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Abstract The notion of model transformation intent
is proposed to capture the purpose of a transformation.
In this paper, a framework for the description of model
transformation intents is defined which includes, for in-
stance, a description of properties a model transforma-
tion has to satisfy to qualify as a suitable realization
of an intent. Several common model transformation in-
tents are identified and the framework is used to describe
six of them in detail. A case study from the automo-
tive industry is used to demonstrate the usefulness of
the proposed framework for identifying crucial proper-
ties of model transformations with different intents and
to illustrate the wide variety of model transformation
intents that an industrial model-driven software devel-
opment process typically encompasses.

1 Introduction

In Model-Driven Engineering (Mde), models or software
abstractions comprise the basic building blocks in the
software development process and such models are ma-
nipulated by model transformations. Thus, model trans-
formations are considered the heart and soul of Mde
[108] and can be used for a variety of purposes such as
the generation or synchronization of models on differ-
ent levels of abstraction, the creation of different views
on a system, and the automation of model evolution
tasks [26].

Although several aspects of model transformations
have been thoroughly investigated in the literature (such
as model transformation languages and applications of
model transformations), minimal research has been con-
ducted on requirements and specifications for model trans-
formations in general, and on the different intents or
purposes that model transformations can typically serve

in Mde and how they can be leveraged for development
and validation activities.

This paper proposes the notion of model transforma-
tion intent to capture the purpose of a transformation
and the expected goals to be achieved by using it. As
illustrated in Fig. 1, intents are used to group transfor-
mations with the same goal and to associate so-called
intent properties with them such as termination, type
correctness, traceability, or the preservation of struc-
tural or semantic aspects. An intent property can be
thought of as a template that can be concretized into
a transformation property, i.e., a concrete property per-
taining to a specific transformation. The resulting link
between transformations and transformation properties
then facilitates validation of transformations via appro-
priate validation methods.

We present a description framework for model trans-
formation intents. The framework allows the construc-
tion of a model transformation intent catalog through
the identification of properties that an intent must or
may possess, and any conditions that support or con-
flict with an intent. For instance, a translation model
transformation intent can describe a model transforma-
tion whose purpose it is to prepare a model M1 for some
kind of analysis. Thus, for a model transformation to be
considered a valid realization of the translation intent
for analysis, it should produce an output model M2 that
when analyzed, yields analysis results that “carry over”
to M1. High-level formalizations of key concepts in the
framework are given.

The use of the framework is illustrated by presenting
an initial catalog of 21 common model transformation
intents and discussing six of them (Query, Refinement,
Translational Semantics, Translation, Analysis and Sim-
ulation) in more detail. Moreover, a case study involving
the use of model transformations for the development of
the control software for a power window in the automo-
tive industry is described and for some of these transfor-
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Fig. 1 Intents as a classification mechanism for model transformations

mations their intents and transformation properties are
identified.

We expect our work on model transformation intents
to be useful to Mde practitioners and researchers. For in-
stance, it would help engineers identify the model trans-
formation intent that best matches a particular Mde
development goal and facilitate the subsequent model
transformation development or reuse by explicating the
properties that a model transformation has to satisfy.
Moreover, the notion of model transformation intent can
also provide useful input for researchers interested in the
specification and analysis of model transformations by
clarifying how to best describe what a transformation is
doing and which kinds of model transformation analyses
might be most useful. Finally, the notion of model trans-
formation intent can be used to classify model transfor-
mations into different domains that can be leveraged for
the development of domain-specific model transforma-
tion languages and tools dedicated to express transfor-
mations of specific intents due to the language features
or the kinds of analyses that they support.

This paper is a continuation of our work on model
transformation verification [5] which identifies three as-
pects influencing the verification of model transforma-
tions (i.e., transformations, properties, and verification
techniques) and uses them to survey formal verification
approaches for model transformations. Transformation
intents were first proposed in [4] which contains prelimi-
nary versions of the description framework and the intent
catalog, together with a short description of the power
window case study. This paper extends [4] significantly:
we rebuild and structure the catalog, propose a formal
description of the properties of intents, add a thorough
description of six intents to the catalog and exemplify
the instantiation of properties for two of the thoroughly
described intents.

In the next section, we will present the framework
for the description of model transformation intents. An
overview of the structure of the remainder of the paper
will be given at the end of that section.

2 Description Framework for Model
Transformation Intents

Our description framework consists of the metamodels
shown in Fig. 2 and Fig. 3.

2.1 A Metamodel for Intents and their Properties

In Fig. 2 a ModelTransformationIntent is described in a
manner similar to object-oriented design patterns [42].
An intent has a name, and is more precisely described
using description and useContext. The description infor-
mally conveys the general idea behind the intent whereas
the useContext presents precise scenarios where the in-
tent is used. One or several examples refer to sample
transformations, possibly from the literature, having this
intent. A set of preconditions describes any necessary
conditions that need to be satisfied for transformations
with this intent to be possible. Boolean attributes
is exogenous and is endogenous indicate whether trans-
formations with this intent can have different or the same
metamodel.

An IntentProperty is a property common to all trans-
formations with that intent. Intent properties can be
seen as templates with “holes” for either the specifics
of a transformation (e.g., its specification or just aspects
of it, e.g., the target metamodel) or of the property to
be expressed (e.g., a postcondition the output model
has to satisfy). Intent properties can thus refer to as-
pects of the execution of the transformation, or to the
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Fig. 3 Methods for validating model transformations.

result produced. The size and number of holes makes
some intent properties more abstract than others. Sec-
tion 4 presents several intent properties including “ter-
mination”, “type correctness”, and “determinism” which
are relatively concrete; more abstract intent properties
include the “Structural Relation Property” which allows
the expression of conditions over pairs of input and out-
put models; intent property “Semantic Relational” ad-
ditionally considers their semantics; properties requiring
the preservation of aspects of structure or semantics arise
as special cases of these two.

The mapping between ModelTransformationIntent and
IntentProperty is split into two different parts: mandatory
and optional properties. The mandatory property set de-
scribes necessary properties for a transformation to have
a particular intent. Note, however, that this set is not
sufficient, i.e., it is very common that related intents
share their mandatory properties. In such cases, the in-
tents’ remaining attributes have to be consulted for dis-
ambiguation. The optional property set collects proper-
ties that transformations with a specific intent may, but
do not need to, have.

2.2 A Metamodel for Model Transformation Validation
Methods

If the transformation is part of the development of a
safety-critical application, validation1 or even formal ver-
ification may be desired.

1 We use the term validation to refer to all formal, semi-
formal, and informal activities aimed at collecting evidence
for the correctness of a model transformation with, e.g., test-
ing and formal verification as prominent special cases.

Partial classifications of formal verification techniques
for model transformations have already been proposed
in [5,20] where the impact of the model transforma-
tion language paradigm (i.e., if the model transformation
language is, e.g., declarative, meta-programmed, or hy-
brid [26]) and the model transformation form (i.e., how
the transformation is syntactically specified [26]) on the
suitability of a given verification technique is also high-
lighted.

The process of filling the holes of an intent prop-
erty is called concretization and yields a Transformation-
Property, i.e., a fully fleshed out property pertaining to
a specific transformation which can be used for trans-
formation validation. In comparison to [5,20] Fig. 3 col-
lects and organizes ValidationMethods (extracted from [1,
24,32]) for validating a transformation with respect to
a transformation property. We distinguish between two
validation categories: ByConstruction and ByChecking. By-
Construction means that the property is implied by the
way the transformation language is constructed and op-
erates. Techniques that allow transformation-independent
and input-independent validation of transformations, i.e.,
properties are shown to hold for all transformations of
the language and for all input models, are often By-
Construction; for instance, using a mathematical proof
one might be able to show termination or determin-
ism for a model transformation expressed as a graph
rewrite system for all transformations and inputs (see [5]
for details). Other formal properties are either Stati-
cally or Dynamically validated with formal techniques.
Dynamic techniques require executing the transforma-
tion being validated (e.g., Testing or DynamicMetrics)
whereas static techniques include abstraction-based tech-
niques such as AbstractInterpretation, TheoremProving,
ModelChecking or any StaticAnalysis with a specific scope
(e.g., identifying unfireable rules). For many of these cat-
egories, concrete examples of approaches from the re-
search literature can be found in [5].

2.3 Usage Scenarios

We think that our work can be of use for practitioners
and researchers alike by supporting the following activ-
ities.

2.3.1 Intent Identification Given an existing transfor-
mation, our intent catalog can be used to determine the
intent of that transformation together with any relevant
optional intent properties as depicted in Fig. 4. Should
the transformation not match any intent in the catalog
sufficiently well, our framework could be used to describe
the new intent and add it to the catalog. Knowing the
transformation’s intent may facilitate the documenta-
tion, maintenance, validation, or reuse of the transfor-
mation. If the transformation has not been implemented
yet, intent identification may still be possible using, e.g.,
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Fig. 4 Identifying the intent of a model transformation

requirements documents or interviews with Mde engi-
neers. In this case, knowing which intent the transfor-
mation is to have may facilitate implementation.

2.3.2 Model Transformation Validation For validating
a given transformation with respect to a specific intent,
the mandatory intent properties and, to the extent ap-
propriate, the optional intent properties, need to be con-
cretized into transformation properties pertaining to the
given transformation. Validation succeeds if the transfor-
mation satisfies all transformation properties. This pro-
cess is summarized in Fig. 5.

2.3.3 Model Transformation Research Our work is rel-
evant to researchers interested in the specification and
analysis of model transformations, since it describes and
formalizes properties that transformations may have to
possess. Allowing for these, and perhaps other, proper-
ties to be expressed in a uniform, elegant specification
language for model transformations would be of inter-
est, as would be the development of effective analysis

Fig. 5 Validating a model transformation with a specific
intent

and validation techniques and tools for model transfor-
mations.

Some intents may occur so frequently and require
so much development effort, that the development of
an “intent-specific” (e.g., domain-specific) transforma-
tion language may be helpful. The new language may
be a subset of an existing one obtained by removing
certain constructs (e.g., constructs that introduce non-
termination), or a completely new language employing
paradigms and features that optimally support the effi-
cient construction of transformations with a specific in-
tent. Should these transformations be part of the devel-
opment of safety-critical software, designing the trans-
formation language in such a way that the proof of trans-
formation properties is facilitated (e.g., a transformation
language without possibly non-terminating constructs
will only allow the construction of terminating trans-
formations) could further increase productivity. Conse-
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quently, the work presented here may also stimulate more
research into the design, implementation and analysis of
domain-specific model transformation languages.

2.4 Structure of the Remainder of the Paper

Section 3 presents a non-exhaustive catalog of 25 com-
mon transformation intents. The description of each in-
tent is rather short, using only a small part of the frame-
work in Section 2. Section 4 presents high-level formal-
izations of some key intent properties. The list of prop-
erties is also not meant to be exhaustive. Section 5 uses
the full framework from Section 2 to provide detailed de-
scriptions of the six intents: Query, Refinement, Trans-
lational Semantics, Translation, Analysis, and Simula-
tion. In Section 6 we describe the Power Window Case
Study (Pwcs) which shows how Mde techniques in gen-
eral, and model transformations in particular, can be
used for the development of software for a power window.
The case study contains a transformation chain of over
30 transformations. After a detailed description of two
transformations in the case study, their intents are iden-
tified and some of their intent properties are concretized
into transformation properties for validation purposes
(the validation itself is left for future work, though). At
the end of the section, a list of the intents of all trans-
formations in the case study is given together with their
optional properties. Section 7 discusses related work. Fi-
nally, Section 8 summarizes the paper’s contributions
and presents opportunities for future work.

3 The Intents Catalog

Several classifications for model transformations exist in
the literature. Such classifications are based on the trans-
formation features [26], the transformation form [26], or
syntactic aspects [85]. From a formal verification point of
view, what really matters is the intent behind a transfor-
mation [5]: the intent conveys the transformation’s ac-
tual meaning, which influences the properties of interest
that need to be verified.

This section proposes an Intent Catalog : a descrip-
tion of recurring model transformation intents and illus-
trative examples from the literature. With respect to the
metamodel in Fig. 2, this catalog informally provides the
following information: name, description and example.

Our Intent Catalog is not an exhaustive list of all
model transformation intents, but it encompasses exist-
ing lists (e.g., [26,57,85,113,119] which are discussed in
Section 7). An empirical evaluation of the catalog fol-
lows.

The catalog is divided in nine categories of model
transformation intents as illustrated in Fig. 6. The sec-
ond level of intents are concrete intents that describe a
given model transformation. The third level of intents
emphasizes typical special cases of concrete intents.

3.1 Refinement Category

The refinement category groups intents that produce a
more precise model by reducing design choices and am-
biguities with respect to a target platform.

3.1.1 Refinement A refinement transformation pro-
duces a lower level specification (e.g., a platform-specific
model) from a higher level specification (e.g., a platform-
independent model) [67], i.e., refinement adds precision
to models. As defined in [46], a model m1 refines an-
other model m2 if m1 can answer all questions that m2

can answer. Typically, m1 contains at least the same in-
formation as m2. For example, a non-deterministic finite
state automaton (NFA) can be refined into a determinis-
tic finite state automaton (DFA). Denil et al. [30] defined
a set of refinement transformations that iteratively add
platform knowledge to a deployment model.

3.1.2 Synthesis A synthesis transformation is a re-
finement where the output of the transformation is an
executable artifact expressed in a well-defined language
format (typically textual). Synthesis is also referred to as
Model-to-code generation [110] when the transformation
produces source code in a target programming language.
For example, Java code can be synthesized from a UML
class diagram model. Note that the synthesis intent can
be considered as a special case of the refinement intent
where the output of the transformation is an executable
artifact. Furthermore, a refinement transformation of-
ten precedes a synthesis transformation as demonstrated
in [83,122].

3.1.2.1 Serialization A special case of synthesis where
the goal of the transformation is to store the model on
a medium, such as the serialization of Ecore models into
XMI.

3.2 Abstraction Category

The abstraction category is the inverse of the refinement
category. It groups intents where some information of a
model is aggregated or discarded to simplify the model
and emphasize specific information.

