
Tutorial Introduction to Graph Transformation:

A Software Engineering Perspective

Luciano Baresi1 and Reiko Heckel2

1 Politecnico di Milano, Italy, baresi@elet.polimi.it
2 University of Paderborn, Germany, reiko@upb.de

Abstract. We give an introduction to graph transformation, not only
for researchers in software engineering, but based on applications of
graph transformation in this domain. In particular, we demonstrate the
use of graph transformation to model object- and component-based sys-
tems and to specify syntax and semantics of diagram languages. Along
the way we introduce the basic concepts, discuss different approaches,
and mention relevant theory and tools.

1 Introduction

Graphs and diagrams are a very useful means to describe complex structures
and systems and to model concepts and ideas in a direct and intuitive way. In
particular, they provide a simple and powerful approach to a variety of problems
that are typical to software engineering [41]. For example, bubbles and arrows
are often the first means to reason on a new project, but also the structure of
an object-oriented system or the execution flow of a program can be seen as a
graph.

The artefacts produced in order to conceptualize a system are called mod-
els, and diagrams are used to visualize their complex structures in a natural
and intuitive way. In fact, for almost each activity of the software process, a
variety of visual diagram notations has been proposed. We can mention, for
example, state diagrams, UML, Structured Analysis, control flow graphs, archi-
tectural languages, function block diagrams, and several others. Besides having
plenty of general-purpose notations, we should also take into account the many
domain-specific customizations that provide both dedicated notation elements
and special-purpose interpretations.

If graphs define the structure of these models, graph transformation can be
exploited to specify both how they should be built and how they can evolve.
Although applications of graphs and graph transformations abound and estab-
lished foundations are available, the knowledge of the formal and conceptual
underpinnings is not widely spread among software engineers. Frequently, this
leads to ad-hoc solutions to problems that are already well understood in a more
general context.

The definition and implementation of visual modeling techniques poses new
problems, when compared to programming or formal specification languages:



As a first problem, most established techniques for language definition, like the
denotational [88] or the operational [77] approach are intrinsically based on terms
(abstract syntax trees) as representation of the structure of the language. This
results from the use of context-free grammars (e.g., in Backus-Naur form [3])
for defining their textual syntax. However, as most diagram languages have a
graph-like structure, such techniques are not readily applicable.

A second problem is the number and diversity of modeling languages and di-
alects that are currently in use, and the rate in which new ones are proposed to
fit the particular needs of certain problem areas. To provide language definitions
and implementations for these notations within reasonable resource constraints,
meta-level techniques and tools are required which allow, e.g., to generate im-
plementations of languages, like model editors, compilers, or analysis tools, from
high-level specifications.

The third problem is the consistency of models consisting of interrelated sub-
models for different aspects and at different levels of abstractions [38]. Generally
speaking, an inconsistent model does not have any correct implementation be-
cause the requirements expressed by different submodels are in conflict. To deal
with such problems in a systematic way, it is essential to understand the re-
lationships of submodels at a semantic level. Besides techniques and tools to
define semantics, this requires semantic domains which are able to capture the
essentials of today’s systems including aspects like object-orientation, software
architecture, concurrency, distribution, mobility, etc. Also here, a general ten-
dency is the shift from hierarchical, tree-like to graph-like structures which are,
moreover, dynamic to reflect, for example, the behavior of mobile systems or
architectural reconfiguration.

In this tutorial paper, we demonstrate how graph transformation techniques
can contribute to solve the above problems. We start (Section 2) with an informal
introduction to the basic concepts of graph transformation (like graph, rule,
transformation, etc.), we discuss semantic choices (like which notion of graph to
use; how to put labels, attributes, or types; or what to do with dangling links
during rewriting, etc.) and mention the different ways for formalizing the basic
concepts. After introducing the theory, we exemplify (Section 3) what can be
done through some examples. To this end, we distinguish between the use of
graph transformation as:

– semantic domain to supply a specification language and semantic model
for reasoning on particular problems: for example, the consistency between
functional requirements and software architecture models in concurrent and
distributed systems.

– meta language to supply a means to formally specify the syntax, semantics,
and manipulation rules of visual diagrammatic languages.

We then continue (Section 4) with the review of the main branches of the
theory of graph transformation relevant to the applications discussed. The last
step, to let possible users really exploit graph transformation to reason on and
solve their problems, is a brief summary (Section 5) of available tools to clearly

2



explain the support offered to (fully) automate proposed and foreseen solutions.
We conclude the paper (Section 6) by identifying future research directions with
the hope that the graph transformation community can more and more serve as
technology provider to other communities that need this formal basis to improve
their current practice.

2 Foundations of Graph Transformation

This section is intended as a first introduction to graph transformation, its ba-
sic notions, different approaches, and more advances concepts. Graph transfor-
mation has evolved in reaction to shortcomings in expressiveness of classical
approaches to rewriting, like Chomsky grammars and term rewriting, to deal
with non-linear structures. The first proposals appeared in the late sixties and
early seventies [76, 70, 83, 79, 95]. They were concerned with rule-based image
recognition, translation of diagram languages, or efficient implementation of λ-
reduction, based on graph-like structures.

Fundamental approaches that are still popular today include the algebraic or
double-pushout (DPO) approach [31, 17], the node-label controlled (NLC) [57,
32], the monadic second-order (MSO) logic of graphs [19, 20], and the Progres
approach [86, 87] which represents the first major application of graph transfor-
mation to software engineering [33, 73].

Below we introduce a simple form of graph transformation which shall serve
as a basis for further discussion, i.e., a set-theoretic presentation of the double-
pushout approach [31]. Then, we will discuss alternatives and extensions to this
approach.

2.1 A basic formalism

Bill

total

has

to
Account

number

balance

pays
1

1

1

Client

name

Transfer

amount

src

dest

1

1

A1:Account
balance = 10

A2:Account
balance = 2

B:Bill
total = 6

to

C:Client

pays

has
type

Fig. 1. Object diagram (left) typed over class diagram (right)

Graphs. A graph consists of a set of vertices V and a set of edges E such that
each edge e in E has a source and a target vertex s(e) and t(e) in V , respectively.
In object-oriented modeling graphs occur at two levels: the type level (given by
a class diagram) and the instance level (given by all valid object diagrams). This

3



idea can be described more generally by the concept of typed graphs [16], where
a fixed type graph TG serves as abstract representation of the class diagram.
Its object diagrams are graphs equipped with a structure-preserving mapping to
the type graph, formally expressed as a graph homomorphism.

Figure 1 shows examples of an object and a class diagram in UML nota-
tion [75] modeling some data objects of a banking application. The (instance
graph representing the) object diagram on the left can be mapped to the (type
graph representing the) class diagram by defining type(o) = C for each instance
o : C in the diagram. Extending this to links, preservation of structure means
that, for example, a link between objects o1 and o2 must be mapped to an
association in the class diagram between type(o1) and type(o2). By the same
mechanism of structural compatibility we ensure that an attribute of an object
is declared in the corresponding class, etc.

Rules and transformations. A graph transformation rule p : L → R consists of
a pair of TG-typed instance graphs L, R such that the union L ∪ R is defined.
(This means that, e.g., edges that appear in both L and R are connected to the
same vertices in both graphs, or that vertices with the same name have to have
the same type, etc.) The left-hand side L represents the pre-conditions of the
rule while the right-hand side R describes the post-conditions.

:Account
balance = b1

:Account
balance = b2

b:Bill
total = a

to

:Client

pays

has
payBill(b)

:Account
balance = b1-a

:Account
balance = b2+a

:Clienthas

A1:Account
balance = 10

A2:Account
balance = 2

B:Bill
total = 6

to

C:Client

pays

has
payBill(B)

A1:Account
balance = 4

A2:Account
balance = 8

C:Clienthas

A3:Account
balance = 4 has

A3:Account
balance = 4 has

L R

G H

Fig. 2. A sample transformation step using rule payBill

A graph transformation from a pre-state G to a post-state H , denoted by

G
p(o)
=⇒ H , is given by a graph homomorphism o : L ∪ R → G ