easier
to map inter-state messaging across the UML hierarchical
state machine structure to VHDL while Promela required
considerable extra work. On the other hand, class structure
was more straightforward to achieve in Promela and rela-
tively difficult in VHDL.

5It has not been formally proven whether or not a set of UML diagrams
is an institution.

6In fact, Hydra can pre-process LTL temporal claims written in the
notation used in the UML model, incorporating the constructs required for
model checking into the Promela specification.
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We expect to include other diagrams in the homomor-
phic mapping, and consequently into the mapping rules. In
particular we expect that UML use cases and sequence dia-
grams will be the primary source of drivers to test the mod-
els in both simulation and for model checking, and can au-
tomatically provide further constraints to verify a design.
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