3.2.1 Abstraction Abstraction is the inverse of refine-
ment: if m1 refines m2 then m2 is an abstraction of m1.
Typically, m2 will hide some information while revealing
other information. For example, an NFA is an abstrac-
tion of a DFA. Also, Mannadiar and Vangheluwe [83]
used a transformation to extract user-interface behavior
from a Statecharts model into a PhoneApps model. An
view of a model that is not a sub-model, but an aggre-
gation of some of its information is also a abstraction.
For example, “retrieve all cycles in a Causal Block Dia-
gram model” outputs a view of the causal block diagram
model represented as a cyclic graph composed of strongly
connected components.
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Fig. 6 Intent catalog

3.2.2 Restrictive Query A query transformation re-
quests some information about a model in the form of a
proper sub-model or a view. Restrictive query is a spe-
cial case of abstraction where the result of a query is a
sub-model of the input model. EMF INC-Query [10] is a
model transformation language that is used specifically
for querying EMF models. For example, the query “get
all the leaves of a tree” is a restrictive query. We con-
sider any subsequent aggregation or restructuring of the
resultant sub-model or view as an abstraction.

3.2.3 Reverse engineering Reverse engineering is the
inverse of synthesis: it extracts higher level specifications
from lower-level ones. For example, a UML class dia-
gram model can be generated from Java code using Fu-
jaba [38]. Reverse engineering is considered as a special
case of abstraction where the input model is code.

3.2.4 Approximation We consider transformationm1

is an approximation of m2 when m1 is equivalent to m2

up to a certain error margin. Naturally, m1 preserves
more properties of m2 as the error decreases. The error
margin is typically based on a distance measure between
models. For example, a Fast Fourier Transform is an ap-
proximation of a Fourier Transform, which is computa-
tionally very expensive.

3.3 Semantic Definition Category

The semantic definition category groups transformation
intents whose purpose is to define the semantics of a
modeling language.

3.3.1 Translational Semantics A translational se-
mantics transformation gives the meaning of a model
in a source language in terms of the concepts of another
target language. It is typically used to capture the se-
mantics of new Dsls: as in [55], the semantic mapping
transformation defines the mappings from the abstract
syntax of the Dsl into a semantic domain with well-
known semantics. For example, Causal Block Diagram’s
semantics are expressed as Ordinary Differential Equa-
tions.

3.3.2 Simulation A simulation transformation defines
the operational semantics of a modeling language that
updates the modeled system’s states. The output model
of the transformation is then an “updated version” of
the input model (i.e., the transformation is in-place).
Simulation updates the abstract syntax of the model,
which may trigger modifications in the concrete syntax.
One example is in [72], where a model transformation
was used to simulate a Petri Net model and produced a
trace of the transitions firing.

3.4 Language Translation Category

The language translation category groups transforma-
tion intents that define a translation between two mod-
eling languages.

3.4.1 Translation A model translation transformation
maps the concepts of a model in a source language to the
concepts of another target language while translating the
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semantics of the former in terms of the other. A typical
translation transformation is the class diagram to the
relational database schema case study [12]. The result-
ing model can then be used to achieve several tasks that
are difficult, if not impossible, to perform on the origi-
nals. For example, Syriani and Ergin [114] transformed
a UML activity diagram into a Petri Net model in or-
der to detect deadlocks and starvation, i.e., analysis is
delegated to the Petri Net workspace.

3.4.2 Migration A migration transformation is such
that it transforms software models written in one lan-
guage (or framework) into software models conforming
to another language (or a modified version of it), while
keeping the models at the same abstraction level [15].
Migration can be thought of the consequence of evolving
a model language to a newer version. For example, trans-
forming Enterprise Java Beans 2.0 (EJB2) class dia-
grams so that the resulting models conform to EJB3 can
be achieved by a migration transformation as in [6]. The
process of migrating each model individually so that they
conform to the evolved metamodel can be automated
through model transformations as presented in [22].

3.5 Constraint Satisfaction Category

The constraint satisfaction category groups transforma-
tion intents that output models given a set of constraint
to satisfy.

3.5.1 Model Generation Model generation is a trans-
formation that automatically produces possible (correct)
instances of a metamodel, such as in [132]. The meta-
model of a language can be defined using a grammar, e.g.
expressed in the Extended Backus-Naur Form (EBNF),
or a graph grammar [128] which, in a sense, encode the
constraints that the instances need to satisfy. Such model
transformations are very useful for testing model trans-
formations since it facilitates the automatic generation
of input test models to verify the correctness of a trans-
formation [27].

3.5.2 Model Finding Adapted from [120], model find-
ing is a transformation that searches for models that sat-
isfy given constraints. In that case, several models are
generated according to a set of rules and evaluated to
check whether the generated models satisfy some con-
straints. If not, a backtracking mechanism reverses some
of the applied rules to find another model. A typical use
of this intent is in design-space exploration (e.g., [104])
which supports decision-making when several solutions
exist.

3.6 Analysis

The analysis intent is a category on its own that en-
compasses all analysis techniques that are too long to

enumerate here. An analysis transformation implements
analysis algorithms of varying complexities, from detect-
ing dead code or unapplicable rules to model-checking
temporal formulae over appropriate structures described
by models. For example, Lúcio and Vangheluwe [81] im-
plemented a symbolic model-checker for the DslTrans
transformation language using model transformations.

3.7 Editing Category

The editing category groups transformation intents that
manipulate a model directly.

3.7.1 Model Editing The simplest operations on a
model are adding an element to the model, removing an
element from the model, updating an element’s proper-
ties, navigating through the elements, and accessing the
properties of an element. These primitive operations are
also known as the CRUD operations as first introduced
by Kilov [66]. These simple operations are considered as
a model transformation when the system is completely
and explicitly modeled, such as in AToMPM [118].

3.7.2 Optimization Optimization is a special kind of
model edition that aims at improving operational quali-
ties of models, e.g., scalability and efficiency. For exam-
ple, replacing n-ary associations with binary associations
in a UML class diagram can optimize the code generated
from the class diagram [45].

3.7.3 Model Refactoring Model refactoring is a spe-
cial kind of model edition where the model is restruc-
tured to improve certain internal quality characteristics
without changing the model’s observable behavior [48,
40]. Zhang et al. [135] proposed a generic model trans-
formation engine that can be used to specify refactorings
for domain-specific models.

3.7.4 Normalization Normalization is a special kind
of model edition that aims at decreasing the syntactic
complexity of models by translating complex language
constructs of an input model into more primitive con-
structs. For example, Agrawal et al. [2] normalized a
Statechart model into its flattened form, replacing OR-
and AND-states by the appropriate states and transi-
tions.

3.7.4.1 Canonicalization A special case of normal-
ization where the representation of a model is normal-
ized in a unique form. This is typically useful when
verifying the equality of two models. For example, the
work in [102] discusses how to compute normal forms of
equation expressions using model transformation with
Maude.
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3.8 Model Visualization Category

The model visualization category groups transformation
intents that deal with the relation between the abstract
and concrete syntax of a modeling a language.

3.8.1 Animation Animation is the visualization of a
simulation. It projects the behavior of a model on a spe-
cific animation view. In contrast with a simulation trans-
formation, an animation transformation operates on the
concrete syntax (or the abstract syntax of the concrete
syntax) of a model. For example, Ermel and Ehrig [36]
used a model transformation to define the mapping from
simulation steps to animation steps of a radio clock.

3.8.2 Rendering A rendering transformation assigns
one (or more) concrete representation(s) to each abstract
syntax element or group of elements in an input model,
as long as the meta-model of the concrete syntax is de-
fined explicitly. For example, Guerra and de Lara [54]
used event-driven grammars to relate the abstract and
concrete syntaxes of visual languages.

3.8.3 Parsing Parsing is the inverse of rendering: it
maps the concrete syntax of a modeling language back
to its abstract syntax. This is implemented by a model
transformation involving the meta-model of the concrete
syntax and the meta-meta-model of the language. For
example, a model written in the Textual Concrete Syn-
tax (TCS) [59] is transformed into a KM3 model of its
abstract syntax.

3.9 Model Composition Category

The model composition category groups transformation
intents that integrate models produced in isolation into a
compound model, where each isolated model represents
a concern that may overlap with any of the other isolated
models.

3.9.1 Model Merging A particular instance of com-
position is model merging. In this case, the composi-
tion creates a new model such that every element from
the union of both models is present exactly once in the
merged model. Engel et al. [34] proposed a transforma-
tion language that allows one to compute the merged
model from two models conforming to the same meta-
model.

3.9.2 Model Matching A model matching transfor-
mation creates correspondence links between correspond-
ing entities. This is also known as model weaving. Del
Fabro and Valduriez [37] defined a generic meta-model
to capture correspondences between models.

3.9.3 Model Synchronization Model synchronization
integrates models that have evolved in isolation and that
are subject to global consistency constraints by prop-
agating changes to the integrated models. Such trans-
formations are typically used when multiple views of a
common repository model are accessed or modified as
in [53].

3.10 Empirical Evaluation of the Intent Catalog

We first started presenting a preliminary version at sev-
eral workshops with various audiences (CAMPaM’11’12,
AMT’12, AOM’13) in order to receive feed-back from the
community. Once the catalog reached a fixed point, we
proceeded with a succession of iterative empirical stud-
ies conducted over several months. In the following, we
report on the final study that led to the Intent Catalog
presented in this paper.

3.10.1 Objectives The goal of this study is to evaluate
the correctness, unambiguity, and completeness of the
Intent Catalog. There are two levels of correctness that
we wanted to measure: (Q1) “Up to what degree do peo-
ple agree with what we (the authors of the catalog) ex-
pected?” and (Q2) “Up to what degree do people agree
with each other independently from the expected an-
swers?”. The unambiguity objective can be formulated
as: (Q3) “How difficult is it to distinguish between two
or more intents to characterize one model transforma-
tion?”. Finally, the completeness objective can be for-
mulated as: (Q4) “Is there any intent of an existing
transformation that does not fall under an intent of the
catalog?”.

3.10.2 Methodology Formally validating the Intent Cat-
alog is intractable because of the informality in which it
is defined. Therefore, we opted to empirically validate
the catalog with respect to the four objectives defined
previously. We prepared an online survey where we asked
26 questions: 25 randomized multiple choice and one free
form. Each question of the first 25 described a model
transformation example in one sentence in English and
stated explicitly the input and output metamodels in-
volved. For example: “Map a custom DSML for wrist
watches to a Statechart model in order to define its be-
havior. Input: Watch DSML Output: Statechart”. The
participants had to drag and drop one intent from the
list of intents provided to them in alphabetical order at
each question in the intent box. If they were doubting
between two intents and they could not decide, they were
allowed to drop the least likely one in the alternate box.

The last question was an open question asking them
to optionally answer the objective question Q4 or any
other comment they would have.

For their training, each participant was given the In-
tent Catalog and the instructions. They were not allowed
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number of questions.

to ask any question regarding the catalog or the ques-
tionnaire, since we were evaluating the unambiguity of
the catalog. However, they were allowed to seek resources
from the web if they were not familiar with concepts in
a question. There was no time limit for the experiment.
The participants took on average 42 minutes to perform
the experiment.

3.10.3 Inclusion and Exclusion Criteria A participant
was eligible for the experiment if he had implemented
at least one complete model transformation in the past.
In total, we surveyed 38 participants with very different
backgrounds and expertise. We did not distinguish be-
tween participant profiles because the catalog is intended
to be used by anyone who wants to develop or analyse
a model transformation. Among the participants, there
were masters and doctoral students, researchers, and
professors in computer science, electrical, and mechani-
cal engineering. For the last iteration of this experiment,
which we discuss next, we surveyed 14 participants.

3.10.4 Results and Discussions To quantitatively mea-
sure Q1, every question of each participant was assigned
a score of 1 if the answer in the intent or alternate in-
tent box matched our expected answer and 0 otherwise.
Fig. 7 shows how many participants agree with our an-
swers on how many questions based on the scores. For
example, 93% of the participants found the same intent
as we expected on 28% of the questions. Therefore, we
can conclude that participants agreed with our answers
on average 73% of the time. Furthermore, the scores
recorded varied between 56% and 88%, which reflects
that all participants agreed with our expected answers
more often than they did not. This is a very satisfactory
result for Q1 to measure the correctness of the catalog
given the heterogeneity of the participants, the subjec-
tivity of the experiment, and that they could not ask for
any clarification.

For Q2, we used the statistical measure, called Fleiss’
kappa [39], to assess the inter-rater reliability of agree-
ment. The values of κ range between 0 (no agreement)
and 1 (perfect agreement) indicating how much multi-
ple judges agree with their decisions. This measure is
therefore unbiased with our expected answers since ev-
ery answer given by a participant is taken into account
equally. For the 14 participants, κ = 0.57 which indi-
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Fig. 8 The correlation between κ and the score.

cates a “moderate agreement”. However, as depicted in
Fig. 8, we observe a quasi-linear correlation between κ
and the score. This means that the more participants
agreed with our expected answers, the more they were
in agreement. This indicates that our expected answers
were correct according to the participants. Scores of at
most 68% are in “moderate agreement”. Some answers
provided by these participants were dramatically dif-
ferent and incorrect, e.g., when expecting translation,
model matching was given or when expecting synthesis,
restrictive query was given. Therefore, if we partition
the participants into one group with all scores of at least
68% (10 participants) and another group with remaining
(4 participants), than the former group is in “substantial
agreement” (κ = 0.64) whereas the latter one is in “mod-
erate agreement” (κ = 0.51). We may therefore consider
the latter group as outliers.

For Q3, the alternate intent box was used only 7.7%
of all the questions among all participants (350 answers).
Therefore, on average, a participant could not decide
between two intents only once. This low ratio reflects
the low level of ambiguity of the catalog.

For Q4, none of the participants was able to suggest
additional intents that they thought are missing in the
catalog.

In order to improve the catalog, we extracted which
questions were problematic. We considered a question to
be problematic if at most 50% of the top 10 participants
agreed with the correct answer or if at least two of them
agreed on an incorrect answer. In this experiment, we
were able to reduce to six problematic questions: those
dealing with translation, synthesis, optimization, render-
ing, approximation, and parsing. The variations between
the answers ranged from three to five different answers
for each question. Nevertheless, there was only “slight
agreement” (κ = 0.19) on the problematic questions and
“almost perfect agreement” (κ = 0.81) on all remaining
questions.

3.10.5 Threats to Validity The first threat to the valid-
ity of this study is in the participants themselves. The
number of participants and their arbitrary selection may



10 Levi Lúcio et al.

have had an influence on the results. Furthermore, the
survey was anonymous: we did not distinguish between
beginners, novices, and experts in model transformation.
Through the various experiments we conducted, several
participants were not familiar with some of the concepts
involved in the questions. Distinguishing between these
groups will give stronger insights into how to formu-
late the questions and possibly the catalog depending
on the profile of the reader and suggest the appropriate
background needed to use the catalog. Also, although
instructed to do so, the participants may not have al-
ways totally relied on the description of each intent, but
instead relied on their familiarity with the intent name
which has different meanings in different domains.

A second threat is the possible ambiguity of the ques-
tions. Although we assessed the ambiguity of the catalog,
the participants may have found the questions ambigu-
ous, leading to different answers than those expected.
One remedy is to provide additional information per
question, such as complete input and output models or
the complete transformation.

We see a few threats in the statistical measures used.
For example, Fleiss’ kappa gives equal weight to all an-
swers. A weighted kappa could have been used by giving
higher weights to intents that fall in the same category
as the expected answer, for instance.

Finally, we believe that providing the participants
with the full characteristics of each intent, as described in
Section 5 for six of them, would have mitigated the am-
biguities they faced. However, this would require them
to spend several hours to get familiar with the content.
We therefore interpret the results of this empirical eval-
uation as a motivation to further formalize the intent
catalog as described in the following sections. As future
work a more extensive evaluation is planned once this
formalization of the catalog is complete. Such an exten-
sive evaluation might then clarify if ambiguities that oc-
curred in this experimental evaluation could indeed be
avoided. At the stage of using the intent catalog for the
purpose of verifying model transformations this would
be very important, since preciseness then plays an indis-
pensable role.

4 Formalization of Intent Properties

Fig. 9 depicts the general ideal process of model transfor-
mation. An input model, conforming to a source meta-
model, is transformed into an output model, itself con-
forming to a target metamodel, by executing a trans-
formation specification that conforms to its transforma-
tion language. A transformation specification is defined
in terms of the source and target metamodels, whereas
its execution operates on the model level. Both source
and target metamodels, as well as the transformation
specification, are themselves models, conforming to their
respective metamodels: for metamodels, this is the clas-
sical notion of meta-metamodel; for transformations, it
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Fig. 9 Model Transformation: the big picture (adapted from
[115])

actually refers to the transformation language, which
allows a sound transformation specification. Of course,
some transformations manipulate several input and/or
output models.

This Section provides a minimal mathematical frame-
work sufficient for our purpose: it allows to formally de-
fine the mandatory and optional properties of our De-
scription Framework (Section 2) that are detailed in Sec-
tion 5, paving the way towards transformation valida-
tion; and later serves to illustrate the transformations
extracted from the Pwcs. This framework is obviously
not exhaustive: it is tailored for the set of intents covered
by this paper. Describing the other intents not yet for-
mally described by the Description Framework will ne-
cessitate different property classes whose formalisation
can elaborate on the current mathematical framework’s
state.

Section 4.1 provides notations for the general no-
tions (metamodels and models, model transformations
and model semantics) on which the properties used for
describing the transformation intents of Section 4.2 are
based. The readers not particularly interested in the
mathematical content can safely skip this Section and
only refer to Figure 10 to retrieve the correspondence
between mandatory/optional properties and their for-
mal counterpart.

4.1 Metamodels & Models, Model Transformation and
Model Semantics

Fig. 9 depicts models, metamodels and the conformance
relationship between them. The following definition in-
troduces notation for these notions.
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Definition 1 ((Meta-)models — Conformance) Let
M and M be the sets of all metamodels and models re-
spectively, as defined by a meta-metamodel. For a given
model M ∈ M and a given metamodel MM ∈ M, we
write M C MM if M conforms to MM. We denote by
L(MM) the set of all models M ∈M conforming to MM,
i.e. all models M ∈M such that MCMM.

Historically, one of the first definitions for model trans-
formation was proposed by the OMG, in line with the
Model-Driven Architecture view. The OMG perceives
transformations as “the process of converting one model
to another model of the same system” [49]. This system-
centric view was enlarged by Kleppe et al.: “a model
transformation is the automatic generation of a target
model from a source model, according to a transforma-
tion definition” [67]. This definition brings a change from
the system-centric view and considers general input/
output models, while insisting on the fact that trans-
formations are mostly perceived as directed and auto-
matic (i.e. without users’ intervention) manipulation of
models. Similarly, Tratt describes a transformation as “a
program that mutates one model into another” [121], em-
phasizing the computational aspect of transformations.
More recently, two contributions have widened the per-
spective with two important aspects: Mens et al. pro-
posed to view transformations as “the automatic gener-
ation of one or multiple target models from one or mul-
tiple source models, according to a transformation de-
scription” [85], whereas Syriani re-introduced the crucial
importance of the intent behind transformations: “the
automatic manipulation of a model with a specific inten-
tion” [113].

We propose a broader definition that clearly embeds
the dual nature of model transformation, distinguishing
its specification from its execution, and places the trans-
formation’s intent at its core.

Definition 2 (Informal Definition adapted from [5])
A transformation is the automatic processing of input
models to produce output models, that conforms to a
specification and has a specific intent.

In this definition, note that the input and output
models may be the same artifact in the case where a
transformation is in-place. As with any computational
artifact, a transformation operates at two levels: the
specification, which is defined by the transformation de-
signer, refers to source/target metamodels; and the exe-
cution, performed by the transformation engine, follow-
ing a specific semantics.

Definition 3 (Model Transformation Specification)
A transformation specification t is a triple

t = ((MMk
s )k∈[1..n], (MMk

t )k∈[1..m], spec)

where (MMk
s )k∈[1..n] and (MMk

t )k∈[1..m] are indexed sets
of source and target metamodels, respectively, and spec ∈

L is a well-formed transformation specification written
in a transformation language L.

Transformation specifications have a dual nature, as no-
ticed by Bézivin et al. [11]. As a model transformation, it
emphasizes a particular manipulation of source and tar-
get metamodels that spec describes precisely – this corre-
sponds to, in Fig. 9, the horizontal links named refers to
from Transformation Specification. As a transformation
model, it emphasizes the linguistic nature of spec, i.e.
the conformance relationship between spec and its lan-
guage definition L, and subsequently, its execution – this
corresponds to, in Fig. 9, the vertical links from Trans-
formation Specification to its Transformation Language
and Transformation Execution. Moreover, the form of
spec depends on L’s underlying paradigm (either opera-
tional, or declarative, or both, i.e. hybrid – see [26]), and
manipulates directly the concepts defined by the source
and target metamodels.

This paper generally considers intents involving one
input model and one output model. Without loss of gen-
erality, the rest of our definitions for transformations
is therefore focussed towards this particular case: we
consider n = m = 1, and simply write a specification
t = (MMs,MMt, spec).

Due to its computational nature, a transformation
execution can be represented by a transition system,
whose execution provides the semantics for the trans-
formation specification.

Definition 4 (Model Transformation Execution)

The execution, or semantics, of a model transforma-
tion specification t is given by a transition system TSt =
(S, I,−→) where S is a set of execution states that is a
subset of M; I ⊆ S is a set of initial states, called input
models; and −→ ⊆ S × S is the transition relation over
S.

A transformation execution TSt is linked to its specifi-
cation t = (MMs,MMt, spec) through the subscript no-
tation (avoided when clear from context). The precise
definitions of S and −→ strongly depend on the specifi-
cation language L.

Note that we will only consider in this paper trans-
formations with legal input models, i.e. transformations
executing, or starting, from a conforming input model:
∀M ∈ I,M ∈ L(MMs).

From the perspective of formal language theory, what
a model designer defines with a metamodel is a lan-
guage’s abstract syntax, i.e. the designer captures the rel-
evant concepts and their relationships in a way that en-
ables their internal representation for further computa-
tions. To allow their manipulation by modelers, a meta-
model must be accompanied with one or several concrete
syntaxes that define their concrete representation, be it
graphical or textual (or both). As a last ingredient, the
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semantics is necessary to perform manipulations of mod-
els according to the meaning attached to the modeled
concepts.

Definition 5 (Model Semantics [55]) Let MM ∈ M
be a metamodel. The semantics of MM, denoted JMMK,
is a pair JMMK = (D

MM
,µ

MM
), where D

MM
is called the

semantic domain and µ
MM

the semantic mapping given
as follows:

µ
MM

: L(MM) −→ D
MM

M 7→ µ
MM

(M)

The precise definition of D
MM

and µ
MM

(noted without
subscripts when clear from context) highly depends on
the nature of the models in L(MM) and what the seman-
tics will be used for. If it does not have any associated
behaviour, the semantic domain usually consists only of
data structures. Otherwise, L(MM) has a behaviour, and
the semantic domain needs to appropriately capture it.

Note also that the semantics style depends on the
machinery associated with D

MM
: it can be denotational

if D
MM

comes with a functional framework, operational
if it is equipped with rewriting capabilities, axiomatic
if it defines a Floyd-Hoare logic, or even translational if
D

MM
actually represents a target computer language the

semantics is translated into.

4.2 Intent Properties

This section details the second important class of our in-
tent domain metamodel in Fig. 2, namely IntentProperty.
In our description framework, each transformation intent
has corresponding mandatory (optional) properties that
all transformations with this intent must (may) satisfy.
Some intent properties can directly be instantiated for
a given transformation, other properties are still quite
abstract and will need to be concretized for the given
transformation before they can be checked. Section 6
demonstrates for two example transformations how it is
possible to find out the appropriateness of mandatory
properties for a given transformation and also how to
concretize abstract intent properties to concrete trans-
formation properties that can be validated.

In the following, we assume a transformation spec-
ification t = (MMs,MMt, spec) with its associated exe-
cution TSt = (S, I,−→). Each property is given an ab-
breviation (in square brackets following the name) that
is used to refer to the property in the remainder of the
paper.

We start with the following three well-known prop-
erties: termination, determinism and type correctness.
Type correctness is specific to model transformations
whereas termination and determinism applies to any com-
putational system. The reader can refer to [5] for further
details about the verification of such properties.

Definition 6 (Termination [T]) TSt is terminating
if there exists no infinite chain M0 −→ M1 −→ . . . −→
Mn −→ . . . starting from an input model M0. We say
that Mn is an output model for M0 if there exists a finite
chain M0 −→ M1 −→ . . . −→ Mn such that no further
transition from Mn exists.

A terminating transformation execution ensures the ex-
istence of an output model for any input model.

Definition 7 (Relation Rt) Given TSt, the relation Rt

over I×M consists of all pairs of models (M,M′) s.t. M
is an input model and M′ is an output model for M.

Note that for a terminating transformation the rela-
tion Rt is left-total.

Definition 8 (Determinism [D]) TSt is deterministic
(or confluent) if for each model M that can be reduced
to M1 and M2 (i.e. M1

∗←− M −→∗ M2), there exists
another model M′ into which both M1 and M2 reduce,
i.e. M1 −→∗ M′ ∗←− M2.

Executing a deterministic transformation means that the
execution result does not depend on the order in which
actions (leading to transitions) are performed. Note that
if TSt is terminating and deterministic, it is said to be
convergent, or functional, since for each input model
there exists a unique output model. In other words, the
relation Rt is right-unique and left-total.

Definition 9 (Type Correctness [TC]) TSt is type
correct if each output model for an input model conforms
to MMt.

∀(M,M′) ∈ Rt,M
′ CMMt

We proceed with the description of more abstract
properties that share the same form and that rely on
the same artefacts. For a specific transformation obey-
ing a given intent, these properties still need to be con-
cretised for the given transformation to afterwards ef-
fectively validate the transformation correctness. This is
demonstrated in Section 6, for some example properties
on two example transformations.

Definition 10 (Structural [STR]/Semantic [SMR]
Relation Property) A structural relation property is
a property of all input/output model pairs (M,M′) in Rt.

A semantic relation property is a property of the se-
mantics (µ

MMs
(M),µ

MMt
(M′)) of all input/output model

pairs (M,M′) in Rt.

For example, an interesting concrete structural rela-
tion property is the fact that an injective homomorphism
needs to exist between each input and output model pair
in t (this is, for instance, useful for the query intent,
among others).

An example for a semantic relation property is sim-
ulation, a property that may hold on the semantics of
each input and output model pair in Rt expressing that
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the execution of the output model cannot be observa-
tionally distinguished from the input model. This means
that the output model can be transparently used in lieu
of the input.

Definition 11 (Traceability [TR]) Structural corre-
spondences between an input model and an output model
(M,M′) in Rt consist of a relation ρM,M′ ⊆ M×M′. We
say that Rt demonstrates traceability if structural corre-
spondences are created during transformation execution
TSt for each model pair (M,M′) in Rt.

Note that in the above definition we have a slight abuse
of notation, where we assume ρM,M′ to be a relation over
the set of elements that make up M and M′’s structure.
Moreover, note that traceability is a special case of a
structural relation property, since it is a property of all
input/output model pairs in Rt.

Definition 12 (Structural Preservation [STP])
Let P(MMs) (resp. P(MMt)) be a property language op-
erating on all models conforming to the source (resp. the
target) metamodel. A structural preservation property
stipulates that for each input and output model (M,M′)
in Rt, it holds that whenever a property π ∈ P(MMs)
holds on the input model M, then an equivalent property
π′ ∈ P(MMt) holds on the output model M′.

M `s π ∈ P(MMs) =⇒ M′ `t π′ ∈ P(MMt)

Note that the structural preservation property is also
a special case of the structural relation property, since
it is a special property on all input and output model
pairs in Rt.

Definition 13 (Semantic Preservation [SMP])
Let P(D

MMs
) (resp. P(D

MMt
)) be a property language on

the source (resp. target) metamodel’s semantic domain.
A semantic preservation property stipulates that for the
semantics (µ

MMs
(M),µ

MMt
(M′)) of each input and output

model (M,M′) in Rt, it holds that whenever µ
MMs

(M) sat-
isfies a semantic property φ, then µ

MMt
(M′) satisfies an

equivalent property φ′.

µ
MMs

(M) |=s φ ∈ P(D
MMs

) =⇒ µ
MMt

(M′) |=t φ
′ ∈ P(D

MMt
)

Similarly to the syntactic case, the satisfaction relation
(represented here by |=s and |=t, to differentiate from the
syntactic case) can differ on each side. It is sometimes
possible to predefine a property translator for syntactic
or semantic properties if the property languages on in-
put and output are the same, or at least comparable.
Generally however, when they differ too much, or the
semantic gap between each metamodel is too deep, no
general procedure exists for building such translators.
This becomes the designer’s job, with all the accom-
panying issues: aside from the properties’ correctness,
the translation can add another source of errors for the
validation process [127]. Finally, note that the semantic
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preservation property is also a special case of the seman-
tic relation property, since it is a special property on the
semantics of all input and output model pairs in Rt.

In contrast with relation properties, behavioural prop-
erties qualify in a more general way the transformations
instead of only considering properties on the input and
output models.

Definition 14 (Behavioural Property [BP])
Let P(TSt) be a property language over the transforma-

tion execution and M ∈ I an input model. A behavioural
property φ ∈ P(TSt) expresses the fact that starting
from M, the transformation execution TSt satisfies φ.

M,TSt |= φ ∈ P(TSt)

where M,TSt denotes the part of the transition system
reachable from M.

A behavioural property can be seen as the most gen-
eral property, since it is able to qualify the complete tran-
sition system TSt. All the other properties either qualify
only particular parts of the transition system (e.g. in-
put and output models) or express a special property of
the transition system (e.g. termination). We can sum-
marize the introduced properties in this section into the
hierarchy of properties depicted in Fig. 10. This figure
summarizes the kind of properties that we distinguish
and the relationships between them. The dashed prop-
erties are intent properties that still need concretization
for a given transformation.

5 Six Intents: Restrictive Query, Refinement,
Translational Semantics, Translation, Analysis
and Simulation

This section presents the six intents we have chosen to il-
lustrate in detail: Restrictive Query, Refinement, Trans-
lational Semantics, Translation, Analysis and Simula-
tion. The choice of this particular set of intents was based
on the transformation intents present in our Power Win-
dow Case Study, introduced in Section 6 of this paper.
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As can be seen in Table 6, Restrictive Query, Transla-
tion and Simulation are the most abundant intents in the
Power Window Case Study and according to that crite-
rion we chose them as part of the intent set we analyse
in depth in this section. The Synthesis intent is also very
present in the Power Window Case study. However, as
per our catalog, Synthesis is a form of refinement. As
such, and in the interest of reuse and incrementality, we
have chosen to first explore the Refinement intent. Fi-
nally, the Analysis intent is part of our original study on
intent of model transformations [4]. As such, after some
updates following the most recent version of our intent
catalog, we have naturally included it in this study.

Each intent is described systematically using the fol-
lowing approach:

1. We informally present the intent to convey the gen-
eral idea behind it;

2. We review contributions from the literature to demon-
strate different intent usages and help explain how
the ModelTransformationIntent instance is built;

3. We formalize the intent as an instance of the meta-
model presented in Fig. 2. The goal of this formal-
ization is to provide a mapping between the intent,
informally presented in section 3 and its properties,
defined in section 4.

5.1 Restrictive Query

As with queries over databases, a query transformation
applied to a model extracts a subset of information from
that model. We refer to the extracted subset of informa-
tion as a view. The Query/View/Transformations initial
call for submissions [43] defines a query as “an expression
that is evaluated over a model” and a view as “a model
which is completely derived from another model”. This
definition is very general since any automated transfor-
mation could be viewed as a way of completely deriving
one model from another. In this paper, we define a re-
strictive query transformation as one that produces a
restrictive view of the model by omitting a portion of
the model - that is, it extracts a submodel. For exam-
ple, the query “show only classes/associations of a class
diagram” produces a restrictive view that extracts the
submodel of a class diagram containing all and only the
classes and associations.

5.1.1 Restrictive Query in the Literature Restrictive
query transformations are often used as a preprocessing
step to extract the portion of a model that is needed as
input for another transformation. For example, in order
to apply an analysis transformation to a state machine
within a larger UML model, a restrictive query transfor-
mation will first be used to extract this state machine.
Restrictive query transformations are also used to sup-
port the separation of concerns by extracting the sub-
models related to different concerns and then feeding

these to their own transformations. For example, the
UWE web application engineering method using Mde
[68] initially uses restrictive query transformations to ex-
tract the subsets of the requirements model related to
website function and website architecture. It then feeds
these submodels into their own transformation chains
that ultimately reintegrate these concerns downstream.
We give additional examples of this technique below for
the power window case study.

Model slicing represents a type of restrictive query
transformation that has received recent attention by the
modeling community (e.g., see [74]). Model slicing, like
program slicing, is intended to support human compre-
hension of a complex model by extracting submodels
that are restricted to the behaviour and properties for
a subset of model elements. Some of the slicing tech-
niques produce amorphous [56] models, while other pro-
duce structure-preserving ones. The techniques that pro-
duce structure-preserving models can be considered as
restrictive queries. For example, in [74] the authors de-
scribe slicing techniques for various UML diagrams with
the goal of producing analysable models from those dia-
grams.

Similar approaches have been proposed in the liter-
ature for metamodel slicing. For example, the authors
of [8] use a model slicing technique to modularise and
manage the complexity of the UML metamodel. The
technique takes as input key elements of UML diagrams
(e.g. Class Diagrams, Use Case Diagrams, etc) and, for
those key elements, produces a sub-metamodel that de-
scribe such diagrams. The algorithm produces the sub-
metamodel by navigating associations emanating from
those key elements. Following a similar line of thought,
Sen et al. propose in [107] a more generic approach that
makes use of a Kermeta [89] model transformation to
prune any given metamodel. The goal is to find a sub-
metamodel for a given purpose, such as defining the al-
lowed set of inputs for a model processing program or
tool. The model transformation takes as inputs the large
metamodel and a set of required classes and properties
and returns a sub-metamodel including those classes and
properties, and their mandatory dependencies. The au-
thors also provide an additional algorithm to check that
the pruned metamodel is a sub-type of the source meta-
model. This ensures that instances of the pruned meta-
model are also instances of the source metamodel.

Since the application of a restrictive query on a model
produces a model fragment that is not necessarily well-
formed, an important consideration for a restrictive query
transformation is how to ensure type correctness (i.e.
well-formed results). The work of Kelsen et. al. [61], pro-
vides an efficient algorithm to address this problem by
decomposing a fragment into its atomic constituents and
then re-merging them while preserving well-formedness.
The net effect is that the fragment is expanded to the
nearest well-formed submodel that contains it.
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Attributes

name Restrictive Query

description Extract the unique submodel (the view) from a
model that satisfies some criterion (the query).

useContext 1. Want to extract the relevant part (view) of a
model for a task.

2. Want to decompose a model to manage com-
plexity.

example 1. Extract the submodel that are immediate
neighbours of a particular element.

2. Extract the submodel of structural elements
from a UML model.

3. Model slicing.
4. Model decomposition.

is exogeneous False

is endogeneous True

preconditions 1. Must be able to characterize the submodel of
interest using a condition expressible in terms
of the metamodel of the base model.

Associations

mandatory 1. [T] Terminating
2. [TC] Type Correct
3. [STR] The view must be a submodel of the

base.

optional 1. [D] Deterministic
2. [SMP] Semantics preservation

Table 1 Restrictive Query Intent Characterisation

5.1.2 Restrictive Query Metamodel Instance The
attributes of the restrictive query transformation intent
are shown in Table 1. If we consider the mandatory prop-
erties, termination [T] is a reasonable property to expect
from a query – since it is of no use if it never produces
a result. We also expect the resulting view to be well-
formed with respect to the target metamodel and so it
must be type correct [TC]. Most importantly, the re-
sulting view must be a submodel of the input, or base,
model. This is the key property that identifies a trans-
formation as a restrictive query and can be formalised
as a structural relation [STR] enforcing an injective ho-
momorphism mapping from the view to the base.

A property that is optional is for the restrictive query
to be deterministic [D] – i.e. that the query should al-
ways produce the same result on the same input model.
Often this is expected, but there are cases where it is not
needed. For example, consider a restrictive query trans-
formation that extracts a submodel of a UML model
showing an example of how a class is used. In this case,
any sequence diagram that uses the class is sufficient and
it is not necessary to always produce the same one. The
optional property that the restrictive query be seman-
tics preserving [SMP] means that the information in
the view submodel should not change its meaning even
though it is taken out of context of the whole model. This
is often an important requirement when the view has a
human consumer (e.g. model slicing) since otherwise the
information in the view could be misleading.

Note that in practice the target metamodel of a re-
strictive query may be also a subset of the input meta-
model, or slightly different to accommodate the result-

ing models. This means for certain transformation im-
plementations the restrictive query intent may in fact be
exogenous. However, in this study we privilege a concep-
tual view on intents and consider that in the general case
a restrictive query is an endogenous transformation.

5.2 Refinement

A transformation with the refinement intent is a trans-
formation that produces a lower level specification (e.g.,
a platform-specific model) from a higher level specifica-
tion (e.g., a platform-independent model) [67].

5.2.1 Refinement in the Literature Model transforma-
tions from the literature that fall under the refinement
intent can be either interactive refinement transforma-
tions or fully-automated refinement transformations. In
particular, we investigated the approaches described in
the following paragraphs in order to come up with a char-
acterization of the refinement intent as given in Table 2.
Moreover, we also considered more general studies [96,
46] describing the characteristics of refinement in Mde
and its corresponding verification.

5.2.1.1 Interactive Refinement Transformations: The re-
finement approaches presented by Padberg [95] as well
as by Scholz [106] are rule-based. In the first approach,
the rules need to adhere to specific properties in order
to guarantee the preservation of safety properties and
in the second approach specific refinement rules already
exist. The user decides where to apply which rules. Van
der Straeten et al. [111] present a formal approach to
model refinement and its interplay with model refactor-
ing. The user of the refinement needs to decide how to
refine the models and afterwards behaviour preservation
can be checked.

5.2.1.2 Fully-Automated Refinement Transformations:
Baresi et al. [9] describe in their work exogenous re-
finements of business-oriented architectures, abstracting
from technology aspects, into service-oriented ones. Man-
nadiar et. al [83] introduce two exogenous graph trans-
formations, one of which is used to refine a domain-
specific model (DSM) of the PhoneApps domain specific
language (DSL) for a conference registration mobile ap-
plication. The authors present the PhoneApps DSL for
capturing both the behaviour and the visual structure of
mobile device applications. Tri and Tho [122] discuss an
approach for the automatic refinement of SEAM mod-
els. SEAM is a language and tool that supports visual
modelling. SEAM has the same modelling capability as
that of UML with the additional advantage that SEAM
can easily maintain consistency between design compo-
nents since it can capture the entire system in a single
view. Due to that single-view representation, the final
SEAM model can become too complicated. Thus the
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Attributes

name Refinement

description Add precision such that the output model con-
tains at least the same amount of information as
the input model. The information contained by a
model is equivalent to the relevant questions that
can be asked concerning the model [46].

useContext Add more detail to a model.

example Going from a platform-independent model to a
platform-specific model [67].

is exogeneous True

is endogeneous True

preconditions 1. A clear understanding of the amount of in-
formation described by the input model, and
how to preserve it.

2. A clear understanding of the information that
needs to be added, and how to add it.

Associations

mandatory 1. [T] Termination
2. [TC] Type Correctness
3. [STR, SMR, STP, SMP] Information

Preservation
4. [STR, SMR] Information Creation

optional

Table 2 Refinement Intent Characterisation

paper describes an approach to automatically refine ab-
stract SEAM models into detailed SEAM models such
that the final SEAM model can eventually be used to
generate code.

5.2.2 Refinement Metamodel Instance Table 2 instan-
tiates the intent metamodel of Fig. 2 for the refinement
intent, summarizing our findings in the literature. Since
transformations with the refinement intent are required
to add detail to existing models, it is intuitive that hav-
ing a clear understanding of the information to be pre-
served and the information to be added are precondi-
tions for such transformations. These preconditions were
mentioned implicitly in all the papers discussed in sub-
section 5.2.1. For example, in the rule-based refinement
approaches these preconditions are needed to be able to
design the refinement rules as well as to apply them. In
the studies discussed in subsection 5.2.1, it was usually
mentioned that the mandatory termination, type correct-
ness, information preservation and information creation
properties stated in Table 2 need to be fulfilled. Whereas
termination, type correctness have a one to one corre-
spondence with properties [T] and [TC] in section 4,
information preservation and information creation will
generally need to be shown by a collection of several con-
crete properties, both at the structural and the semantic
level. For example, the fact that there is a simulation
between each input and output model’s semantics might
imply information preservation and can be expressed as
semantic relation [SMR] property. Also, having a bi-
jection between the syntactic elements of the input and
the output models might imply information preserva-
tion and can be expressed as a structural relation [STR]
property. It is also reasonable to think that information

preservation might be expressed as a set of structural
preservation [STP] properties where the information to
be preserved is encoded in the syntactic property that
is transported to the output model. The same reason-
ing holds at the semantic level for the usage of a set of
semantic preservation [SMP] properties. Note that in
Table 2 the notation [STR, SMR, STP, SMP] means
that any non-empty combination of those four properties
can be used to formally show information preservation.

Information creation implies the existence in the out-
put model of syntactic and semantic elements that did
not exist in the transformation’s input model. It thus
seems reasonable to think that [STR, SMR] can be
helpful, if necessary, in showing information creation,
depending on the notion information creation required
by the considered transformation.

Some of the papers we surveyed have not explicitly
verified all the properties in Table 2. Our work aims at
identifying these gaps in order to allow for a more sys-
tematic engineering of model transformations with spe-
cific intents in the future. For example, in [83,122] the
mandatory properties were not verified and case stud-
ies were used to demonstrate that the refinement trans-
formations fulfill their purpose. Both studies also infor-
mally discussed how a mapping is done between the in-
put model and the refined model and thus, how infor-
mation is preserved. Usually, the information creation
property does not need to be checked explicitly, since it
trivially follows from applying a refinement in the cor-
responding approaches. For endogenous approaches like
[95], it is moreover usually trivial to check type correct-
ness.

5.3 Translation & Translational Semantics

A transformation with the translation intent is a trans-
formation that translates the meaning of models con-
forming to a source metamodel into models conforming
to a target metamodel. The resulting models can then
be used to achieve tasks that are difficult, or impossible,
to perform on the originals.

This Section describes two intents of our catalog:
Translation and Translational Semantics. Despite the
fact that it made sense to distinguish them from an engi-
neering point of view in the catalog, they are very similar
from a verification point of view. As the name suggests,
a translational semantics is no more than a translation
whose purpose is to provide semantics to a metamodel
(or more often, to a Dsl) by mapping its concepts into
the ones of the target metamodel, which becomes the
so-called semantic domain: this is the exact definition of
the Translation intent, which implies that the associated
properties should be similar.

5.3.1 Translation in the Literature From the review of
the contributions present in the literature, it appears
that a translation is performed for two main reasons:
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Bridging structures to enable metamodel exchanges
at a structural level (e.g., for importing models from
another metamodeling framework);

Delegating actions to the target metamodel by simu-
lating, or formally analysing input models using ded-
icated engines available for the output models. The
delegation is valuable in the case where the cost of
re-implementing a simulation/analysis engine for the
source metamodel is too high.

5.3.1.1 Bridges. The four-layered organisation depicted
in Fig. 9 is shared by several technical spaces: mod-
elware, grammarware, ontoware or dataware, to name
just a few [131,91]. Often, one has to bridge artifacts
from one to another: for example, query languages and
transaction operations in dataware are already avail-
able, taking advantage of SQL and its many capabili-
ties and various implementations one can simply reuse
instead of reimplementing things for a novel technical
space. The goal of a bridge is to translate the mean-
ing of the meta-metamodel itself, i.e. offering a way to
automatically convert any metamodel of one technical
space into another. This differs from the usual under-
standing of a transformation shown in Fig. 9, where the
transformation is specified on a metamodel and executes
on a model, not the level above. However, as previously
noted, a meta-metamodel can usually be treated just
as a metamodel and manipulated as such. Furthermore,
bi-directional bridges are usually required for enabling
round-trips between technical spaces.

Two papers [131,91] published in 2005 explicitly use
the terms grammarware and modelware to refer to ex-
changes between textual and visual representations of
models. Most probably, closing the gap between lan-
guage theory or compilation techniques (based on BNF
grammars) and MDE (usually using MOF) are the most
represented contributions [58,91,28]. Kern and his col-
leagues performed several bridges from various meta-
metamodels into either MOF or its specific Eclipse im-
plementation EMF: GOPRR, used in the commercial
transformation engine MetaEdit+ [62]; Aris, the well-
known enterprise modelling tool [64]; Visio, the Microsoft
general-purpose modelling tool [65]. A comparative study
is available in [63], where the authors also describe the
bFlow Toolbox, their integrated tool for performing these
bridges seamlessly. Brunelière et al. [16] and Bézivin et
al. independently studied bi-directional bridges between
Microsoft DSL Tools and Eclipse EMF, providing an ef-
ficient way to exchange models between one of the most
popular DSL development tools.

5.3.1.2 Simulation Delegation. A Translation is often
specified for providing simulation (or execution) capa-
bilities for models. This type of delegation is a popular
approach for defining the semantics of DSLs: this kind
of translation is more precisely called Translational Se-
mantics. Since they capture domain expertise as con-

cepts and rules with a precise meaning, the Transla-
tion just transposes these semantics in terms of a tar-
get metamodel that offers the necessary execution ma-
chinery. Another popular use for Translation consists of
taking advantage of a richer framework to perform tasks
specific to simulation, such as calibrating the parameter
values of models to enhance their non-functional proper-
ties (typically, performance). The main difference resides
in whether the source metamodel’s semantics is known
a priori or not: for a translational semantics, the trans-
lation itself serves as a semantics definition.

Rivera et al. [100] use Maude for specifying the be-
havioural semantics of domain specific modeling lan-
guages and for simulating the models by executing them
using Maude rewriting rules. Kühne et al. [71] define
a transformation from Finite State Automata into Petri
Nets, implementing the automata’s semantics: by run-
ning the Petri Net translated model over an input se-
quence, it can check whether it belongs to the language
accepted by the input automaton model.

MoTif results from combining the T-Core framework
with the discrete event simulation language DEVS [116].
This allows model transformations to be expressed in a
modular and compositional way together with the ex-
plicit introduction of a time dimension. In [112], Syri-
ani et al. demonstrated how adding the notion of time al-
lows for the simulation-based design of reactive systems
such as computer games. This allows the modelling of
player behaviour and the incorporation of data about hu-
man players’ behaviour and reaction times. The models
of both player and game were used to evaluate, through
simulation, the playability of a game design.

Troya et al. [123,124] employ simulations based on
model transformations for reasoning about aspects of
Quality of Service (QoS) such as performance and re-
liability. In their work, Troya et al. add not only general
runtime information to the models, as is for example,
done in [35] or in fUML, but they also add specific ele-
ments called observers to track information the designer
is interested in. The authors used e-Motions [100] for im-
plementing and executing the behaviour of the models
to simulate. Internally, e-Motions is compiled to Maude.

5.3.1.3 Analysis Delegation. A Translation can take ad-
vantage of the analysis capabilities of the target meta-
model.

De Lara and Taentzer transform in [76] models for
process interaction expressed in a discrete event formal-
ism tailored for the manufacturing domain into Timed
Transition Petri Nets. This transformation is expected
to terminate, to be deterministic, type correct and to
preserve Process Interaction’s behaviour. Termination,
type correctness and behaviour preservation are proved
informally, but determinism is proved using the classical
critical pairs technique already implemented in AGG,
the tool used to specify the transformation.
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Varró et al. [126] prove the termination of graph
transformations with negative application conditions by
translating them into Petri Nets and showing that the
resulting Petri Net is not partially repetitive, i.e. no
(initial) marking has a firing sequence in which a tran-
sition occurs infinitely many times. Augur2, a graph
transformation tool proposed by König and Kozioura
[69], approximates transformations with Petri Nets for
analysing property preservation. Here, the property is
specified as a graph pattern and then translated into an
equivalent marking, which is checked for reachability. A
counterexample is produced in case the marking is not
reachable.

Naranayan and Karsai [93] proved reachability within
StateCharts using a two-layered translation. First, a Stat-
eChart model is translated into an Extended Hybrid
Automaton model, building traceability links between
both instances. Then, the Extended Hybrid Automa-
ton is translated in Promela, the entry language of the
Spin model-checker, where reachability can be checked.
If a counterexample is produced, it can be traced back
to the StateChart model following the traceability links
previously established. Notice however that this tech-
nique is not general: it checks a particular property (reach-
ability in the paper) on a particular StateChart model,
and works only because the StateChart and the Hybrid
Automaton models are proved to be bisimilar.

Cabot et al. [19] automatically extract OCL invari-
ants from bi-directional transformations expressed declar-
atively in QVT [50], using a higher-order transforma-
tion. These invariants allow one to answer various ques-
tions about the transformation, such as whether a valid
input or output model exists for the transformation, or
whether an output model exists for any possible valid in-
put. However, the actual invariant satisfaction problem
is delegated to specialised tools able to work on UML
models decorated with OCL invariant constraints.

5.3.2 Translation Metamodel Instance Table 3 shows
the ModelTransformationIntent’s instance for the Trans-
lation intent.

A Translation is by nature terminating [T] and de-
terministic [D], otherwise the expected output models
could never exist, or could be ambiguous regarding the
original input. Because the output is expected to some-
how “represent” the input, the transformation should be
type correct [TC].

The remaining mandatory properties depend on both
the Translation’s nature and the existence of a precise
semantics for the source metamodel.

Bridge If it is possible to attach a formal semantics
to both meta-metamodels, then it becomes possible
to formally compare conforming metamodels of both
sides; otherwise, it should be possible to define struc-
tural preservation [STP] between both sides.

Simulation If the Simulation defines the source meta-
model’s semantics, then structural preservation [STP]

Attributes

name Translation

description Translate the meaning of conforming input models
into models conforming to a target metamodel to
achieve a subsequent task.

useContext Equip a DSL with an executable semantics, or per-
form a task difficult, or impossible to realise over
the original models.

example 1. Provide a reference semantics for a DSL. (cf.
Pwcs).

2. Exchange models between Microsoft Visio
and Eclipse EMF [65].

3. Prove reachability in StateCharts using
Promela [93].

is exogeneous True

is endogeneous True

preconditions

Associations

mandatory 1. [T] Termination
2. [D] Determinism
3. [TC] Type Correctness
4. [STP] Semantic equivalence (Bridge)
5. [SMR, SMP] Observational equivalence /

Similarity (Simulation, when source semantics
available)

6. [STR, STP] Structural Preservation (Simu-
lation, without source semantics available)

7. [STP, SMP, SMR] Soundness (Analysis)

optional 1. [TR] Backward Traceability to relate results
back to the input.

2. Readability of the transformation’s output for
debugging purposes.

Table 3 Translation Intent Characterisation

is the only possible property. Otherwise, in case the
source metamodel has a predefined semantics, struc-
tural [STP], but also semantics preservation [SMP],
are possible. It can also be interesting to prove a sim-
ulation relation [SMR] between the input and the
output, thus ensuring for reactive systems that all
actions of the input can actually be performed by
the output (but obviously, also more actions, typi-
cally time-related).

Analysis Since an Analysis generally focuses on partic-
ular aspects of the inputs, the transformation should
be “sound”, i.e. it should verify some form of preser-
vation of the property under analysis [STP,SMP].
Depending on the abstraction level difference of both
sides, it is also possible to verify a simulation relation
[SMR] between models in each side.

Some optional properties are also sometimes desir-
able. As already mentioned, a Bridge could sometimes
be bidirectional. Traceability [TR] is also desirable for
Analysis and Simulation to be able to relate results back
to the input: for example, playing a counterexample ob-
tained from an analysis in terms of the input to help
identify errors.
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5.4 Analysis

A transformation with the Analysis intent is a trans-
formation that implements an analysis algorithm of any
complexity. Examples include: the computation of a call
graph for operations of a MOF model, detecting dead
code or inapplicable rules, and the model-checking of a
temporal formula over a given structure.

5.4.1 Analysis in the Literature From the literature re-
view, we noted two types of scenarios in which Analysis
occurs. A transformation is a:

Pure Analysis Transformation if it expresses an anal-
ysis algorithm on its own, i.e. computes the necessary
information for performing the analysis.

Built-In Analysis Transformation if it is executing
with a transformation engine that is already equip-
ped with analysis features.

5.4.1.1 Pure Analysis Transformations. This Analysis
scenario is, in fact, very rare. One reason is that specify-
ing an analysis algorithm is typically complicated and so
it is often easier instead to delegate the analysis to a ded-
icated tool after having translated the models. Further-
more, a key issue when analysing models is scalability,
and this often requires the use of dedicated data struc-
tures to enable performance gains (for example, consider
the use of binary decision diagrams for scalable model-
checking).

Narayanan and Karsai [94] have implemented a graph
rewriting system in Great to transform UML activity
diagrams to Communicating Sequential Process (CSP)
models. The graph rewriting system was then checked
for preserving structural correspondences between in-
put and output models (property preservation). Unfor-
tunately, no data related to the performance and scala-
bility is given. Recently, Lúcio and Vangheluwe [81] ex-
plored the possibility of checking structural correspon-
dence properties on DslTrans transformations. The ap-
proach scales up to 21 rules for a transformation with
acceptable computation times.

5.4.1.2 Built-In Analysis Transformations. This Anal-
ysis scenario corresponds to the fact that a transforma-
tion is expressed in a transformation framework that
is natively equipped with formal analysis capabilities.
When possible, this represents a good choice, since the
analyses are tailored for the transformation engine, en-
suring good performance.

Rivera et al. [101] encode graph transformations into
Maude [25]. Graph transformations are specified visually
by using AToM3 [77] as a front-end, and encompass neg-
ative application conditions, well-formedness rules and
both single and double pushout approaches. Since Maude
provides reachability analysis, Ltl model-checking, and
theorem-proving capabilities, all these analysis become

Attributes

name Analysis

description Perform an analysis on the input models.

useContext 1. Develop an analysis algorithm using transfor-
mations.

2. Benefit from the built-in analysis capabilities
of a transformation engine.

example Reuse Maude’s model-checking capabilities for
model-checking graph transformations. [101]

is exogeneous True

is endogeneous False

preconditions 1. Access to analysis algorithms.

Associations

mandatory 1. [TC] Type correctness

optional

Table 4 Analysis Intent Characterisation

available for graph transformations, and the results are
easily traced back due to their high-level encoding of
(meta-)models. Gargantini, Riccobene, and Scandurra
[44] use Abstract State Machines (ASM) [14] to encode a
DSLs’ semantics. Metamodels and models are expressed
with EMF whereas the transformation expressing their
operational semantics is expressed with the ASM lan-
guage. Using the built-in bidirectional translation into
νSmv, it becomes possible to perform LTL model- check-
ing in this framework. Groove [99] allows the (bounded)
model-checking of CTL formulæ over graph-based trans-
formations with negative conditions [60]. The tool can
also handle reachability analysis by expressing adequate
invariants in CTL.

5.4.2 Analysis Metamodel Instance Table 4 shows the
ModelTransformationIntent instance for the Analysis
intent. This intent is closely related to two other in-
tents: Translation and Simulation: a Translation often
delegates an analysis to the target metamodel; whereas
a Simulation can directly benefit from the potentially
available analysis capabilities of the simulation engine.
When such capabilities exist, the task of the transforma-
tion designer consists of just specifying the transforma-
tion adequately (i.e. in the engine’s own language); the
analysis becoming the transformation’s engine responsi-
bility, not the designer’s. For example, Riveira et al. [101]
(cited as example in Tab. 4) use Maude as such a target,
providing model-checking and theorem-proving analysis
for all transformations specified within their framework.

Pure analysis transformations are obviously type cor-
rect when delivering a result [TC]. Beyond this, it is dif-
ficult to say more since it highly depends on the analysis
being performed. They are not necessarily required to be
terminating, or deterministic, since many types of static
analysis are undecidable. For example, consider a model-
checking procedure: it does not generally terminate for
infinite systems, and if it does, the only requirement is
to answer with one counterexample among all possible
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ones. In general, proving an analysis transformation’s
correctness is roughly equivalent to proving the correct-
ness of an implementation with respect to an analysis
algorithm. For example in [81], the authors would be
asked to prove that their transformations actually cor-
rectly realise model-checking.

The Analysis intent clearly needs further research.
The fact that we cannot better characterise such an in-
tent also comes from the fact that it is often, based on
our observations, neither an atomic intent, nor has a
single-target (consider again model-checking: the analy-
sis verdict is, if negative, accompanied with a counterex-
ample).

5.5 Simulation

In the modeling community, simulation is a transforma-
tion that encodes some operational semantics of a lan-
guage. Therefore it simply updates the state of a model
in response to events (e.g., time, trigger, causal depen-
dency). We can define a simulation such that its trace
of execution is a label-transition system (LTS) where a
node is a legal snapshot of the state of the model and a
transition is the application of a rule.

Note that the term “model simulation” is understood
differently in the modeling community and the simula-
tion community. In the modeling community, model sim-
ulation normally refers to the development of an oper-
ational semantics for a modeling language, while in the
simulation community, simulation [109] refers to the pro-
cess of designing a model of a real system and conducting
experiments with this model for a certain purpose. Thus,
the first interpretation can be seen as the enabler of the
latter.

5.5.1 Simulation in the Literature There is a large body
of work discussing how to implement the operational
semantics for modeling languages. Generally, there are
two approaches for defining the behaviour of models: (i)
by incorporating the runtime concepts into the meta-
model and adding transformation rules for evolving the
initial state of a model, and (ii) embedding the mod-
eling language into some existing simulation formalism
(as already discussed in Subsection 5.3.1). Thus, we refer
the interested reader for the second approach to Subsec-
tion 5.3.1 and deal in this subsection only with the first
one.

Concerning the first approach, one way for defining
an operational semantics is to introduce executability
concerns by defining graph transformation rules operat-
ing on metamodel instances as proposed by Engels et al.
[35]. Another possibility is to follow an object-oriented
approach by specifying the behaviour of operations de-
fined for the metaclasses of a modeling language (within
the metamodels representing the abstract syntax of the
languages) using a dedicated action language. Many ac-
tion languages have been proposed, including the use of

Attributes

name Simulation

description To give an operational semantics to a modeling
language by updating the state of the model.

useContext Need to compute the trace of a model’s execution,
its final state or both.

example Compute worst-case execution time, throughput,
error rates of a production model.

is exogeneous False

is endogeneous True

preconditions 1. Access to intended semantics.
2. Metamodel contains runtime information as is

currently provided by the dynamic metamod-
eling approach [35]. As an example for run-
time information consider the token concept
in Petri Nets.

3. Modeling language has behaviour.
4. Real-time systems require a notion of time.

Associations

mandatory 1. [T] Controlled Termination
2. [TC] Type correctness

optional 1. [BP] Preservation of properties of interest.
2. Log of simulation is accessible.
3. Readability of the transformation’s output.
4. If animation is provided, it has to correspond

to the simulation

Table 5 Simulation Intent

existing general purpose programming languages: Ker-
meta [89], Smalltalk [33], xCore [23], EOL [103], the ap-
proach proposed by Scheidgen and Fischer [105], and
fUML [84]. Prominent examples used in these papers
are the definition of the operational semantics of Petri
Nets or State Charts.

Most of this work only addresses the definition of the
operational semantics of languages that model discrete
systems without time, i.e., the time elapsed between two
state changes is not considered. However, there are also
some approaches dedicated to modeling specific real-
time systems that require an explicit notion of time.
For instance, de Lara et al. [75] use so-called flow graph
grammars for scheduling graph transformation rules and
scheduling grammars for introducing an explicit notion
of time for modeling a mail system.

An interesting problem and solution is presented in
[36,13] where the goal is to have consistency between
animation rules operating on the concrete syntax of a
model and the simulation rules operating on the ab-
stract syntax of the model. Although we consider this
consistency property between animation and simulation
as very important, in this paper we focus only on prop-
erties inherent to the simulation intent.

5.5.2 Simulation Metamodel Instance Table 5 shows the
ModelTransformationIntent instance for the Simula-
tion intent.

As already mentioned, the purpose of simulation in
Mde is to give operational semantics to a modeling lan-
guage by updating the state of a model. Of course, this
applies only to behavioural models. The transformation
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is considered to be either exogenous if an already ex-
isting simulation formalism is selected for this purpose
or endogenous if the behavioural semantics is directly
attached to the language’s metamodel.

In general, a simulation is a terminating transforma-
tion. When a terminating condition is met, the simula-
tion must stop. This condition can be based on the state
of a model, on the gained information, or on time. This
latter point means that the transformations are expected
to terminate at some point in time, although it may hap-
pen that the simulation has to be stopped even though
there are still rules that can be applied. Concerning the
second point, sometimes the successful execution of the
simulation is meant to be non-terminating unless an in-
formation saturation point is met. This can be a failure
or an exception case arises that may lead to rejecting
the hypothesis to be tested, or the opposite, the infor-
mation gained allows to accept the hypothesis. To sum
up, controlled termination [T] has to be supported.

Whether a simulation transformation is determinis-
tic depends on the system being modeled and cannot be
decided on a general basis. If the system is determinis-
tic, the simulation should be deterministic, too. If the
system is non-deterministic, and several transformation
rule matches are found at some point, one of them is
non-deterministically selected and applied.

Each simulation step should result in a valid model
with respect to its metamodel. As such type correctness
[TC] needs to hold. However, ensuring this may require
a sequence of several transformation rules correspond-
ing to a single logical simulation step – similarly to the
concept of transaction.

A means for proving that a simulation is correct is
to show that a set of desired behavioral properties [BP]
hold. Examples of such properties could be invariants or
reachability constraints over the set of reachable states
of the simulated system. Due to the fact that simulations
may be also useful without proving such properties, they
are considered optional.

Logging of transformation execution events is consid-
ered to be an useful but optional property. Especially,
some transformation engines are able to produce com-
plete logs, e.g., the order of the rules applied, the differ-
ent execution states, the binding of the rules and timing
information. Some approaches also provide the means to
automatically produce views on the logging information
to support better understandability of the simulation re-
sults, e.g., to show the number of events per event type.
This is also connected to an optional property, the read-
ability of the transformation’s output. Here, not only the
output model has to be in a human-readable form, but
also the logging information since it may be considered
to form a critical aspect of the simulation result.

Because an animation of a simulation is optional, we
consequently consider the consistency property between
animation and simulation as an optional property.

6 Identifying Transformation Intents within the
Power Window Case Study (Pwcs)

This section introduces the case study for this paper, de-
veloped in the context of an industrial project aimed at
building control software for an automobile’s power win-
dow [29,92]. A power window is basically an electrically
powered window. Such devices exist in the majority of
the automobiles produced today. Besides lifting and de-
scending the window, a power window also includes an
increasing set of additional functionalities, aimed at im-
proving the comfort and security of the vehicle’s passen-
gers. To manage this complexity while reducing costs,
automotive manufacturers use software to handle the
control of such physical devices.

The case study consists of a chain of model trans-
formations aiming at generating control software for a
power window as C code, starting from high level re-
quirements. The whole transformation chain contains 37
transformations and involves 28 different metamodels.

The Power Window Case Study (Pwcs) serves as
an experimental platform for the research presented in
this paper. We use it for two complementary purposes:
(i) since the Pwcs was developed independently of our
research, it presents an unbiased collection for partially
validating the Intent Catalog of Section 3 by allowing us
to identify occurrences of intents in a real-world trans-
formation chain; (ii) the Pwcs can be used to illustrate
the practical usefulness of our Intent/Property mapping
in Section 5 and of our abstract framework for formal-
izing properties provided in Section 4.2. In particular,
we extract from the transformation chain two witness
transformations in Section 6 for two exemplary intents,
namely, Translation and Simulation. By using our map-
ping we illustrate how to build concrete transformation
properties that help in showing the correctness of the
two witness transformations.

Section 6.1 presents the Ftg+Pm formalism in which
the Pwcs transformation chain is expressed. Section 6.2
describes the transformation chain itself, with an em-
phasis on the steps the witness transformations are ex-
tracted from. In Section 6.3 and Section 6.4, we describe
for two given Pwcs transformations how we identified
them with the translation and simulation intent, respec-
tively, according to the process described in Fig. 4. In
Section 6.5 we provide an overview of the intents identi-
fied within the Power Window Case Study.

6.1 Ftg+Pm: Formalism Transformation Graph and
Process Model

Fig. 11 depicts a simplified version of the Ftg+Pm (For-
malism Transformation Graph + Process Model) for the
Pwcs. On the left, the Ftg describes which domain-
specific formalisms, represented as labelled rectangles,
are consumed and produced by which transformations,
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Fig. 11 Partial Ftg (on the left) and Pm (on the right) for the Power Window software development

represented as labelled small circles. On the right, the
Pm describes two flows in a way similar to Uml Activ-
ity Diagram [51]. The transformation control flow, corre-
sponding to thick arrows, describes how transformations,
depicted as round-edged labelled rectangles correspond-
ing to actions, are chained to produce the expected final
result. These actions are “typed” as executions of the
transformations declared in the Ftg with the same la-
bel. The data control flow, corresponding to thin arrows,
describes how models, depicted as square-edged rectan-
gles, are consumed and produced by transformations ex-
ecutions. These data objects have to be valid instances
of the formalisms with the same label surrounding the
transformations whose execution uses them. Similarly
to Activity Diagrams, the control flow can join or fork
sets of actions (depicted as horizontal bars with deci-
sion nodes as diamonds). The Ftg and the Pm distin-
guish between automatic transformations (using yellow
circles and rectangles, respectively) from manual or as-
sisted ones (colored in grey).

6.2 Description

The Ftg+Pm for the Pwcs contains several phases:
Requirements Engineering, Design, Verification, Simula-
tion, Calibration, Deployment and finally Code Gener-
ation. We focus on the four first phases that lead to a
viable, trusted system that can then be calibrated and
deployed: the construction of transformation properties
used in Section 6 are extracted from these phases. A
detailed description of the Pwcs can be found in the
corresponding literature [29,79,92].

Note that the Pm of Fig. 11 contains collapsed blocks
(e.g., Model Requirements, Safety Analysis or Hybrid
Simulation) that hide the details of the corresponding
tasks. Whenever relevant for the explanation, we will
explicitly detail the blocks’ content.

1 Requirements Engineering. Before design activi-
ties can start, engineers have to extract requirements
from legal and technical documents in order to pro-
duce requirement and use case diagrams that docu-
ment what is expected from the system. These trans-
formations are usually done manually, although some
parts could be automated (e.g., for populating those
diagrams).
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2 Design. Using these requirement artefacts, software
engineers start the design activity following design
practices inspired from control theory [31]: the con-
troller is the piece of software controlling the win-
dow’s functionalities; the process (also called plant)
is the physical power glass window with all its me-
chanical and electrical components, i.e. the mechan-
ical lift, the electrical engine and the sensors detect-
ing the window’s position or collision events; and the
environment is constituted of the human actors and
the other vehicle subsystems, e.g. the central lock-
ing system, the ignition system, etc. (the way the
Pwcs is built closely follows the work by Moster-
mann and Vangheluwe [88]). Each aspect of the sys-
tem is captured by a dedicated Dsl (Domain-Specific
Languages explicitly named Environment, Plant and
Control in Fig. 11), later bound together using an
extra Network Dsl for expressing how they interact.

After this phase, the entire system is modelled and
can be deployed. However, regulations in the automotive
sector have strong security concerns that need to be ad-
dressed at early stages of the system design. Since the
Power Window is a critical system, two validation tasks,
namely Verification and Simulation, are conducted in
parallel in the Pwcs to ensure that the code generated
from the models is trustable.

3 Verification. Formal Verification is applied by trans-
lating all domain-specific models from the previous
stage into corresponding Petri Nets [97]. All the re-
sulting Nets are then composed accordingly to the
Network model in order to obtain a fully functional
Petri Net, on which reachability analysis of unde-
sired states, specified according to the requirements,
is then checked.
Figure 12 describes the details of the collapsed block
corresponding for safety analysis. On the right side,
the :CombinePN composes the five models resulting
from the previous Design activity into a combined
Petri Net that describes the behaviour of the whole
system. This combined Petri Net is the source of
two activities performed in parallel: the :toSafetyReq,
which requires human intervention, produces a set of
Ctl formulas encoding the requirements based on
a safety requirement model; and the :BuildRG auto-
matically builds the reachability graph correspond-
ing to the combined Petri Net model. These activi-
ties are then joined together, since they are prereq-
uisites before the ReachableState action is executed
for model-checking the combined Petri Net behaviour
against the safety requirements, and produces a ver-
dict (given as a boolean value).

4 Simulation. On the other hand, a simulation of the
whole system is conducted to evaluate the responsiv-
ity when interacting with the passengers. The contin-
uous behaviour of the window is modeled using a hy-
brid formalism: the models for the environment and
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Fig. 12 Safety Analysis Ftg+Pm Slice, with Ftg on the
left and Pm on the right

the plant resulting from the Design phase are trans-
lated in Causal Block Diagrams (Cbds)2 whereas the
controller model is transformed into a StateChart.
The process of verifying the continuous behaviour is
similar to the Verification phase, although as a re-
quirement language CBDs are also used.

When the Verification and Simulation tasks are both
completed, engineers can think about how to efficiently
deploy the system on the platforms they target. The Cal-
ibration phase aims at extracting a performance model
that gives measurements about the execution times cor-
responding to the different use cases. This performance
model is then used during the Deployment phase for se-
lecting a deployment solution with real-time behaviour
where spatial and temporal requirements are respected.
Finally, when a feasible solution is found, the code spe-
cific to the target platforms can be synthesised: this in-
cludes the code of the application itself, but also the
code corresponding to the middleware and to the run-
time environment. The complete Ftg+Pm for the Power
Window Case study can be found in [78].

6.3 Translation

As a first example transformation for which we want to
identify the intent we chose the EnvToPN transforma-
tion located in Area 3 in Fig. 12.

Select Intent using Description Attribute: As aforemen-
tioned, the EnvToPN transformation takes a model ex-
pressed in the Environment DSL language and produces
as result a model in the Encapsulated Petri Nets lan-
guage. The purpose of this translation is to profit from
the fact that the Encapsulated Petri Net has a well known
and studied semantics which can be used as a seman-
tic domain for the analysis of models of the Environ-
ment DSL language. The Environment DSL language
has no explicitly formalized semantics and the role of

2 Causal Block Diagrams are a general-purpose formalism
used for modelling causal, continuous-time systems, mainly
used in tools like Simulink.
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! cmdUp  3

! cmdStop  4

! cmdDown  3

! lockOut  1

! cmdUp  3

! stickHead  3

! cmdUp  2

Driver Pass

//

Fig. 13 Example model for the Environment DSL language

the translation is to provide an artifact that can ex-
plicitly produce such semantics in the form of a Petri
Net-like formalism. Consequently, the obvious intent of
the transformation is to provide Translational Seman-
tics to Environment DSL models in terms of the Petri
Net formalism. This fits nicely to the description of the
Translation intent in Table 3.

Check Remaining Intent Attributes: The useContext men-
tioned in Table 3 and the fact that the transformation
needs to be exogeneous fit both as well. In what con-
cerns the example attribute, example 3 is the same kind
of translation having analysis as its purpose.

Check Appropriateness of Mandatory Properties: Let us
now switch to checking if the mandatory intent proper-
ties are appropriate for the EnvToPN transformation.
As can be observed in Table 3, the Translation intent
has as mandatory properties termination, determinism,
type correctness and soundness. As for the first three
properties, it is obvious that they are appropriate.

Because the semantics of models written in the Envi-
ronment DSL language is not defined, it is not meaning-
ful to discuss the preservation of semantic properties for
the EnvToPN transformation. It is however meaningful
to preserve syntactic properties of an Environment DSL
model that reflect its correct translation into an Encap-
sulated Petri Net model. Consequently, we can conclude
that the mandatory properties are appropriate.

Select Optional Properties: The optional properties for
the translation intent are backward traceability and read-
ability. The implementation traceability was not required
given the simple nature of the properties being verified
in the Pwcs. Special care was however devoted to read-
ability of the transformation’s output such that, given
the very visual nature of Petri Nets, the models resulting
from the EnvToPN transformations could be understood
by humans. This proved useful both for debugging and
especially for demoing purposes, as the Pwcs has been

1 0 0 0 00

cmdUpDriver

cmdUpPass stickHeadPass

cmdStopDriver

cmdUpPass

cmdDownDriver lockOutDriver

Fig. 14 Example model for the Encapsulated Petri Nets lan-
guage

presented at several venues as an example of transfor-
mation chaining for the contruction of complex systems
using MDE principles.

Outlook to Validating Properties: After having identified
the intent for the EnvToPN transformation, we want to
validate as described in Fig. 5 if its mandatory/selected
optional properties are indeed fulfilled. We give a brief
idea of this process and first have a more detailed look
into the EnvToPN transformation.

Fig. 14 depicts the result of executing the EnvToPN
transformation on the model in Fig. 13. The model in
Fig. 14 represents the parallel issuing of two sequences
of statements. The box annotated with ‘Driver’ sends
out four sequential commands to the set of buttons on
the driver’s door and the box annotated with ‘Pass’ send
three sequential commands to the set of buttons on the
passenger’s door. Note that each command box has a
number in it, which represents the amount of time dur-
ing which the command is in effect. The translational
semantics of the model in Fig. 13 is produced by transfor-
mation as the Encapsulated Petri Net model in Fig. 14.
The resulting model is a Petri Net where the commands
issued by the driver are merged with the commands is-
sued by the passenger along the same Petri Net tran-
sition timeline. Petri Net transitions pass messages to
outside of the component via ports, represented as black
squares on the border of the component. Due to timing
constraints the driver and the passenger commands are
sometimes issued simultaneously. In the model in Fig. 14
this translates into the fact that some of the transitions
on the Petri Net in Fig. 14 are connected to more than
one port in the component.

In Fig. 15, we express a structural preservation [STP]
transformation property that we wish to hold for the En-
vToPN transformation. Several authors [3,18,17,21,47,
52,82,125] have studied structural preservation proper-
ties. They allow expressing in a similar fashion how the
structure of the transformation’s input model influences
the structure of the transformation’s output model. In
order to express such properties for all executions of a
transformation those languages typically use a mix of the
transformation’s source and target metamodel elements,
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Postcondition XOR

//

Precondition

Postcondition

MergeEventSequences

Postcondition

Fig. 15 Syntactic property preservation example for the En-
vToPN Power Window transformation

additional constraint languages (e.g. OCL [18,17,21,47,
52,125]) and often metaclasses allowing describing trace-
ability connections between the source and target meta-
model elements [3,17,82]. For our example purposes we
have chosen the property language defined in [82], which
we have based ourselves upon to express the transforma-
tion property in Fig. 15.

The [STP] transformation property in Fig. 15 states
that whenever the input model includes two sequences of
parallel output commands, each of those sequences con-
taining a first and a last command, the resulting output
model will merge the two first commands as a single
transition and the final transition is coming from the
last command of either the first or the second sequence
(but not both, as denoted by the XOR operator). Note
that in Fig. 15 the thick dashed arrows between Precon-
dition or Postcondition elements state those elements
are indirectly linked; thin dashed arrows between Pre-
condition and Postcondition elements represent trace-
ability links; and blend colored elements represent neg-
ative condition, i.e., elements that cannot not occur in
input/output models.
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Fig. 16 Simulation of Petri Nets: transformation rules (left)
and schedule (right).

In Section 4 we have defined [STP] properties as
follows:

Mi `s π ∈ L(MMs) =⇒ Mo `t π′ ∈ L(MMt)

For the example property in Fig. 15, π and π′ cor-
respond respectively to the Precondition and Postcondi-
tion part of the property. Also, Mi and Mo are instances
of the Environment DSL and Encapsulated Petri Net
languages respectively and Mo is the result of applying
the EnvToPN transformation to Mi. If Mi instantiates
the property’s Precondition pattern π, then Mo neces-
sarily instantiates the property’s Postcondition pattern
π′. Note also that π and π′ are related by the property’s
traceability links connecting the property’s Precondition
and Postcondition elements.

6.4 Simulation

As a second example transformation we have selected
a Petri Net simulation called BuildRG and located in
Area 4 of Fig. 12. We describe the intent identification
of this transformation with less detail. In particular, we
select the intent using the description attribute and then
describe merely why one of the mandatory properties is
appropriate.

Select Intent using Description Attribute: The transfor-
mation BuildRG specifies the semantics of Place / Tran-
sition Petri Nets operationally, i.e. in an inplace fashion.
This fits obviously to the description attribute of the
Simulation intent in Table 5.

Check Appropriateness of Mandatory Property [BP]: Let
us call t = (MMs,MMt, spec) the corresponding trans-
formation specification. Since a simulation is inplace,



26 Levi Lúcio et al.

MMs and MMt both represent a metamodel for Place /
Transition Petri Nets. The specification follows a graph-
based approach, using MoTif [117] as a model transfor-
mation language L. The attached transformation exe-
cution TSt = (S,−→) corresponds to the semantics of
MoTif execution engine.

As shown in Fig. 16, it is possible in MoTif to specify
the transformation rules (on the left, adapted from [72]
for the purpose of the Pwcs), but also their schedul-
ing (on the right). Four rules compose the specification:
FindTr, ConsumeTks, NonFiringTr and ProduceTks. The
rules are organized in two nested loops; the outer-most,
called Simulation, runs in an infinite loop. The first rule
FindTr (which is a query consisting of solely a LHS) se-
lects one transition. The transition found is assigned to
a pivot variable transition to be referred by subsequent
rules. Then, the transformation ensures that only firing
transitions will be processed. To find enabled transitions,
the transformation iterates through all transitions until
one has been found that does not satisfy the pattern of
a non-firing transition. This is done by iterating over ev-
ery transition in the model and, if the NonFiringTr rule
cannot succeed, it is assigned to the pivot in order to
fire the transition. This interruption in the inner-loop is
represented by connection from the fail port of the rule
NonFiringTr to the success port of the enclosing rule
block. When a firing transition is found, it is assigned the
transition pivot, replacing the former transition. Then,
tokens are transferred along this transition as depicted
by rules ConsumeTks and ProduceTks. These two rules
are applied for all adjacent arcs and places (denoted by
an ‘F’). After that, the first FindTr rule is applied again
recursively, by re-matching the new model looking for a
transition given the new marking. This control flow goes
on until no more transitions are fireable. This transfor-
mation succeeds if the input model contains a transition
and fails if not.

Outlook to Validating Mandatory Property [BP]: After
having identified the intent for the BuildRG transfor-
mation, we want to validate as described in Fig. 5 if its
mandatory/selected optional properties are indeed ful-
filled. We give a brief idea of this process for the identi-
fied mandatory property [BP] as described above.

The [BP] mandatory intent property can be con-
cretized in the following way. As defined in Definition 14,
a [BP] depends on an input model. In our case, Mi is the
Petri Net model illustrated in Fig. 9 of [80] that models
the behaviour of the power window control software. In
particular, each place in that Petri Net must contain at
most one token during its execution. Petri Nets of this
kind are also called 1-safe. Therefore, an indicator of
the correctness of the BuildRG transformation that at
each step of the simulation each place has at most one
token, assuming of course the Petri Net model being sim-
ulated is indeed 1-safe. The following [BP] states that
given that input Petri Net, the execution of the trans-

formation from Fig. 16 will always satisfy that property
φ expressed in LTL. Here, M denotes the marking of a
place p in Mi.

∀p ∈ Mi . Mi,TSt |= ¬G (|M (p)| > 1)

Simulation transformations often include a loop where
the same steps are re-executed on the resulting model.
Furthermore, some steps may require choices to be done.
Thus a simulation execution consists of one branch in
TSt. In our example, every loop of the simulation starts
by looking for a non-firing transition. However, when
found, only one such transition is taken into considera-
tion. Therefore to verify that a transformation does not
satisfy φ, it suffices to check whether φ is not satisfied for
one step in one simulation execution. Some approaches
allow one to specify such invariants on the model trans-
formation steps directly, such as in [130].

6.5 Overview

As a partial validation of our description framework, we
applied the scenario described in Fig. 4: we identified
the intents of transformations of the Pwcs. In Table 6
the Pwcs transformations are classified according to the
intent they obey. As one can easily notice, some of our
intents are not represented at all. This is not surpris-
ing however: the purpose of the Pwcs transformation
chain is to generate trustable C code for hardware ex-
ecution; consequently, intents related to transformation
visualisation, synchronisation or syntactic manipulation,
among others, have no corresponding transformation in
the chain. On the contrary, some of the intents collect
many transformations: most of the transformations be-
long to either Query, Refinement, Synthesis, Translation
or Simulation.

In addition to the coarse-grained alignment, Tables 7
and 8 show the detailed results for the Simulation and
Translation transformations identified in the Pwcs. For
each transformation, we describe what the transforma-
tion does, and report on the satisfaction of the precondi-
tions, and mandatory/optional properties. This gives an
interesting snapshot on the applicability of our method
in real-world transformation chains. Although both ta-
bles collect transformations with the same intent, the
preconditions and even the mandatory properties are not
the same for all transformations: In Table 7, these dif-
ferences are due to the fact that pre-conditions (4) and
(5) in the Simulation intent (Table 5) are considered
optional; in Table 8 the differences in the mandatory
properties come from the fact that some properties in
the Translation intent (Table 3) are dependent on the
translation type (bridge, simulation, or analysis).
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Transformation Description Precond. Mandatory Optional

BuildRG The BuildRG transformation simulates the execution of a
Place/Transition Petri Net in order to build that net’s reacha-
bility graph. Safety requirements for the power window can then
be checked on the produced reachability graph.

(1),(2),(3) (1),(2),(3),(4) (1),(2)

SimulateHybrid This transformation simulates the interactions between the phys-
ical window and the designed window controller. While the phys-
ical window has continuous behaviour, i.e., the window is mov-
ing up/down in a continuous manner, the user can push buttons
to control the window that correspond to discrete signals. Casual
Block Diagrams (CBD) representing the window behaviour are co-
simulated with Statecharts that represent the user events.

(1),(2),(3),(4) (1),(2),(3),(4) (1),(2),(3)

CalculateBinPacking The bin packing transformation is a simple transformation that
simulates and evaluates the usage of a hardware component by
calculating the sum of each execution time of a function mapped
to the hardware component divided by the period of the functions.
The transformation is implemented as an equation and produces
measurements.

(1),(2),(3),(4) (1),(2),(3),(4) (1),(2)

ExecuteCalibration By running a simulation on a host computer, the input to execute
an instrumented software application on the target platform for
collecting measurements to obtain calibration parameters.

(1),(2),(3),(4),(5) (1),(2),(3),(4) (1),(2)

SimulateDEVS AUTOSAR models are translated into DEVS for producing traces
by simulating the DEVS representations. The output of the DEVS
simulations are traces that are further analyzed by a boolean for-
mula.

(1),(2),(3),(4),(5) (1),(2),(3),(4) (1),(2)

Table 7 Model transformation examples from the Pwcs falling under the Simulation intent

Transformation Description Precond. Mandatory Optional

EnvToPN Build a Petri Net representation of a specialised model of the pas-
senger’s interactions with the powerwindow.

None (1),(2),(3),(7) (2)

SCToPN Build a Petri Net representation of a statechart model representing
the powerwindow control software to allow checking power window
security requirements.

None (1),(2),(3),(4) (2)

PlantToPN Build a Petri Net representation of a specialised model of the pow-
erwindow physical configuration to allow checking power window se-
curity requirements.

None (1),(2),(3),(7) (2)

ControllerToSC Produce a statechart for providing semantics to a specialised model
of the power window control flow.

None (1),(2),(3),(7) (2)

PlantToCBD Generate a causal block diagram (as python code) that can be used
both for simulation of the combined system and for calibration of
the combined system

None (1),(2),(3),(6) (2)

EnvToCBD Generate a causal block diagram (as python code) that can be used
both for simulation of the combined system and for calibration of
the combined system

None (1),(2),(3),(6) (2)

ToBinPackingAnalysis Build an equational algebraic representation of the dynamic behavior
of the involved hardware components from an AUTOSAR [7] speci-
fication to allow checking processor load distribution.

None (1),(2),(3),(6) (2)

ToSchedulabilityAnalysis Build an equational algebraic representation of the dynamic behav-
ior of the involved hardware and software components from an AU-
TOSAR specification to allow checking software response times.

None (1),(2),(3),(6) (2)

ToDeploymentSimulation Build a DEVS representation of the deployment solution to allow
checking latency times, deadlocks and lost messages.

None (1),(2),(3),(6) (2)

Table 8 Model transformation examples from the Pwcs falling under the Translation intent

6.6 Lessons learned on Intent Choice for the Pwcs
Transformations

The decision on which intents are attributed to each
transformation of the PWCS, as described in Table 6,
was made by making use of the process described in
Fig. 4. The step of selecting an intent using the descrip-
tion attribute in Fig. 4 was achieved by interviewing the
transformation engineer. This was the starting point to
the process as it is the transformation engineer who can
best describe the role, or intent, of a given transforma-
tion in a model transformation chain. We observed that
the intuitive intent from the engineer’s viewpoint of the

transformation is very important and provides the most
accurate entry point into the identification and verifica-
tion process.

We have also observed that the educational back-
ground of the transformation engineer influences the in-
tuitive choice of an intent, as the keywords chosen by
us for intents could be connotated with activities differ-
ent than the ones we have associated to the keywords in
our catalog. In fact, we observed the intent description
attribute (as described in Fig.2) is often quickly looked
over in favour of a predefined notion of the keyword used
to name the intent – as mentioned in Section 3.10 about
the empirical evaluation of the catalog. As such, it is of
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Intent Transformations

Restrictive
Query

CheckReachableState, CheckContinuous,
ExtractPerformance, CheckBinPacking,
SearchArchitecture, SearchECU,
SearchDetailed, CheckSchedulability,
CheckDEVSTrace

Refinement ArchitectureDeployment, ECUDeployment,
DetailedDeployment

Abstraction ExtractTimingBehaviour

Synthesis SCToAUTOSAR, SwToC, ToInstrumented,
GenerateCalibration, ArToMw, ArToRte

Translation EnvToPN, PlantToPN, ScToPN, ControllerToSc,
EnvToCBD, PlantToCBD, ToBinPackingAnalysis,
ToSchedulabilityAnalysis,
ToDeploymentSimulation

Simulation BuildRG, SimulateHybrid,
ExecuteCalibration, SimulateDEVS,
CalculateSchedulability

Composition CombinePN, CombineCBD, CombineCalibration,
CombineC

Table 6 Intents of transformations present in the Pwcs.

the utmost importance the catalog reflects the common
and intuitive understanding of the intent vocabulary as
possible. Additionally, it became clear that the more de-
tailed information is available about the transformation
and the context in which it is used, the more straight-
forward intent choice becomes. As such the use context
and the preconditions attributes play a fundamental role
in accomodating subjective aspects of intent choice by
the transformation engineer.

The formal notion of intent, as presented in Sec-
tion 5, forces transformations to fit within certain formal
ranges defined by the mandatory and optional proper-
ties, as well as by the is endogenous and is exogenous at-
tributes. However, given a model transformation chain, a
transformation’s intent might depend on the granularity
at which a transformation is observed. For example, the
EnvToPN transformation in Fig. 11 might be seen as
locally having the translational semantics intent, given
the Environment DLS language does not have explicitely
defined semantics. However, in the context of the veri-
fication area of Fig. 11, it might also be seen as having
the analysis intent given that in that context the goal
of the transformation is to delegate the analysis of the
model to a Petri net checker. This last remark points to
the fact that groups of transformations may also have
intents that fall within the range of our catalog. This
is for example the case of the verification or simulation
blocks in Fig. 11 that could be seen as generally having
the analysis and simulation intents, respectively. This
demonstrates the fact that studying intent composition
together with corresponding verification needs is an in-
teresting topic of future work.

We have also realized that instantiating the manda-
tory and optional formal properties (described in Sec-
tion 4) into concrete ones is, for the time being, not a
straightforward task. In order to perform this instanti-
ation we require property languages built for the used

model transformation language, and for which a auto-
mated property checking tool is available. However, given
the fact that the verification of model transformations
is a recent domain currently under active investigation,
there is at the moment of the writing of this paper a lack
of stardard tools that can verify multi-type properties of
model transformations, as required by our approach.

In this study we have used in Section 6.3 a property
language adapted for proving the properties of trans-
formations with the translation intent, defined in [82].
In Section 6.4 we have CTL to express a property for
a transformation having the simulation intent. We are
nonetheless convinced that more mature property lan-
guages and verification tools associated to specific model
transformation languages and toolsets are required to
make it such that property instantiation within our frame-
work becomes feasible for the required range of proper-
ties identified for each intent. In this sense the research
presented in this document can be seen as a roadmap for
the development and unification of current verification
techniques for model transformations.

7 Related Work

Our study investigated model transformation intents and
identified relevant properties for each intent that should
be verified. Thus, we discuss three lines of studies related
to our work: (i) intents in software engineering, (ii) clas-
sifications of model transformations, and (iii) classifica-
tions of model transformation verification approaches.

7.1 Intents in Software Engineering

The notion of intents in software engineering is not new.
In 1994, Yu and Mylopoulos [134] realized that research
in this area was, at the time, more focused on design and
implementation of software—the what and the how—
rather than on the requirements necessary to under-
stand the software to improve the underlying develop-
ment processes—the why. Mde is following a similar
path: research has been more devoted to the different
modelling and transformation activities rather than ex-
ploring the intents behind such activities.

Two studies [70,90] investigated the rationale (i.e.,
purpose or intent) behind modelling artifacts. Kühne [70]
identified two modelling intents based on the relation-
ship between the modeled artifacts and their represen-
tative models: token models “project and translate” arti-
facts from the reality, and type models that additionally
perform an “abstraction” step from the artifacts to rep-
resent universal aspects. Recently, Muller et al. [90] ex-
plored the relationship between artifacts and their sym-
bolic representations, using intention as a core constituent
to the modelling activity. The intents discussed in the
two former studies are amongst the intents presented in
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this paper, besides other additional intents that we inves-
tigate using our Intent/Property mapping (Section 2.1).

In the field of requirements models, requirements pat-
terns have been proposed to facilitate requirements anal-
ysis [133]. Similar to transformation intents, requirements
patterns are high-level descriptions of the properties that
the implementation should possess. A key difference is
that our notion of intents focuses on model transforma-
tions used in Mde, whereas requirements patterns have
a much wider scope and are not tailored to the intricacies
of a specific domain.

Finally, Amrani et al. [4] presented a preliminary ver-
sion of this work focusing on the Analysis intent. In
this study, we present three major additions to our work
in [4]: (1) we provide an intent catalog that summarizes
many of the intents discussed in the literature, (2) we
provide an updated definition of the Analysis intent, and
(3) we investigate four other intents in depth (i.e., Query,
Refinement, Translation, and Simulation).

7.2 Classifications of Model Transformations

Several studies [26,57,85,119,129] proposed different clas-
sifications of model transformations based on different
transformation aspects. Mens and Van Gorp [85] pro-
vided a multidimensional taxonomy of transformations
based on aspects related to the manipulated models (e.g.,
the abstraction level of the transformation’s input and
output models) and the used transformation execution
strategies (e.g., in-place and out-place transformations).
The classification dimensions are illustrated on transfor-
mations that can be grouped according to our intents.
In our study, we investigate well-known uses of trans-
formations, propose fourteen additional intents to seven
intents presented in [85], and discuss several intent prop-
erties. In [57], design patterns for model transformations
expressed in QVT Relations are presented, but the in-
tents behind the transformations are not discussed.

Tisi et al. [119] examined higher-order transforma-
tions, i.e., transformations manipulating transformations.
They classified them based on whether their input and/or
output models are transformations or not, resulting in
four combinations: synthesis produces a transformation
from a non-transformation; analysis takes an input trans-
formation and produces a non-transformation output;
(de-)composition uses multiple transformations both in
input and output; and modification takes an input trans-
formation and the produces a modified version of the
input as an output. Our intents are more general in the
sense that we do not distinguish between transformation
and non-transformation models allowing for a wider ap-
plicability of the intent catalog.

Czarnecki and Helsen [26] classified the features of
transformation languages by establishing a feature model.
To do so, they introduced five intended applications of
transformations which are also covered in our transfor-
mation intent catalog.

A taxonomy of program transformations is presented
by Visser [129]. Instead of proposing a taxonomy of mul-
tiple dimensions as in [85], Visser employed one discrim-
inator for the taxonomy: out-place vs. in-place transfor-
mations (named as translations and rephrasing). Some
of the leaf nodes in the taxonomy are program-specific,
e.g., (de-)compilation, inlining, and desugaring. Other
nodes in the taxonomy are covered in our intent catalog.
Moreover, we present several intents that are specific to
model transformations.

To sum up, our transformation intent catalog is more
comprehensive than previous attempts. Besides provid-
ing a name and an example of each intent, comprehensive
meta-information (e.g., the use context, preconditions)
and properties of interest for the given intent are pro-
posed. To the best of our knowledge, the latter aspect
has not been previously investigated.

7.3 Classifications of Model Transformation
Verification Approaches

Several studies proposed classifications of formal veri-
fication approaches of model transformations [5,20,41,
98]. In [5], we presented a tri-dimensional space for
classifying transformation verification approaches where
the three dimensions were: transformation language, ver-
ification property, and verification technique. Further-
more, these three dimensions have been also reused in
[20] to derive the state-of-the-art in model transforma-
tion verification. Lukman and Whittle [98] have classi-
fied model transformation verification approaches with
respect to the general approach used (e.g., testing, the-
orem proving, and model checking) and investigated the
approaches with respect to the three dimensions in [5]
(i.e., transformation language, verification property, and
verification technique).

Gabmeyer et al. [41] presented a feature model for
the classification of verification approaches of software
models that can be leveraged for the classifications of
model transformation verification approaches by consid-
ering transformations as models. The three dimensions
used in [5] correspond on a general level to the main fea-
tures of the feature model presented by Gabmeyer et al.
in [41].

This study adds another dimension to the formerly
mentioned classifications of model transformation verifi-
cation approaches; the model transformation intent. Be-
sides being another dimension in the classification, we
believe that the dimension of transformation intent is
the key in identifying all the other dimensions.

8 Conclusion

The long-term goal of our work is to facilitate the use of
model transformations in industry in general, but also
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to pave the way to the efficient development of veri-
fied transformations for safety-critical applications. This
paper summarizes the results of our work on intents
and their properties for model transformations to cap-
ture transformation goals and requirements and simplify
the process of transformation specification, development,
reuse, maintenance, validation and verification.

The paper builds on our previous work in [5,4], but
extends it significantly and makes the following contri-
butions:

– The description framework for transformation intents
first proposed in [4] is extended and described in de-
tail; in the framework, intents are described using,
among other attributes, the properties that are rele-
vant for them (Section 2).

– The preliminary intent catalog from [4] is extended
to 25 intents and presented in more detail; for each
intent, at least one sample transformation from the
literature is given. In addition, the intents are now
structured using a hierarchical classification scheme.
The catalog is the result of a thorough literature re-
view and was built to encompass the most frequently
occurring intents (Section 3).

– The intent catalog has been empirically evaluated
with respect to correctness, ambiguity and complete-
ness based on a survey of 38 transformation creators.
The results indicate that there is substantial agree-
ment that our intent descriptions are correct and un-
ambiguous. Furthermore, no participant found the
set of intents to be incomplete. While more evalua-
tion is needed, the results suggest that the current
catalog is good beginning and has the potential to
bring value to the community.

– A list of relevant properties is identified in the form
of intent properties, which are general descriptions
of properties on varying levels of abstraction. High-
level formalizations of these properties are presented
(Section 4).

– The framework is evaluated and illustrated exten-
sively by using it to describe six common intents in
detail (Section 5) and by applying it to the Power
Window Case Study (Section 6); the intents of the
more than 30 transformations in the case study are
identified and for two transformations concrete ex-
amples of mandatory properties are provided by con-
cretizing the intent properties into transformation
properties.

Future work The work presented in this paper has many
limitations that could be addressed in future work.

The detailed description of 16 of the intents identified
in Section 3 using our framework still needs to be carried
out. Also, the description of other transformations and
their transformation properties in the case study could
be attempted. These uses of the framework may reveal
the need for additional intents or intent properties lead-

ing to an extension of the framework. In particular, mak-
ing intent properties “real-time-sensitive” would be in-
teresting, not just for automotive, but for safety-critical,
real-time software in general.

On the more long-term, yet practical side, the true
utility of our notion of intent for industrial model-driven
software development remains to be determined. Input
from industrial users of Mde might be helpful here.

On the more theoretical side, Section 2.3.3 has al-
ready discussed the relevance of our work to research on
the, possibly “intent-specific”, specification, implemen-
tation, and analysis of model transformations. In this
context, it would be interesting to explore the potential
connections with recent work on the formal specifica-
tion, testing, and formal verification of model transfor-
mations [17,52,81,82,86,87,125]. For example, to what
extent can existing techniques be used or extended to
help developers verify the properties associated with a
transformation’s intent?

Finally, our case study illustrates that model trans-
formations in Mde are typically composed to achieve
some higher-level goal in the sense of Goal-Oriented Re-
quirements Engineering (Gore) [73]. In Gore, the soft-
ware to be developed and its environment are thought of
as consisting of goal-seeking, cooperating agents. Goal
modeling is used to identify and justify requirements
which are goals whose achievement is the responsibil-
ity of a particular software agent. Since model trans-
formations are typically the responsibility of particular
agents, requirements in Gore appear to correspond to
our model transformation intents. For example, it is con-
ceivable that the PM in Fig. 11 is the result of the refine-
ment of high-level goal “construct verified control soft-
ware for a power window” into a suitable composition of
subgoals, softgoals (often also called “non-functional re-
quirements”), and intents, some of which are then opera-
tionalized into model transformations. A more concrete
example is the realization of the safety analysis in the
case study as shown in Fig. 12 in which the Dsl models
are first translated into Petri Nets using an abstraction
and then combined for the construction of the reacha-
bility graph and the check of the CTL formula. These
examples suggest that parts of the work on Gore might
be applicable to Mde and that requirements engineering
for Mde in general, and Gore for Mde in particular,
might be fruitful topics for further research.
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78. Levi Lúcio, Moussa Amrani, Juergen Dingel, Leen
Lambers, Rick Salay, Gehan Selim, Eugene Syriani,

Manuel Wimmer: Additional Material for the Pa-
per “Model Transformation Intents and Their Prop-
erties”. http://msdl.cs.mcgill.ca/people/levi/

transformation_intents/material (2014)
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82. Lúcio, L., Vangheluwe, H.: Symbolic Execution for
the Verification of Model Transformations. Tech.
Rep. SOCS-TR-2013.2, McGill University (2013).
http://msdl.cs.mcgill.ca/people/levi/files/

MTSymbExec.pdf

83. Mannadiar, R., Vangheluwe, H.: Modular Synthesis of
Mobile Device Applications from Domain-Specific Mod-
els. In: Model-based Methodologies for Pervasive and
Embedded Software workshop (2010)

84. Mayerhofer, T., Langer, P., Wimmer, M.: Towards
xMOF: Executable DSMLs based on fUML. In: Pro-
ceedings of the 12th Workshop on Domain-Specific
Modeling (DSM’12) (2012)

85. Mens, T., Van Gorp, P.: A Taxonomy Of Model Trans-
formation. Electronic Notes in Theoretical Computer
Science (Entcs) 152, 125–142 (2006)

86. Gehan M.K. Selim, James R. Cordy, Juergen Dingel:
Analysis of Model Transformations. Tech. Rep. 2012-
592, Queen’s University (2012)

87. Gehan M.K. Selim, James R. Cordy, Juergen Dingel:
Model Transformation Testing: The State of the Art.
In: Proceedings of the 1st International Workshop on
the Analysis of Model Transformations (AMT) (2012)

88. Mosterman, P.J., Vangheluwe, H.: Computer Auto-
mated Multi-Paradigm Modeling: An Introduction.
Simulation 80(9), 433–450 (2004)

89. Muller, P.A., Fleurey, F., Jézéquel, J.M.: Weaving Ex-
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