
Science of Computer Programming 89 (2014) 144–161

Contents lists available at ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

Model-driven engineering practices in industry: Social,
organizational and managerial factors that lead to success
or failure
John Hutchinson ∗, Jon Whittle, Mark Rouncefield
School of Computing and Communications, Lancaster University, UK

h i g h l i g h t s

• We present extensive results from a survey of MDE practices in industry.
• We present case studies of the adoption of model driven engineering (MDE) by four companies.
• We identify important factors that can affect the success or failure of MDE use from both the survey and case studies.
• MDE provides genuine benefits to those companies who use its appropriate contexts.
• Success/failure appears to be more dependent on organizational factors than technical.

a r t i c l e i n f o

Article history:
Received 7 March 2012
Received in revised form 26 March 2013
Accepted 27 March 2013
Available online 17 April 2013

Keywords:
Model driven engineering
Empirical software engineering
Industry practice

a b s t r a c t

In this article, we attempt to address the relative absence of empirical studies of model
driven engineering (MDE) in two different but complementary ways. First, we present an
analysis of a large online survey of MDE deployment and experience that provides some
rough quantitative measures of MDE practices in industry. Second, we supplement these
figures with qualitative data obtained from some semi-structured, in-depth interviews
with MDE practitioners, and, in particular, through describing the practices of four
commercial organizations as they adopted a model driven engineering approach to their
software development practices. Using in-depth semi-structured interviewing, we invited
practitioners to reflect on their experiences and selected four to use as exemplars or case
studies. In documenting some details of their attempts to deploy model driven practices,
we identify a number of factors, in particular the importance of complex organizational,
managerial and social factors – as opposed to simple technical factors – that appear to
influence the relative success, or failure, of the endeavor. Three of the case study companies
describe genuine success in their use of model driven development, but explain that
as examples of organizational change management, the successful deployment of model
driven engineering appears to require: a progressive and iterative approach; transparent
organizational commitment and motivation; integration with existing organizational
processes and a clear business focus.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The complexity and pervasiveness of software in society is growing exponentially [13]. It is generally agreed that the only
realistic way to manage this complexity, and to continue to provide software benefits to the public at large, is to develop

∗ Corresponding author. Tel.: +44 1524 510311; fax: +44 1524 510492.
E-mail addresses: johnhutchinson.uk@gmail.com, j.hutchinson@lancaster.ac.uk (J. Hutchinson), j.n.whittle@lancaster.ac.uk (J. Whittle),

m.rouncefield@lancaster.ac.uk (M. Rouncefield).

0167-6423/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.scico.2013.03.017

http://dx.doi.org/10.1016/j.scico.2013.03.017
http://www.elsevier.com/locate/scico
http://www.elsevier.com/locate/scico
http://crossmark.crossref.org/dialog/?doi=10.1016/j.scico.2013.03.017&domain=pdf
mailto:johnhutchinson.uk@gmail.com
mailto:j.hutchinson@lancaster.ac.uk
mailto:j.n.whittle@lancaster.ac.uk
mailto:m.rouncefield@lancaster.ac.uk
http://dx.doi.org/10.1016/j.scico.2013.03.017

J. Hutchinson et al. / Science of Computer Programming 89 (2014) 144–161 145

software using appropriate methods of abstraction [20]. Today, the state-of-the-art in software abstraction is model-driven
engineering (MDE) – that is, the systematic use of models as primary artifacts during a software engineering process1. MDE
has recently becomepopular in both academia and industry as away to handle the increasing complexity ofmodern software
and, by many, is seen as the next step in increasing the level of abstraction at which we build, maintain and reason about
software. MDE includes various model-driven approaches to software development, including model-driven architecture,
domain-specific modeling and model-integrated computing. This article is concerned with describing and understanding
the industrial experience of MDE and identifying any best practice or lessons learned.

Whether or not the current brand of MDE tools succeeds, the notion of abstract models is crucial to the future of
software. But empirical evaluations are needed to ensure that future software tools will match the way that software
developers think. Although MDE claims many potential benefits – chiefly, gains in productivity, portability, maintainability
and interoperability – it has been developed largely without the support of empirical data to test or support these claims
[4]. As a result, decisions whether or not to use MDE are based mainly on expert opinion rather than hard empirical data;
and these opinions often diverge [30,31] as companies tend to adopt MDE based not on an analysis of how it will affect their
business but on perception or the advice of evangelists. The lack of empirical results on MDE is a problem since industry
invests millions in the development and application of MDE tools [12]. Without empirical evidence of the efficacy of these
tools, there is a danger that resources are being wasted.

The benefits ofMDEare frequently cited and are often considered to be obvious. However, there are also reasonswhyMDE
may in fact have a detrimental effect on system development. Firstly, it is by no means guaranteed that higher abstraction
levels lead to better software. In fact, results from psychology generally [19,5] and psychology of programming specifically
[29] show that abstraction can have a negative effect because thinking in abstract terms is hard, with a tendency for
individuals to prefer concrete instantiations (e.g., exemplars, simulations) over abstract conceptualizations.

Secondly,MDE involves dependent activities that have both a positive and a negative effect. For example, code generation
in MDE appears, at first glance, to have a positive effect on productivity. But the extra effort required to develop the models
that make code generation possible, along with the possible need to make manual modifications, would appear to have a
negative effect on productivity. How the balance between these two effects is related to context, and what might lead to
one outweighing the other, is simply not known. Thirdly, there are many different flavors of MDE and so companies have
a difficult choice to select the right variant for their business. The benefits and drawbacks of MDE are not obvious and, in
fact, may be highly dependent on context. As a result of these factors, there is as yet no clear decision-making framework
that can tell whether MDEwill succeed or not in a given context. Our research is intended to provide a better foundation for
MDE adoption by trying to understand empirically which factors lead to successful adoption of MDE and cataloging exactly
what works in MDE projects [17,18].

2. Previous work

There has not yet been a systematic and multidisciplinary programme of work to study the effectiveness of MDE in
broad terms. For example, there are currently no widespread, systematic, surveys of industrial use of MDE. These can be
important because they often reveal commonmisperceptions [13]. A 2005 survey looked at the penetration of UML andUML
tools into the marketplace [10] but focused on UML not MDE. Forward and Lethbridge [10] conducted an online survey of
software practitioners’ opinions and attitudes towards modeling. Afonso et al. [1] documented a case study to migrate from
code-centric to model-centric practices. But there has been very little research that examines the social and organizational
factors related to MDE adoption and use since most empirical studies have concentrated on technical aspects of MDE. The
Middleware Company conducted two studies, commissioned by Compuware in 2003 and 2004, thatmeasured development
and maintenance times of an online pet store using both MDA and a state-of-the art IDE [24,25]. The studies compared only
oneMDE tool (Compuware’s OptimalJ) but showed a 35% increase in productivity and a 37% increase inmaintainability. Anda
et al. [2] reported anecdotal advantages of modeling such as improved traceability but also pointed to potential negatives,
such as increased time to integrate legacy code withmodels and organizational changes needed to accommodate modeling.

There has been more research on evaluating the language UML [3,6,21,26]; studies attempting to empirically measure
the comprehensibility of UML models [7–10,14,22–24,28]; and a range of experiments that assess software engineering
techniques incorporating UML. But MDE is more than just UML. UML is just one example of a modeling language but
MDE additionally incorporates the notion of multiple modeling languages (each for a different domain), the idea of
automating model transformations between modeling languages, and the principle of maintaining multiple perspectives
of a project (e.g., platform-specific vs platform-independent). Whilst most existing work has concentrated on evaluating
the appropriateness of the UML language, almost nothing has been done to examine the wider issues of MDE: such as
whether code generationworks in practice;what are the trade-offs between domain-specific languages and general purpose
languages; is MDE appropriately aligned with existing organizational structures?

1 This description of MDE as ‘‘the systematic use of models as primary artifacts during a software engineering process’’ is essentially the definition of
MDE that was used for the work described here. Although others may attempt a more formal definition, and then use that to determine if the practices
observed constituted MDE, the goal here was to be as inclusive as possible in our attempt to discover what practices were actually occurring in industry.
Thus our notion of MDE arises from what is being practiced by those who took part in our study.

146 J. Hutchinson et al. / Science of Computer Programming 89 (2014) 144–161

More recent studies have also lacked the kind of empirical, industrial experience, detailingMDE in use. France and Rumpe
[11] provide an overview of research in MDE, pointing to some of the ‘wicked problems’ involved, rather than its industrial
application. Mohagheghi and Dehlen [25] provide a meta-analysis of the literature on MDE outlining how MDE techniques
have been applied in a range of companies across different domains. In terms of software quality there were some anecdotal
accounts of defect reductions, reduced need for code inspections, andmaintenance gains. However, few of the papers in the
meta-analysis provided strong empirical evidence of the impact on productivity and Mohagheghi and Dehlen suggest that
there is a need for more empirical studies evaluating MDE before sufficient data will be available to prove the benefits of its
adoption.

To summarize, there has been very limited empirical research assessing the benefits of MDE. In particular, there appear
to be three key gaps in current understanding: a lack of knowledge on howMDE is used in industry; a lack of understanding
of how social factors affect MDE use; and a failure to assess aspects of MDE beyond UML, such as the benefits of code
generation, domain-specific abstractions and model transformations. The initial motivation behind our research was then
to build a growing corpus of evidence, both quantitative and qualitative, concerning the lived experience of model-driven
development practices in industry, through which we might further investigate some of these important and interesting
gaps in our knowledge.

3. Method

Our general tactic was to tackle these key aspects of MDE using a multidisciplinary method. We attempted to link the
methodological and analytic approaches of the Social Sciences (that is, we used established Social Science andManagement
Science research techniques) with an ontological and epistemological understanding drawn from computer science (that
is, our basic understanding of MDE, coding, architecture etc. is drawn from Computer Science). We approached this
interdisciplinary challenge of the empirical analysis of MDE in industry by using an eclectic mixture of research methods —
in particular, an online questionnaire survey and case studies constructed through semi-structured in-depth interviewing.

3.1. The survey

Surveymethods are a well-established social science technique for obtaining some broad characterization of a particular
issue. Our survey consisted of 35 mostly closed questions and was designed to take about 15 minutes to complete. Closed
questions were chosen because alternative replies were known, were limited in number and were clear-cut and were used
to maximize the number of respondents completing the questionnaire whilst more nuanced issues were discussed in the
interviews. The 35 questions were selected based on a consultation process with well-knownMDE experts. The survey was
deliberately targeted towards practicing MDE users. Because of the sampling method, respondents generally (although not
exclusively) have had at least some success with MDE — those who have tried MDE but failed were probably not accessible
within the sampled network. To account for this, a simple starter question asked ‘‘Do you consider MDE to be a good thing?’’
84% answered ‘‘yes’’ to this question, indicating that our sample is generally made up of MDE proponents. 12% answered
‘‘neutral’’ or ‘‘do not know’’.

To limit the set of respondents, clear instructions were given that the questionnaire should be completed only by those
with practical MDE experience. Even so, around 23% of respondents described their role as ‘‘researcher’’. Responses to
‘‘boilerplate’’ questions tell us that the vast majority of participants had significant software engineering experience, were
employed in a range of different roles, andworked in a good spread of size of companywith respect to the number of people
actively engaged in software development. The responses also tell us that the participants were generally experienced in
using MDE.

To recruit participants, we used a combination of snowball sampling and an open call. Snowball sampling [27] is a non-
probability sampling technique where existing subjects help to recruit additional subjects from their own network. The
questionnaire was initially sent to a list of known MDE professionals who were asked to help recruit additional volunteers.
Snowball sampling is subject to numerous biases because it only attracts subjects within a certain network. As a result, it
could bias the sample towards (e.g.) those who used MDE in a particular way or in a particular industry. However, this is
acceptable in this case as the focus of interest was experienced MDE users who can be quite difficult to reach using random
sampling. A number of questions were included to profile the participants so that any results would not be generalized
beyond this profile. In terms of the open call, the questionnaire was advertised in a prominent place on the OMG’s home
page between the end of 2009 and the middle of 2010 (after that it was moved to the MDA part of the site where it is still
available) and was also advertised on the project website and via a number of related blogs.

This ‘‘community’’ of respondents had over 1000 years’ total experience in software development. Almost 70% had
been involved in software development for 5 years or more and 44% had been so for 10 years or more. The roles filled
by respondents are diverse, including Developer (17%), Modeler (21%), Team Leader (19%), Project Manager (16%), Domain
Expert (4%), Researcher (23%), Architect (7%) as well as a small number of consultants or chief technology officers. Company
size fell roughly into thirds: a third had 1–100 employees, a third had 100–1000 and a third had over 1000 employees; of
these about half have 1–100 people involvedwith software development and around 40% havemore. This highlights the fact
that many companies focus upon some other aspect of engineering (e.g. mechanical, electrical, electronic or a combination

J. Hutchinson et al. / Science of Computer Programming 89 (2014) 144–161 147

of these) and carry out software development as a supporting activity. Finally, there was variation in respondents’ MDE
experience: 10% carrying out ‘‘initial exploration’’, about 10% doing ‘‘prototyping’’, about 18% working on their ‘‘first major
project’’ usingMDE and a third describing their organization’smaturitywithMDE as ‘‘Extensive Experience ofMDE onMany
Projects and/or over Many Years’’.

In terms of internal validity, we did not carry out probabilistic sampling for the selection of respondents. This has likely
resulted in a bias towards those who have successfully applied MDE. It would, of course, be interesting to conduct a related
survey with those who have tried MDE but given up; such respondents would be difficult to reach, however. We accounted
for bias in the group of respondents by asking our first question (‘‘Do you think MDE is a good thing?’’), which allows us to
quantify the bias to a certain extent. Another threat to internal validity is that our survey relies on personal experiences and,
to a lesser extent, attitudes. Hence, there could potentially be problemswith accuracy of information. Thiswas accounted for
by stressing in all questions thatwewere interested in experience-based information rather than simply personal opinion. It
is also possible that the bias of individual respondents could be called into question. Theremay be participants, for example,
who have an agenda to push, such as a tool vendor. We have made every effort to deter such individuals from completing
the survey by including an introductory instruction not to continue if the individual was not an industry practitioner with
hands-on experience of applying MDE. Out of 449 responses, about 6% of respondents claim to be involved in consultancy,
whilst only 1% mention involvement with selling tools. In terms of external validity, the results are limited to those who
have experience in applying MDE in practice. We make no claims that the results generalize to software development or
even modeling more broadly.

3.2. The case study interviews

Themass of quantitative data obtained from the online surveywas supplemented and complemented bymore qualitative
data obtained through semi-structured interviewing of some of our participants that was then shaped into what we believe
are instructive ‘case studies’ of MDE deployment. The essence of the case study method is to conduct empirical inquiry
within its real-life context and, thereby, provide detailed, qualitatively rich, contextual description and analysis of a complex
real-life phenomenon, that is, we wanted to gather some detailed information of exactly what it is like, what it actually
feels like, to be involved in an industrial MDE project and gain some personal reflections on its organization, successes
and failures. Case study research excels at producing this kind of detailed understanding of complex issues. Of course,
critics of the method suggest that the detailed study of a small number of cases may produce various kinds of bias and
can offer few grounds for establishing the reliability or generality of findings. Briefly, we suggest that in this particular
case, where we are interested in what ‘general’ lessons might have been learned from the MDE experience there is a
confusion of the social science use of the term generalization, where it is associated with prediction, statistics, causality
and theory development and ordinary language use of generalization, where the concern is perhaps more with issues
of general expectation, sensitivity or ’typicality’. We suggest that our interview studies provide sufficient detail that the
generalization problem, briefly – ‘how can this information be relevant to other MDE projects in other organizations’?
– is transformed from being simply the researcher’s problem, to one more easily addressed by the audience (or the
reader); enabling them to identify the points of similarity and difference between their own organizations and the ones
reported here. In deciding the relevance of the materials we present, the generalization question then becomes, for all
practical purposes, – ‘in what respect are the details reported here sufficiently similar to those in your own project team
or organization’?

The data was gathered during a semi-structured in-depth telephone interview that lasted approximately an hour. The
interviews were informal and, whilst organized around a number of themes, were designed to allow the conversation
to follow the respondents’ interests. The themes we were interested in, and which tended to arise fairly naturally in
the conversation covered such issues as the respondents background and experience, their current role, what model-
driven engineering meant in their setting, the motivation for using model-driven engineering within the organization, their
experience of using model-driven engineering, its benefits and problems, the critical decisions that made MDE a success
or failure, the attitudes of people at all levels to the adoption and use of MDE, any lessons learned and any significant
‘‘war stories’’ – examples of significant events of their adoption of MDE. These general themes formed the basis for our
conversations with practitioners and we followed up their answers both for clarification and to obtain more detail and
insight. Some of their answers are presented in relatively ‘raw’ form here largely for authenticity, this is how people reason
about MDE practices, and because they also give some idea about the inherent ‘messiness’ of everyday organizational life
within which MDE deployments have to be made to work (or not).

For our interview studies, respondentswith experience of industrialMDE projectswere identified frompersonal contacts
and from our online survey promoted on leading software engineering and MDE mailing lists and through a link on the
Object Management Group’s website. The results reported here are based on 22 interviews we carried out with a range
of MDE practitioners. The data collected amounts to around 20 hours of recorded interviews and over 150,000 words of
transcribed data. Collectively our interviewees have over 360 years of software development experience between them and
represent a range of different organizational roles in a number of different domains. The data was analyzed using a broadly
‘grounded’ approach [15] looking for and identifying common emerging themes and issues and the various ways in which
these were expressed.

148 J. Hutchinson et al. / Science of Computer Programming 89 (2014) 144–161

Fig. 1. ‘‘Do not use’’ percentages for MDE activities.

Fig. 2. Percentage of respondents using each modeling language.

4. Survey results

4.1. Survey results—general

1 What are models used for?
MDE encompasses a variety of activities, from code generation, to modeling language creation, to model-based testing,

etc., so respondents were asked which of the activities in Fig. 1 they actively used. In fact, respondents were asked to note
the contribution of each activity towards improving productivity and maintenance. However, a ‘‘do not use’’ category was
included for participants who did not use a particular activity. As it turns out, it is this ‘‘do not use’’ category that sheds
light on the level of formality of MDE use within industry — since the activities in Fig. 1 broadly require a greater degree
of effort/formality further down the y-axis. Not surprisingly, a large majority of respondents (95%) use models for problem
understanding. The use of models in documentation is also widespread (91%). This contrasts with the use of executable
models or models for simulation (62%). The percentages for two of these activities are somewhat unexpected. Firstly, over
70% of respondents appear to use model-to-model transformations. Secondly, given the relative maturity of model-based
testing, it is surprising to find that 35% of respondents do not use models in testing.

4.2. Which modeling languages are used?

Many people associate MDE with the use of UML. In reality, the choices of language are far more varied. Fig. 2 shows the
responses to a question asking which modeling languages are used. (Note that respondents were free to select multiple.)

UML is the most used modeling language but other results are less obvious. Firstly, there is a higher than expected
preponderance of DSL use — either custom DSLs designed in-house or off-the-shelf DSLs. There is a long standing debate
within the MDE community on the relative strengths of UML versus DSLs (cf. [16]). Fig. 2 suggests that DSLs have achieved
a significant degree of penetration.

UML and DSLs should not necessarily be considered as mutually exclusive of course since DSLs can be defined as UML
profiles (e.g., [17]). 62% of respondents who use custom DSLs also use UML and many others reported using multiple
modeling languages.

4.3. Which diagrams are used?

Participants were askedwhich diagrams they used for modeling and how often2. Fig. 3 shows themost popular diagrams
used regularly by respondents. The threshold for inclusion in Fig. 3 is two responses. In addition, a large number of other
diagrams were mentioned just once (20+).

2 Modeling may, of course, be done textually and need not involve diagrams at all.

J. Hutchinson et al. / Science of Computer Programming 89 (2014) 144–161 149

Fig. 3. Diagrams used regularly for modeling (# respondents).

The category title ‘‘DSLs (various)’’ groups together any mention of domain specific modeling diagrams, but does not
include those domain specific approaches that were specifically named, such as AUTOSAR, WebML, etc.

4.4. Survey results—paired questions

A series of pairs of questions were asked about potentially positive and negative aspects of MDE use in order both to
ascertain what reliance we might place on individual answers and to investigate how difficult respondents found it to
balance the advantages and drawbacks of its use. For example, one pair of questions asked about the potential of code
generation. Respondents were asked both ‘‘Is your use of code generation an important aspect of your MDE productivity
gains?’’ and ‘‘Is integrating generated code into your existing projects a significant problem?’’ These questionswere designed
to tease out the trade-off between assumed advantages gained from code generation (improved productivity) and assumed
disadvantages (legacy code integration). By comparing responses to these questions, it is possible to get a sense for the
relative importance of benefits versus drawbacks.

4.4.1. Survey results—effect of MDE on training costs
A previous study has suggested that MDE may reduce training costs associated with new hires because much of the

organizational knowledge can be encoded in code generation tools [22]. How does this compare with the novel training
needs required to implement MDE? The pair of questions asked was:
Q: Does MDE allow you to employ developers with less software engineering experience (e.g. new graduates)?
Q: Does MDE require you to carry out significant extra training in modeling?

Around 46% of respondents thought that using MDE allows them to employ less experienced software engineers whilst
around 34% disagreed. The remainder were evenly split between being neutral and having no experience.

74% thought that using MDE requires them to carry out significant extra training (<9% disagreed). In this instance, those
who were neutral represented almost 15% of respondents, whilst 2.6% said they had no experience.

Although MDE practitioners are able to hire less experienced employees, they also incur additional training costs. The
results highlight just how carefully a balance must be achieved. A company adopting MDE and assuming that they will
require the same level of experience as before and expecting to invest more in training will be far better prepared than one
looking to save costs by hiring inexperienced new graduates.

4.4.2. Survey results—benefits of code generation
The paired questions in this case were designed to unpick the trade-offs between increased productivity from generating

code versus potential productivity losses due to increased legacy code integration costs:
Q: Is your code generation an important aspect of your MDE productivity gains?
Q: Is integrating generated code into your existing projects a significant problem?

For a majority of respondents, the ability to automatically generate code is considered an important part of the
productivity gains they achieve (>75%). Around 10% report that code generation is probably or definitely not an important
aspect of their productivity gains. The answers about integrating generated code suggest much more ambivalence. About
36% of respondents say it is not a significant problem, and a slightly higher 40% say that it is a significant problem.

150 J. Hutchinson et al. / Science of Computer Programming 89 (2014) 144–161

4.4.3. Survey results—making changes to the model or to the code
Best practice guidelines usually advise modelers to make changes only on the modeling level – and then re-generate the

code – rather thanmodifying the generated code. Althoughmuch can be achieved by the round-trip facilities inmodern tools
(c.f., [23] for a discussion), it is generally not possible to ensure that models and code stay perfectly synchronized without
manual intervention. The pair of questions asked about these issues were:

Q: Do you mainly make updates on the model rather than the code?
Q: Do you spend a lot of time synchronizing the model and the code?

Almost 70% of respondents say they probably or definitely mainly make updates on their models whilst around 15%
say they do not. Approximately 35% of respondents say they definitely or probably spend a lot of time synchronizing their
models and code whereas about 45% say they do not.

These responses lend credence to the assumption that modifying the models rather than the code is the preferred
approach in practice. The data suggest that, even so, there can still be issues in synchronizing models and code. It is
impossible to know, from the questionnaire data, why this is the case, but possible reasons could be that not all functionality
can be captured as a model or that there is other, manually-written code to be integrated.

4.4.4. Survey results—is UML too complex?
Since it was first introduced by the OMG in 1997, UML has quickly become the de-facto modeling language standard.

Despite this, it has beenwidely criticized for its lack of a rigorous semantics3 [26], the process bywhich it has been ‘‘designed
by committee’’, and its focus on graphical models (cf. [25]). Nevertheless, UML is widely used (as seen from the results
in Section 2) and widely taught. The next set of paired questions attempted to understand the relationship between two
common criticisms of UML: firstly, that it is too complex, and secondly, that it is not powerful enough:Q: Is UML too complex?
Q: Is UML powerful enough for your needs?

There is some ambivalence about the balance between UML’s complexity and its power. 44% of respondents thought
that UML is definitely or probably too complex, compared to 32% who thought that it definitely or probably is not. A similar
pattern emerges when considering UML’s power: 52% thought that UML is (definitely/probably) powerful enough for their
needs, whereas 31% thought that it (definitely/probably) is not powerful enough.

After fourteen years of development of the UML language, almost half of our respondents still believe that UML is too
complex and almost a third believe that, despite this complexity, it is not yet powerful enough. This apparent lack of total
enthusiasm for UML can perhaps go some way to explaining the prevalence of DSLs as described in Section X.X.

4.4.5. Survey results—does MDE promote understanding?
In this instance, the pair of questions asked was:

Q: Does your use of MDE lead to better understanding between stakeholders?
Q: Does your use of MDE result in unexpected confusion and/or misunderstandings between stakeholders?

Around two thirds (66%) of respondents thought that their use ofMDE helps understanding between stakeholders, whilst
25% believed that their use of MDE results in confusion. Only 16% of respondents did not think that their use of MDE led to
better understanding, whilst almost half (49%) did not think that it results in unexpected confusion or misunderstandings.
It is generally clear then that the questionnaire respondents see more benefits in terms of understanding than drawbacks.
Although it is difficult to interpret this data, it may be due to a number of reasons. Firstly, it is possible that the majority
of practitioners actually use only a relatively small proportion of a modeling language. Hence, more complex features of a
language like UML that typically cause confusion (such as the need to distinguish between composition and aggregation
in associations) may simply not be used. Secondly, it may be that practitioners and stakeholders are able to quickly make
their own disambiguations for features of a modeling language that have unclear semantics, and, that once this has been
communicated within the team, everyone is ‘‘on the same page’’ and understands each other easily. If the latter is true, the
role of (say) UML as a standard is diminished, but is nevertheless consistent with the intention of semantic variation points
in UML [28].

4.4.6. Survey results—is tooling a barrier to the use of MDE?
Although certain parts of an MDE process may not require tool support, almost all practical MDE developments will

require some sort of tooling. This pair of questions was designed to look at the balance between tool ‘‘appropriateness’’ and
‘‘cost’’:

Q: Are MDE tools too expensive?
Q: Do organizations attempt to use MDE with inappropriate and/or cheap tools?

3 Although this issue is being addressed by a new standard on a semantics for a foundational subset of executable UML [21].

J. Hutchinson et al. / Science of Computer Programming 89 (2014) 144–161 151

Fig. 4. HowMDE affects personal experience (percentages).

According to our questionnaire, 19% of respondents thought that MDE tools are definitely too expensive and another 26%
think they are probably too expensive. Those who thought that tools are probably or definitely not too expensive represent
24% of respondents.

A large proportion ofMDEpractitioners believe that inappropriate or cheap tools arewidely used: 25% said they definitely
are, with another 30% saying they probably are. The questionnaire also asked which tools practitioners used. The responses
to this particular question are revealing. In particular, the sheer variety of answers provided was surprising. Indeed, almost
100 tools were listed.

How to interpret this diversity of tool usage is not obvious. It may suggest a rich array of tools tomeet the different needs
of users, or it may reflect an immaturity in a field where practitioners are still deciding on the best tools for the problem at
hand.

4.5. Survey results—impact on personal experience

Questionnaire respondents were asked if MDE hindered or helped a variety of personal processes (Fig. 4): productivity,
problem solving, creativity and enjoyment. Although productivity is an issue that has already received much attention, the
other three processes are integral to the experience of an individual’s work and, it might be argued, a ‘‘sense of worth’’
within their organization. The most obvious finding is that the majority response in each case is ‘‘helps a lot’’ and that, in
each case, ‘‘helps a lot’’ > ‘‘helps’’ and ‘‘hinders a lot’’ > ‘‘hinders’’. This is not a trivial matter, because it shows that 8%–13%
of respondents think that their use of MDE actively ‘‘hinders a lot’’ their productivity, enjoyment, creativity and problem
solving. Bearing in mind the other findings in the questionnaire data, this is quite surprising.

5. Results: case studies

The online survey provided us with some fascinating insights and some general, quantitative, impressions about how
MDE was being deployed and the general response it had evoked amongst practitioners. The four case studies that follow,
constructed using a semi-structured interview process, were designed to provide us with more personal and, especially
organizational, detail on the practical, everyday experience of MDE.

5.1. Case study—The Printer Company

The Printer Company is a multinational company that specializes in the manufacture of business level imaging systems,
including printers, scanners, etc. and associated software and services. This particular study focuses on the case of printer
developmentwhere a typical projectmay last in the region of 10–15 years from inception, through technology development,
product development, selling and maintenance.

Within this type of environment, software engineering is one part of a complex engineering puzzle, alongsidemechanical,
electrical and electronic engineering disciplines. This places constraints on the software development cycle and in the case
of The Printer Company, software production was considered a bottleneck in the production process at the time that they
began exploring different software development approaches, and indeed this was their motivation for doing so.

This case study highlights a number of important aspects of MDE adoption:

• Progressive – the organization did not adopt MDE in a ‘‘gung ho’’ manner. Instead, they introduced it in a piecemeal way,
evaluating as they went along.

• Committed – the introduction of a pilot project did not represent a lack of commitment on behalf of the organization.
That commitment was vital as the process change necessitated by the MDE adoption was undertaken.

• Adaptive – the organization was willing to learn from the experience of using MDE rather than simply trying to ‘‘plug’’ it
into their existing ways of working.

• Business led – MDE was used to overcome problems that could not be overcome using their existing development
techniques. Ultimately, the benefits realized are expressed in business terms.

152 J. Hutchinson et al. / Science of Computer Programming 89 (2014) 144–161

5.1.1. The Printer Company’s experience of MDE
The Printer Company case study illustrates some key aspects of their experience: notably the use of a pilot and the

importance of organizational commitment to MDE.4

. . .we started a pilot with model driven design . . . In 1998 it was a pilot. . .we put it directly in the main line of the product so
we it was a pilot but we were not allowed to fail. Sounds a little bit strange but we did not have the capacity effort to have
a parallel project . . . So we took some risks in introducing model driven design

This description of the adoption process captures well aspects that are both progressive and committed. By carrying out
a ‘‘pilot’’, the organization recognized that the demands of the new process should not be underestimated, and therefore it
should be introduced gradually. However, by making that pilot part of the development cycle of real software – described
here as a necessity, rather than choice – the organization demonstrated a commitment to the process – ‘‘wewere not allowed
to fail’’. This element of necessity is interesting because it highlights that serendipity, fortunate chance, may also be a factor
in successful MDE adoption, and process change more generally. Had The Printer Company not needed to introduce MDE
on a ‘‘live’’ project, the lack of necessity, and the probable deployment of less experienced software engineers, may have
resulted in a far less successful experience.

Our interviews revealed some subtleties and nuances when we probed whether the outcome of using model driven
design had matched the company’s initial expectations. ’’.. in the first project I did not expect to gain in effort ..that was for
the second and third project. The biggest gain I expected was in the quality of the software so the understandability, the
reusability . . . those kinds of qualities...indeed .. we did not gain anything in effort it even took us some more effort I think but
after our first software release we were able to reduce the team fairly fast so the qualities really paid back..’’

Similar reservations and subtle understandings were outlined when discussing any productivity gains achieved: ‘‘the
benefit in the second and third project was not only because we introduced model driven design .. I think also model driven design
was an enabler for implementing reuse . . . so we had model driven design, we had a reuse group and the third thing is that we also
built a reference architecture so using the model driven toolset we started building up a reference architecture for all embedded
projects and those three together really gave us the benefits’’ The Printer Company approached the adoption of MDE with
realistic expectations about what they could achieve in their first project. The fact that the organization implemented the
pilot project whilst expecting to see no reduction in effort demonstrates its commitment to the process – it represented an
investment whose pay-off would be seen further down the line.

It should be noted that this relies on a particular feature of The Printer Company as an organization; it was able to invest
in a trial of MDE in one project but wait to see benefits in a later project. Organizations which structure their work on a strict
project-by-project basis may find it much more difficult to successfully trial MDE in this manner.

However, the most significant aspect of this part of the interview is the description of how the company matured
in its development processes as a result of using MDE. Applying MDE in this initial project led them to identify greater
commonality in their systems than had previously been recognized. This initially led to the development of common
components as part of an explicit reuse strategy. Ultimately, it led to the design, and adoption of a reference architecture.
The process by which this came about, and the reasons for its success, is explored further in the following extract when our
interviewee discussed the role and importance of modeling: ‘It is a major role. I think if you did not introduce model driven
design the reuse initiative and also the reference architecture would have failed because you need some very good design interfaces
and also some feasibility of your components and your reference architecture. It cannot be done by purely using C++ or Java . . . I
think that is impossible . . . it was really an enabler for the other two - so model driven development was an enabler for the reuse
and reference architecture’’

Similarly, the introduction of modeling added a level of formality to the level of understanding rather than just capturing
understandings thatwere already there:’’ . . . it is better understanding of the things you already have but because you understand
the things you already have you can go one step further. So reusing embedded software first starts with understanding what you
have but at the moment you understand it you can make next step’’ Raising the level of abstraction not only allowed the
organization to realize improvements in software quality, but led to a fundamentally clearer understanding of the structure
of their systems, allowing that structure to be captured in the reference architecture and the commonality to be factored
out in the form of reusable components. This willingness to adapt their software development process to further exploit the
potential of MDE appears to be crucial to the success of The Printer Company’s adoption of the approach, allowing them to
develop their embedded software significantly faster andwith less effort. ‘‘Of course the quality is on a very high level . . . in our
products and at this moment we have also a gain in effort. I think it is very difficult to estimate that but I think we are now using
50% of the resources compared to ten years ago . . . because 50/60% of all software is reused . . . in the past ..if I look fifteen years ago
or so.. embedded software was sometimes the bottleneck in the project so there was a delay in [product] introduction because the
software was not ready and now embedded software is not a bottleneck in any project . . .mechanics, physics are the bottlenecks
in products and not embedded software any more’’

Specific figures of productivity improvements and reusemust, of course, be treatedwith caution given that they represent
subjective judgments. However, they are still revealing, not least because of the expertise of the lead software engineer

4 Practitioner quotes are from transcripts that attempted to capture comments verbatim. They are presented here in a similar form to add to the
authenticity of those comments. This means that there will be some grammatical errors, but hopefully the intent of the comments will come across
strongly.

J. Hutchinson et al. / Science of Computer Programming 89 (2014) 144–161 153

expressing them. The final comment summarizes the experience of The Printer Company wonderfully; for them, software
development was a problematic part of a complex jigsaw of engineering effort. Through their adoption of MDE, they
completely changed the way that they developed software so that it was delivered to market more efficiently, better and on
time.

5.2. Case study: The Car Company

The Car Company is a major multinational vehicle manufacturer with a presence all round the world. During the 90s,
the company was undergoing significant change — partly as a result of advances in electronics and the potential of software
in road-going vehicles and partly because of the rationalization processes required to stay competitive in a global market.
Both of these factors have prioritized the importance of software in vehicles: software is needed to deliver the required
functionality and is more readily able to respond to changing requirements than hardware. However, the growing cost of
developing software was becoming an issue. It may be the case that traditional mechanical engineering companies struggle
to embrace software engineering as an equal discipline,whilst at the same time recognizing the importance ofwhat software
can deliver. It is certainly the case that some companies do not readily embrace the need to actually employ the software
engineers needed to deliver the required functionality.

The Car Company case study particularly highlights a number of important factors affecting MDE adoption:

• Iterative – the task of developing an appropriate process in a given context is not straightforward. Trying different
approaches, evaluating the results and moving forward is a costly and time consuming process, but may ultimately
deliver a successful approach. Being able to let go of an approach, and associated resources, that has served its purpose
may represent an important decision point for a company adopting MDE.

• Committed – the organization was prepared to support multiple approaches in a continuous manner, even when the
investment required to implement a previous approach needed to be replicated.

• Business led – the company did not embark on the process of MDE adoption for ‘‘technical’’ reasons. It required a solution
to commercial and organizational challenges that could not be met by existing means, or traditional responses.

• Adaptive – The Car Company proved itself able to respond to the needs (and possibilities) of integrating the new
development processes in their organizational processes. This required them to be willing to evaluate objectively the
advantages and disadvantages of the new approach over their existing way of doing things. Because of the iterative
nature of their adoption process, they were required to do this on a number of occasions.

5.2.1. The Car Company’s experience of MDE
The following comments from our interview with The Car Company case study illustrate some important aspects of

their experience, beginning with the role of software generally and MDE in particular in the organizational process of
centralization. ‘‘All those organizations had to converge .. bringing them altogether and focus on a single design concept . . . you had
two different forces there: one is how do you transform an organization .. to be able to do this more centralized engineering activity
... and then we had this software organization software was now becoming clearly the defining point of vehicle contact – so
we took a lot of the understanding of how that organization grew, how we did reuse . . . and took it to a different scale within the
software engineering organization, how we planned it, how we evolved the growth in that organization which mainly involved
taking some our past practices but also looking externally to see what practices were successful in industry in terms of software
product lines from obviously the SEI . . . and also a lot of the activities related to the modeling world in terms of UML, profiles and
model transformation – those types of techniques were the things that we founded the organization on and grew it on. And so that
organization grew as a core platform team primarily to begin with in terms of defining the reusable assets, finding the process the
tools that support that and then, over time, growing in size to be able to perform multiple different projects’’.

Here we are given an insight into just how rapidly evolving the organization was whilst it was also trying to embrace the
growing role of software in its work. Note that the significant organizational change appears to have created an opening for
the adoption of some quitemodern software engineering practices (e.g. software product line approaches from the Software
Engineering Institute (SEI) and MDE techniques). In this particular example, knowledge of modern software engineering
practices came about as a result of the educational background of a specific individual within the organization. Such skills
had not explicitly been recruited by the organization in order to advance their software engineering practices. An obvious
question for which there is no easy or obvious answer is this: would the choices made by The Car Company have been
different if this individual’s knowledge had not influenced them? (This need for what is sometimes called a ‘‘champion’’ to
promote MDE adoption recurs throughout the interviews.) The wider implications for the adoption of MDE more broadly
are interesting to consider.

Being inside an organization undergoing change is a difficult and challenging experience. The following excerpt
illustrates aspects of the organization’s cultural and organizational background and the consequent challenges that ensued.
‘‘..understanding the automotive culture . in the 90s ..within most automotive companies you had mechanical engineers and
electrical engineers. You had a lot more mechanical engineers than auto engineers and you could not find a computer scientist if
you went on a search party . . .Now that is one of the reasons why we ended up also doing model based design . . . one of the key
constraints that we were under in terms of growing that organization is we were not going to hire a whole bunch of people just to
write code. We needed people who were domain experts. Domain experts in terms of automotive algorithms.. not necessarily how

154 J. Hutchinson et al. / Science of Computer Programming 89 (2014) 144–161

to code automotive algorithms ..so the whole model-based process was focused on what are the types of things that algorithm
engineers understand in terms of control systems and in terms of state machines but not necessarily how to effectively code
them and so we tried to separate those concerns . . .we let the computer scientist define the model and method and construct the
language per se that we formalized in a . . .UML profile and then we turned our electrical engineers loose in terms of defining what
the functionality of the vehicle was and then a few of the computer scientists . . . said okay what are the generation patterns relative
to how to be able to transfer those models to code’’

The Car Company appears to have approached software engineering as a subordinate discipline (to the better established
disciplines of mechanical and electrical engineering) and therefore approached the growth of this part of the organization’s
capacity with few pre-conceived ideas other than of the limit on the number of people who might be employed. Most
importantly, this extract roots the necessary change in business need; The Car Companywas adapting to external pressures.

‘‘ The idea at that point was to be able to do reuse - planned reuse. e - there was not necessarily a formalized process on how to
be able to do that and that was one of the learning activities . . . ad hoc reuse was not necessarily very scalable. They were able to
reuse on a couple of programmes but then it started losing value and it became very difficult to be able to manage change across
themwhich led to the next generation which was the bringing in-house of some of the code writing within The Car Companywhich
meant that they were doing models and generating code from those models and having a planned reuse method - so a library of
models which were code-generated specifically for specific parts in the vehicles and specific products’’

For the Car Company, the move from ad hoc reuse through to the more structured and planned reuse was actually a
kind of generational change: ‘‘It absolutely was. .. that was part of one of the most contentious things that happened because
that meant we were basically orphaning all of the investments that we had made in the models that we had previously. So all the
models we had previously were in the body electronics area were Statematemodels. The transition thenmoved from the Statemate
models to UML models and that obviously necessitated a restructuring and a redefinition of a lot of the functionality on which the
effort took place - so that was a very tough decision to be brought forward to themanagement team at the time to be able to say yes
all the investment you did on models before well we got to redo some of that work’’ There are a number of the important aspects
of The Car Company’s adoption, and development, of MDE illustrated here: they were willing to adapt to the needs of the
process in a way that required them to ‘‘start again’’ using a different technology and there is clear evidence that the need to
adapt was supported by the organization’s management, demonstrating their commitment to the approach that was being
developed. To understand the importance of this point in the company’s history, it is interesting to ask what might have
happened if the management team had refused. In refusing the need to change to a different approach, the management
teamwould have stopped the company from adapting to the needs of their proper use of MDE. It would also have indicated
a limited commitment to identifying the most effective and efficient process. Finally, by not allowing the technical team to
cycle through another stage of process development, the management team may have ‘‘fixed’’ the software development
process at an inappropriate point – which ultimately might have led to failure. Critically, it is not in the least bit difficult
to imagine that management refusal could have been justified by any number of reasonable arguments – and so again we
find that an element of serendipity or good fortune appears to play a part in an organization’s successful adoption of MDE.
How such a failure would be classified by those involved is impossible to know for sure, but in all likelihood, it would have
be described as ‘‘a failure of MDE’’ and not one of failed commitment. When we questioned our interviewee on what would
be required to convince the company to adopt MDE he replied: ‘‘That is a very interesting question. I think it is possible. The
challenge is this: that you have not only the knowledge - but also the leadership internally to be able to make that happen and
across those different steps, those different generations, there is a small set but definitely a set of individuals that were driving
that change. And they were driving that change both from the knowledge they had as well as the knowledge they gained from the
previous generation of work. So it would have been definitely a challenge to bring that technology in all at once.’’ For advocates
of MDE, its process developers and its tool vendors, this represents, perhaps, the ‘‘holy grail’’: what evidence is necessary
to convince organizations that MDE can be used – in their domain, in their sector or in their company – successfully and
deliver the benefits that are claimed. In the circumstances, the degree of uncertainty expressed, and the reasons for it, are
interesting. Knowledge is built upon prior knowledge, which can have both positive and negative consequences for process
change and the response to novel approaches. In the case of The Car Company, gainsmade along theway appear to have been
instrumental in continuing the organization’s commitment to the process development. This may reflect the importance of
maturity – or the lack thereof – in different software development methods and may therefore suggest that MDE is likely to
grow in acceptance as more companies migrate to model-oriented approaches. Alternatively, it may suggest that some kind
of ideological opposition to raising the level of abstraction in favor of retaining code-centric approaches cannot necessarily
be overcome by ‘‘a good argument’’. Of course, another interpretation could be that for MDE to really take off, the way that
it is taught in higher education needs to be fundamentally rethought: nascent software engineers must be endowed with
the skills necessary to question the received wisdom within organizations and the ability to judge properly the efficacy of
alternative approaches.

As was seen above, simple knowledge of what others are doing may significantly influence what a company attempts
to do itself. This look at The Car Company’s case study is brought to a close by considering the results of using MDE, which
was, after all, the point of changing a software development process. As our interviewer argued whilst there was a general
feeling that productivity increased, measuring it in a simple fashion is difficult. ‘‘Ah if I actually had the complete answer for
that – for every time I am asked that – that would be fantastic.. each of those different .. there is also a change in responsibility in
terms of more burdens being brought in house . . . so it is very difficult to say I we were X amount more productive on this than we
were on that. I think if we did some very rough calculations that it was probably close to half in terms of if you took both supplier

J. Hutchinson et al. / Science of Computer Programming 89 (2014) 144–161 155

resources and The Car Company resources together in terms of howmuch effort it took to be able to produce a body control model.
This new way versus the old way . . . that has a lot of different characteristics . . . how do you cost out this planned reuse model in
terms of your investing in this core asset base? How do you calculate the communication resources between a customer and a
supplier and how do you manage that relationship when you actually bring that responsibility in house. Those calculations are
rather rough. What we were definitely able to get some very tangible results on though was the rework cycle in terms of the cycle
time in between identifying a change that needs to take place in a model and to be able to regenerate code. And/or being able to
say that, ‘okay I need a change’ . . . this is how quick it takes or being able to add your functionality. Those were the key elements
that were very much automated within the process they made it very easy for people to be able to do those types of activities’’

This case also highlights another difficulty for advocates of MDE — many users are employing techniques in entirely
pragmatic ways with little or no interest in academic (or scientific) measurements of success and instead focus on their own
organizational experience. Does this mean that their criteria for success are not ‘‘measurable’’ and/or should be considered
untrustworthy? It is suggested not, and the focus on ‘‘known quality attributes’’ in the above excerpt helps to explain. For
The Car Company, the whole approach to an increased reliance on software represented a pragmatic business decision.
Understanding the results that have been realized by adoptingMDE in the same terms appears to benot only understandable,
but entirely reasonable.

5.3. The Telecom Company

The Telecom Company is actually a multinational manufacturer of electronic systems for both commercial and domestic
use. This particular case study pertains to its telecommunications business and focuses upon one particular project. The
project in question was a significant one involving in the order of 50 full-time equivalent engineers for a year with the aim
of introducing a new switching product into the market.

Taking the positives first, the product was delivered and, as far as is known, remains in use to this day. MDEwas deployed
by The Telecom Company on a new product and was a ‘‘success’’.

Unfortunately, the positives end there. The organization’s experience and, in particular, that of its software engineers,
could not really be described as a success, and, perhaps, the case serves to remind us of the difficulties that can arise
in understanding such bald terms as ‘success’ or ‘failure’. These can, and perhaps should, be subtle and nuanced terms.
Nevertheless, before looking at the case study in detail, it is useful to consider what factors affecting MDE adoption the
study best represents:

• Autocratic – for a number of reasons, The Telecom Company displayed an overly autocratic attitude towards its processes
and its developers. Positive elements of this are similar to the ‘‘necessity’’ exhibited in earlier examples. However, rather
than a commercial necessity, this situation manifested itself as a rather more oppressive ‘‘succeed or be sacked’’ one.
This was associated with ‘‘national culture’’ by the interviewee and thus may introduce a cultural dimension to MDE
success/failure factors.

• Wholesale – the decision to adopt an MDE approach was not made with much understanding of the necessary process
change and was implemented as an ‘‘all or nothing’’ approach. Given the ‘‘autocratic’’ nature of the organization, this
equated to ‘‘all’’. Given that the company already had significant experience of software development using traditional
techniques, this approach to process change was surprising.

• Rigid – both in terms of how the MDE approach was adopted and how it was ‘‘integrated’’ with existing processes. A
new tool was introduced and it was used by all engineers. When the approach proved to be inflexible, those engineers
developed ‘‘work-arounds’’ – primarily, inserting program logic into code fragments that would augment the generated
code, to the point where these overrode the model.

5.3.1. The Telecom Company’s experience of MDE
The extracts from The TelecomCompany case studywill illustrate some of the pointsmade above. The decision to employ

a modeling language and associated transformation tools (here, expressed as CASE tools) was implemented from above and
with little regard for the experience of the existing developers‘‘. . . this kind of huge decision to . . . 50 engineers all developing
by using this CASE tool, so it was quite radical at that time. I did not quite understand it. I could understand some portion of the
system - but everything developed by the tool is really radical change.’’

They were, in fact, given training, but this appears to be concerned primarily with the major functions of the tool used.
The unspoken element of this section is that existing developer skills and their attitude to change did not feature largely
in the adoption process. This appeared quite critical for the MDE deployment and to maintain consistency between the
generated code and the models the company implemented a rule: ‘‘. . . they . . . developed a rule. So after generating the code, if
you want to do this then you have to delete this line and that line and also you have to change this parameter like this. So there
was a clear guideline . . . ’’ This applied to millions of lines of code: ‘‘Yes, millions, huge, huge code. So the binary is some
gigabytes. that is also one of the problems . . . they totally. . . attach to the tool and they do not know what is going on with
the generated code. . . . it was C language they had been using, they could not optimize the generated code so the way they had to
. . . asking the hardware guys to havemore hard disk, morememory, because of the tool. So beforehandwe had very small memories
andwe had been using C andwewere very clear about thememorymap and each engineer has a clear view on howmuchmemory
space they can use and if something happens then they can manage all these things to fit into the memory — no problem at all.

156 J. Hutchinson et al. / Science of Computer Programming 89 (2014) 144–161

But this case we cannot do something with the generated code so we simply ask the hardware guys to have more hard disk. So it
took, in the worst case, it took about 2 hours to upload the binary to deploy to the switching system’’.

When The Telecom Company implemented its approach to MDE, it did so in a way which almost ‘‘defied failure’’.
Unfortunately, this type of very rigid approach to process change does not allow for evaluation or adaptation in ameaningful
sense. Instead, teams developed work-arounds that would deliver the necessary functionality and/or productivity almost
regardless of the tools used. The processes developed to make this work are not really part of a considered MDE approach.
So the ‘‘failure’’ that the company defied was the particular narrow sort associated with delivery of a product; the quality of
the product, the experience (and costs) of its employees and the development of the organization itself were all dismissed
as unimportant. Although the project was completed and deemed a ‘success’ the company did not then adopt this approach
for any other projects. As our interviewee suggested: ‘‘, I think everyone makes mistakes. So the company, the engineers, they
are too ambitious.... They had to make a decision which part of the system should be done by using this CASE tool . . . and which part
of the system develop as before. So they could not really distinguish this at the beginning so without clear knowledge or vision of
the pros and cons of the MDE approach, they just heard the good side – the pros – of MDE and . . .were not aware of the downside.
So that was their mistake. And the second thing is the tool vendor. The tool itself is very inefficient. . . .

This fragment of The Telecom Company interview is quite revealing. Primarily, it speaks of the unsatisfactory completion
of the project – even if ‘‘delivering the product’’ actually happened. However, it also highlights the overly ambitious approach
adopted by the organization. They did not trial the approach in any way – the culture may have made up for a number of
shortcomings, but the result was that they deemedMDE to be a failure. ‘‘. . .nightmare. Because you cannot use the source code,
you have to do it at the SDL level so they could not really change . . .maybe they are not so skilful in the modeling language, but
also at the same time the model itself is quite abstract, so it is kind of difficult to make a decision. Should I change the model or
should I.... there is always a way you can do – some little bit of programming attached to the models – so you just use that kind
of window to implement your ideas and leave it just as is, but you put in more logic by doing coding. So in the end they are using
just as a programming language. So it is like a Java compiler, C compiler — very expensive, C compiler I would say...’’

This excerpt from The Telecom Company interview highlights a number of important issues. The first is that the domain
is highly specialized and complex – and that the company in question already had that specialized knowledge. This was not
a project being carried out in a naïve development environment. The difficulties encountered represented a failure to apply
knowledge that they already had to this particular project. The second is that the modeling environment undermined the
existing expertise of the developers – theywere unable to extend their knowledge into themodeling required tomanipulate
the process and tool being employed. Finally, the lack of flexibility in the system resulted in work-arounds that ultimately
defeat the point of attempting to useMDE in the first place. Developers reverted to coding the program logic using the tool’s
facility for inserting fragments of code. The result was that the wholeMDE process was reduced to some degree of high level
modeling and low level coding — hence the comment that the tool was a ‘‘very expensive C compiler’’.

The choice for organizations choosing to adopt MDE is complicated by the hype surrounding the technology. Very early
adopters can actually create the methods that followers then adopt. However, they can also fall foul of the exaggerated
promise of new techniques and processes, as our interviewee suggested: ‘‘. So I also heard this story about a company – they
also experienced a really difficult time. So everything they asked them to identify as objects, ideas, just follow the guidelines and
instructions and they have huge number of objects and they do not know what to do about this. So they did all the analysis of the
requirement and then they end up with thousands and millions of objects – how we can compose this into the system? They had
no idea! So their problem I think is the consultant . . . did not really know the meaning of the object orientation and the system
architecture view and what is the important thing to make better’’

This example distinguishes between tool vendors and genuinely neutral consultants and suggests that the former are
not capable of providing suitable advice to adopting companies whilst recognizing the role that the latter might play in
identifying the most appropriate approach. Being receptive to this kind of advice – and actively seeking it out before
embarking on an MDE adoption process – might well be the sort of organizational decision that separates success from
failure. Given the fine dividing lines between the types of advice discussed, this again shows just how carefully balanced
such decisions are.

5.4. Case study: The Defense Company

The Defense Company is a major multinational provider of equipment and services to the military. The company is
structured as a number of distinct specialist businesses in North America and around the world. With software becoming an
increasingly important part of defense equipment and systems,many of the component businesses have significant software
development capabilities.

With well established software development processes already in place, The Defense Company has introduced MDE on
individual projects within different businesses over the last 10 years or so. This case study, therefore, captures experiences
from a number of different projects within the context of a single parent company. In particular, the positive elements of
this case study illustrate the following aspects of MDE adoption:

• Business led – the motivations cited by The Defense Company for using MDE relate to the primary goals of the business
and the sector. Any technical benefits are also understood in these terms.

J. Hutchinson et al. / Science of Computer Programming 89 (2014) 144–161 157

• Adaptive – The Defense Company demonstrates that it has been able to adapt its process to the requirements of MDE
even within the constraints of large military programmes.

• Committed – in the face of ongoing resistance to its introduction, The Defense Company has continued to champion MDE
on appropriate projects, employing MDE evangelists and mentoring programmes. This demonstrates commitment on
behalf of the company, but also on the individuals leading the process.

The positive aspects of The Defense Company’s case study is emphasized here in part because it also contains a number of
examples of more negative aspects — particularly those concerned with resistance to MDE adoption. Understanding where
and why resistance, or reticence, exists is a key aspect of understanding some of the problems of introducing MDE.

5.4.1. The Defense Company’s experience of MDE
The Defense Company case outlines a number of different motivations for getting involved in MDE, as our interviewee

commented: ‘‘... I know what the struggles are like to get funding for various projects [in the military], and just to make The
Defense Company more competitive I wanted to find ways to get the product out the door to our customer, make them happy and
do it for less. And in addition I worked on projects that struggled because perhaps somebody in the marketing department knew
about some similar software and made claims about how easy it would be to get the same thing running for somebody else when
it really was not that easy. In addition the code and the documentation were often out of sync so I found that working in a model
was easier to communicate but only if the code was in sync with the model, and so when we do code generation it always stays in
sync’’.

The interviewee from The Defense Company has the role of ‘‘Model Driven Software Development Evangelist’’ within
the business and is an expert in the area more generally across the company. It is perhaps not surprising then to hear the
interviewee describe the motivations for using MDE so passionately. However, it is important to note that the motivations
are all concerned with company competitiveness, delivering products to customers and business process efficiency. This
focus on business led reasons for MDE adoption is an important aspect of The Defense Company’s case study. That it is
expressed by an evangelist within the company raises an interesting point: the role of an evangelist is not a technical one
— although it no doubt calls for a high degree of technical expertise. The evangelist’s role is to educate colleagues about
the value of MDE, not just about how it should be done. As shown below, the need for education extends beyond engineers
within The Defense Company to their customers as well: ‘‘.... on lots of programmes I have had to go out, whether I am on the
programme or not, and talk to the customer about the benefits, the risks, what we have seen in the past, that type of thing. . . .
In fact the customers always are open to it because it is going to save them money and improve their quality .. The programme
managers are always open to it, most developers — probably 80% of developers are open to it. It is the middle managers that stop
it every time. . . .

they have no responsibility for profit and they do not have any responsibility for probability of win of a contract. They only
have responsibility for executing ... developing the amount of code that they were handed to develop and when they make
mistakes that is really bad for them so they see any potential risk as something that they will not do ... they will not take
the burden of that risk. For some reason they also see, even when the mentoring costs are rolled in to the total bottom line
productivity, they see the outside mentors as a bad thing.....’’

The lack of understanding that exists in general aboutwhatMDEmeansmay represent a significant impediment towider
MDE adoption. The Defense Company attempts to counter that by having individuals who canwork both within and outside
the company to help provide the information required to make informed decisions. Of course, whether it is always an easy
task for a vendor to ‘‘educate’’ a customer is a different matter (cf. the example with The Telecom Company earlier). The
willingness of The Defense Company to invest in the role of evangelist is a clear indication of their commitment to the MDE
adoption process. Instead of it representing a general commitment by the company to introduce MDE across the board, it
appears to represent a commitment by The Defense Company to provide the necessary resources to allow their programme
managers to exploit the most appropriate process even if it requires the adoption of novel techniques.

The Defense Company’s case study highlights some important examples of resistance to MDE adoption. What is
particularly interesting is that this case suggests that an organization’s structure may unintentionally motivate a type of
process change resistance. Whilst recognizing that business led motivation is important to make MDE adoption a success,
it is intriguing to consider that the definition of some roles may insulate important team leaders from consequences of
business oriented decisions at the same time as making them personally responsible for the delivery of lower level tasks.

These next excerpts from The Defense Company case study interview explores issues related to process and adaptability:

’’ ... I had say 100% it is critical for the model and the code to stay in sync.

it is still just as important to be able to go in and look at what you have created whether it is in the textual DSL, the GUI
or the more traditional model and that they are all in sync with the code. we rarely start programs from scratch. We are
mainly re-using large chunks of software and then adding bits in so we tend to use the code generation for those bits but
they absolutely have to integrate in with some legacy code ... given CMMI and our government requirements, we have to be
able to do unit testing on code ... and eventually we turn it over to the system integrators. We tend to do very large projects
with system integrators that had nothing to do with the software development integrating and testing the code, and they
want code... At least in our foreseeable future I think it is necessary because we do a lot of embedded ... and so we run on

158 J. Hutchinson et al. / Science of Computer Programming 89 (2014) 144–161

some custom hardware, some commercial hardware, some custom operating systems, even some commercial operating
systems, but we are always down ... you know trying to figure out problems with timing, things like that, and at least for
the foreseeable future I think you need code to be able to do that.

This highlights some of the process adaptability that The Defense Company has needed to utilize MDE within the strict
constraints of military contracts. Those constraints impose a necessarily code-centric end product, but because of the
importance of maintaining model/code synchronization, generated code is considered an entirely derived artifact and must
not be modified (other than for error evaluation purposes).

‘‘so say I have got my code and I am testing it, I have found a bug, I think I might know what the problem is and I could make a
quick fix in the code to check and see if that is what the problem is. I can I will allow that type of quick fix but it does not stay in the
baseline. So a trouble report has to go back and the development team has them fix the model or the code generator, regenerate
the code and move on.’’

Being able to settle on the correct process and ensuring that adhering to it meets its key requirements, and the key
requirements of both the project and MDE, is an important aspect of MDE adoption.

Askedwhether the results are worth it our interviewee responded: ‘‘once people hear [that they have complete control over
the generated code] they feel a little bit better about it. It feels a little bit like magic or too good to be true to a lot of the people
that I talk to, so it is interesting I have actually quite reporting real productivity improvements and have scaled them way back in
what I recommend to people [to] propose ...Q: So what is it that you would tell people if you thought they had believe you in terms
of productivity?
A: Well we have seen some cases with the PathMate UML code generation — we have seen cases of 4 or 5X productivity and with
DSLs we have seen 7 or 8X productivity.
Q: And what do you tell people?
A: One and a half to two. ... you cannot associate those higher numbers with The Defense Company. So we recommend to
organizations that they propose one and a half times productivity improvement and that includes.... and we always include with
that the mentoring, the training, all the things that need to set them up for success.’’

Clearly the life of an MDE evangelist is not always an easy one! It would be common sense to believe that the potential
of huge productivity increases would be an important factor in persuading people of the merits of adopting a new process.
Instead, the potential benefits sound so extravagant that colleagues are prone to disbelieve them and thus they become self-
defeating. Whether this represents general cultural reticence – ‘‘if it is too good to be true, it probably is’’ – or a specifically
technical resistance is uncertain, but it is clearly a problem for somebody hoping to explain the benefits of the approach
they are advocating.

6. Lessons about MDE deployment

What do we learn from these two very different approaches to document and understand industrial experience of MDE?
The findings from our survey and case study interviews point to a number of interesting and perhaps counter-intuitive
lessons. Firstly, DSLs are far more prevalent than expected. UML is not yet universally accepted as the modeling language
of choice. A key finding in the questionnaire, and supported by the case studies, was a surprisingly high use of DSLs,
suggesting that it is typical to develop small DSLs for narrow, well-understood domains. This may be related to another
survey finding showing that many of those using MDE do not work in software companies, but in companies in other
engineering domains, which require software development as an enabler. Secondly, and perhaps less surprisingly, our
studies suggest that pragmatism, essentially practical decision-making, dominates decisions on deploying MDE in industry.
Accordingly, practitioners generally do not stick to one language but rather pick and choose a combination of languages and
tools according to the task under consideration. The wide diversity of languages and tools reported in our survey suggest
that, more than ten years after the OMG brought out its MDA specification, there remains a lack of consensus on the best
language and tool.

A third important finding is that the survey and the case studies together highlight some conflicting influences, con-
cerning both productivity and cost, when deploying MDE. Overall, and perhaps not surprisingly, MDE adoption appears to
increase training costs. The survey data suggests that productivity gains from code generation outweigh losses from inte-
gration with existing code and MDE allows for faster turnarounds on new requirements. Although the interviewees do not
disagree with this general analysis, it is interesting to note that, for many the real driver for MDE was not code generation
and its associated productivity gains. Indeed, our data suggests that productivity gains from code generation alone are not
considered significant enough to drive anMDE adoption effort: becauseMDE can be associatedwith increased training costs
and substantial organizational change that may therefore offset productivity increases. This does not mean, however, that
companies do not adopt MDE. Rather, it turns out that the main advantages are in the effect that MDE has on helping to cre-
ate a well-defined software architecture. Unanimously, our interviewees argue that MDE makes it easier to define explicit
architectures, especially when MDE is a ground-up effort.

The studies provide some fascinating details of recent MDE deployments in industry — they capture details of MDE
adoption in large companies by experienced software engineers and illustrate some of the factors that interviewees
considered important. What should immediately be obvious, and in many cases what might also be quite surprising to

J. Hutchinson et al. / Science of Computer Programming 89 (2014) 144–161 159

Table 1
‘‘Dimensions of organizational attitude’’ to MDE adoption.

Helpful response Unhelpful response Explanation

Adaptive Rigid The ability or willingness of an organization to transform, or adapt, itself according to the
needs and opportunities presented by adopting MDE

Business led Technology led Whether the motivation for adopting MDE originates from the need to overcome a limitation
or problem with existing software development processes

Committed Not Committed Is the company willing to provide the necessary resources to make MDE adoption possible
and is it willing to respond to unforeseen needs?

Iterative Autocratic The willingness of the organization to ‘‘try again’’ with an improved understanding of what
is necessary to implement MDE properly, in the event of difficulties rather than stick with a
particular approach because ‘‘that as what was decided’’.

Progressive Wholesale The process of ‘‘starting small’’ in adopting MDE and then growing and so committing more
resources to adopting MDE on a wider scale

programmers, software developers, even software architects, is that many of the significant factors are not specifically
technical5. Within a computing world where the next, best technology is the answer to everybody’s problems, it is perhaps
rather odd to discover that real practitioners, firmly embedded within that world, do not tend to focus upon the technical
deficiencies, or the technical benefits, of some or other approach. Instead, they tend to focus upon issues that have been
described as social or organizational factors.

It is now necessary to attempt to amalgamate some of the issues raised in the survey and the individual case studies into
a more coherent whole. The list of issues identified is as follows: Progressive; Committed; Adaptive; Business led; Iterative;
Autocratic; Wholesale; Rigid. It is then possible to map these responses onto a number of ‘‘dimensions of organizational
attitude’’ towards, or in response to, the adoption of MDE. These are illustrated in Table 1.

In some ways, these ‘‘dimensions’’ may appear quite broad and not necessarily MDE-specific. However, the explanations
provided in Table 1 show how they refer directly to MDE adoption.

What does mean in terms of an organization’s response to the challenge of adopting MDE? It will usually mean
that combinations of these ‘‘helpful’’ and ‘‘unhelpful’’ responses to MDE adoption will have a significant impact on the
organization’s chance of success.

• Successful MDE appears to require a progressive and iterative approach. Where MDE deployment seems to run into
problems is where the decision to adopt an MDE approach is made without any real understanding of the necessary
process change and instead takes on an autocratic top-down andwholesale character, implemented as an ‘‘all or nothing’’
approach.Where an organization adopts MDE iteratively, it allows its engineers tomake choices and to correct mistakes.
If a particular approach is introduced autocratically, it does not allow discussion of whether it is appropriate or not. It is
important to recognize that this can occur at different levels – e.g. an organizational decision to move to MDE compared
to an organizational decision to introduce MDE using notation X and platform Y. Whilst it is argued elsewhere that
the individual responses of software engineers to the introduction of MDE will vary significantly, as a group, it seems
reasonable to believe that professional software engineers will generally try to identify the most appropriate approach
available.

• Successful MDE is dependent on organizational commitment – the kind of commitment required to support any
organizational change. Commitment seems to be felt in different ways. On the one hand, introducing a significantly
different process is hard – both in terms of the new skills required and the problems to be overcome. Knowing that
the organization is committed to the process is important to help maintain the necessary level of motivation in the
practitioners doing the work. On the other hand, the level of organizational commitment might be felt at very specific
points in time: decision points require supportive organizational responses. Positive support at these points is crucial to
making MDE a success.

• An organization using MDE needs to be willing to respond to the needs (and possibilities) of integrating the new
development processes into the wider organization, to adopt newways of doing business and adapt their own processes
along the way. By contrast, problems are likely to appear when the organization is inflexible and unresponsive, and the
MDE approach fails to be integrated with existing processes in a way that avoids potential clashes. This ability of the
organization to adapt to the new requirements and potential of MDE being central to success makes a lot of sense. MDE
is not a ‘‘bolt on’’ process – i.e., it does not appear to offer benefits if it is simply added to existing processes. Instead, what
is usually required is an overhaul of attitudes to certain aspects of how software should be developed.

• Ultimately successful MDE has to have a business focus. In contrast, attempts to adopt MDE because it is ‘‘interesting’’ or
‘‘technically brilliant’’ are likely to result in wasted (if interesting) effort. Where existing techniques are simply unable

5 It is likely that there exists a difference between academic research and industry attitudes on this issue. Within academia, it has long been recognized
that the more ‘‘social’’ issues are a major factor — it does not appear that this message has been transferred entirely to industry.

160 J. Hutchinson et al. / Science of Computer Programming 89 (2014) 144–161

to deliver what is required, whether in response to existing requirements or new, more challenging requirements, MDE
may provide a potential solution. The main point is that the motivation comes from need rather than experimentation.

The workplace experiences detailed in the survey and these case studies highlight some real constraints in the way that
MDE is developed and deployed. As has been observed in other areas of system deployment, recognizing, understanding
and determining the applicability of even such obvious terms as ‘‘success’’ and ‘‘failure’’ is not necessarily easy. There are
subtleties to consider in the understanding of MDE success and failure, most notably that there are interesting differences
in what might be considered a ‘‘technical’’ success and what might be regarded as an ‘‘organizational’’ success — even
understanding this might add to an individual’s, or an organization’s, understanding of their own experience of using MDE
on real projects.

7. Conclusions

What comes out of the online survey and the case studies very clearly, and particularly in the comments made by the
interviewees, is the need to look beyond the technical benefits of a particular approach to MDE when trying to determine
if deployment or adoption is likely to work, and instead concentrate on social and organizational issues. Not surprisingly,
this places MDE adoption in the much wider context of organizational change and change management. This means that
many of the findings are likely to resonate with those who are familiar with wider organizational change. However, it is
important to note that as with any specific technological intervention, the details can differ. Much of what follows is general
to any significant organizational change, but there are specific observations that are primarily relevant to MDE adoption
and use.

However, recognizing this is both necessary for organizations to make the correct decisions about their MDE adoptions
policies and processes and when evaluating their outcome. It might be helpful to distinguish between what might be
called the ‘‘macro-organizational context’’, that referring to institutional policies and politics, and the ‘‘micro-organizational
context’’, which refers to the practicalities of work organization — within the software development team, for example. As
The Telecom Company showed, these experiences may vary significantly. Developing a nuanced view of success and failure
of MDE in commercial contexts (as opposed to research contexts) obviously requires that the full social and economic
circumstances surrounding the introduction and use of MDE should be clearly understood; an appreciation that systems
are introduced and developed in accord with a range of organizational, managerial and local priorities and policies;
priorities and policies that are themselves subject to pragmatic adjustment change and may even, in some instances, be in
conflict.

Finally, what this multidisciplinary and eclectic methodological approach emphasizes is the importance of a series
of social and organizational issues loosely concerned with ‘‘management’’ and especially the management of change.
Management in a period of change is a complex and difficult process, especially when the changes – organizational,
technological and cultural (and there is a strong sense in which MDE involves a cultural change) – are being introduced
concurrently. Any organization involved in complex changes of culture, structure and technology faces a number of
difficulties such as reconciling what can sometimes turn out to be incompatible organizational or departmental goals.

A positive aspect of looking at the survey and case studies in this article is that it is possible to identify, and therefore
highlight, a number of specific issues that organizations, and the people within in them, should both be aware of and should
address when considering the adoption of MDE: for example ‘‘Do we have the resources available to properly support MDE
adoption?’’ or ‘‘Can we identify a small sub-project on which to initiate the adoption process?’’ Issues such as these should
be considered before committing to a particular process change.

A less positive aspect is that there currently exists very limited previous, or even no, understanding of how these
organizational issues relate to the technical aspects of MDE and therefore which present which requirement for different
organizational response. This work does help, but it is clearly an area for further research. For example, the differing abilities
of existing software developers to adapt to working at a higher level of abstraction is, as shown elsewhere in this thesis, an
issue that iswidespread but not particularlywell understood. This is the kind of issue that couldwell result in the unforeseen
need for extra resources to carry out the extra training that is required. And that, in turn, could upset the financial calculations
on which MDE adoption is based. The important point is that MDE is a technical intervention, but the impacts are far, far
wider. Understanding the relationship between the organizational/personal aspects of adoption that the positive impacts of
MDE use is something that requires more study.

The consequences of these sorts of arguments are potentially huge. There is currently no way of knowing who may or
may not have difficulties when presented with the demands of MDE —whether those be ability or attitude-based. This lack
of knowledge requires even more flexibility in terms of response. The organizational response may be crucial because the
unwillingness or inability to provide those extra resources may have serious knock on effects.

Acknowledgments

Our thanks go to the manyMDE experts who agreed to speak to us about their experiences (although we have presented
only four case studies, they have been chosen to represent much broader experiences). We also acknowledge the support
of the UK Engineering and Physical Sciences Research Council (EPSRC) who funded this research: EP/H006249/1.

J. Hutchinson et al. / Science of Computer Programming 89 (2014) 144–161 161

References

[1] M. Afonso, R. Vogel, J. Teixeira, From code-centric tomodel-centric software engineering: practical case study ofMDE infusion in a systems integration
company, in: Workshop on MBD/MOMPES, 2006.

[2] B. Anda, K. Hansen, I. Gullesen, H. Thorsen, Experiences from introducing UML-based development in a large safety-critical project, Emprical Software
Engineering 11 (2006) 555–581.

[3] E. Arisholm, L. Briand, S.E. Hove, Y. Labiche, The impact of UML documentation on software maintenance: an experimental evaluation, IEEE
Transactions on Software Engineering 32 (2006) 365–381.

[4] E. Arisholm, L.C. Briand, B.C.D. Anda, First workshop on empirical studies of model-driven engineering at MODELS 2008, in: CEUR Workshop
Proceedings, 2008.

[5] I. Blanchette, K. Dunbar, Analogy use in naturalistic settings: the influence of audience, emotion and goals, Memory and Cognition 29 (2001) 730–735.
[6] L. Briand, Y. Labiche,M.Di Penta, H. Yan-Bondoc, An experimental investigation of formality inUML-baseddevelopment, IEEE Transactions on Software

Engineering 31 (2005) 833–849.
[7] J. Cruz-Lemus, M. Genero, S. Morasca, M. Piattini, Using practitioners for assessing the understandability of UML statechart diagrams with composite

states, in: Advances in Conceptual Modeling: Foundations and Applications, 2007, pp. 213–222.
[8] J. Cruz-Lemus, M. Genero, M. Manso, M. Piattini, Evaluating the effect of composite states on the understandability of UML statechart diagrams, in:

Model Driven Engineering Languages and Systems, MODELS, 2005, pp. 113–125.
[9] B. Dobing, J. Parsons, How UML is used, Communications of the ACM 49 (2006) 109–113.

[10] A. Forward, T. Lethbridge, Problems and opportunities for model-centric versus code-centric softwaredevelopment, in: Workshop on Models in
Software Engineering (at ICSE), 2008, pp. 27–32.

[11] R. France, B. Rumpe, Model driven development of complex software: a research roadmap, in: Future of Software Engineering, IEEE The Computer
Society, 2007.

[12] D. Frankel, Model Driven Architecture: Applying MDA to Enterprise Computing, John Wiley & Sons, 2003.
[13] J. Ganssle, A trillion lines of code?, in: Embedded.com (21/9/08), 2008.
[14] M. Genero, M. Piattini, E. Manso, Finding early indicators of UML class diagrams understandability and modifiability, in: International Symposium on

Empirical Software Engineering, ISESE, 2004, pp. 207–216.
[15] B.G. Glaser, A.L. Strauss (Eds.), The Discovery of Grounded Theory, Adlin, Chicago, 1967.
[16] J. Grudin, Why CSCW applications fail: problems in the design and evaluation of organizational interfaces, in: Proc. CSCW ‘88, ACM, New York, 1988,

pp. 85–93.
[17] J. Hutchinson, J. Whittle, M. Rouncefield, S. Kristoffersen, Empirical assessment of MDE in industry, in: ICSE 2011, 2011, pp. 471–480.
[18] J. Hutchinson, M. Rouncefield, J. Whittle, Model-driven engineering practices in industry, in: ICSE 2011, 2011, pp. 633–642.
[19] P.N. Johnson-Laird, HowWe Reason, Oxford University Press, 2006.
[20] J. Kramer, Is abstraction the key to computing? Communications of the ACM 50 (2007) 37–42.
[21] C.F.J. Lange, M.R.V. Chaudron, Effects of defects in UMLmodels: an experimental investigation, in: International Conference on Software Engineering,

2006.
[22] MediaDev, Wide gap amongst developers’ perception of the importance of UML tools, 2005.
[23] Model driven development for J2EE utilizing a model-driven architecture approach: productivity analysis (White Paper), The Middleware Company,

2003.
[24] Model driven development for J2EE utilizing amodel driven architecture approach:maintainability analysis (White Paper), TheMiddleware Company,

2004.
[25] P. Mohagheghi, V. Dehlen, Where is the proof? – a review of experiences from applying MDE in industry, in: Proc. 4th European Conference on Model

Driven Architecture Foundations and Applications, ECMDA’08, in: LNCS, vol. 5095, 2008, pp. 432–443.
[26] A. Nugroho, B. Flaton, M.R.V. Chaudron, An empirical analysis of the relation between level of detail in UML models and defect density, in: Model

Driven Engineering Languages and Systems, MODELS, 2008.
[27] P. Biernacki, D. Waldorf, Snowball sampling: problems and techniques of chain referral sampling, Journal of Sociological Methods and Research 40

(3) (2011).
[28] R. Razali, C.F. Snook,M.R. Poppleton, P.W. Garratt, R.J.Walters, Experimental comparison of the comprehensibility of a UML-based formal specification

versus a textual one, in: Conference on Evaluation and Assessment in Software Engineering, EASE, 2007.
[29] J. Segal, Learning about the algebraic specification of abstract data types, in: W.D. Gray, D.A. Boehm-Davies, and J.C. Spohrer, (Eds.) Empirical Studies

of Programmers 6th Workshop, Alexandria, Virginia, 1996, pp. 195–218.
[30] R. Soley, D. Frankel, J. Parodi, The MDA Journal: Model Driven Architecture Straight from the Masters, Meghan Kiffer Press, 2004.
[31] D. Thomas, MDA: revenge of the modelers or UML Utopia? IEEE Software May/June (2004) 22–24.

	Model-driven engineering practices in industry: Social, organizational and managerial factors that lead to success or failure
	Introduction
	Previous work
	Method
	The survey
	The case study interviews

	Survey results
	Survey results---general
	Which modeling languages are used?
	Which diagrams are used?
	Survey results---paired questions
	Survey results---effect of MDE on training costs
	Survey results---benefits of code generation
	Survey results---making changes to the model or to the code
	Survey results---is UML too complex?
	Survey results---does MDE promote understanding?
	Survey results---is tooling a barrier to the use of MDE?

	Survey results---impact on personal experience

	Results: case studies
	Case study---The Printer Company
	The Printer Company's experience of MDE

	Case study: The Car Company
	The Car Company's experience of MDE

	The Telecom Company
	The Telecom Company's experience of MDE

	Case study: The Defense Company
	The Defense Company's experience of MDE

	Lessons about MDE deployment
	Conclusions
	Acknowledgments
	References

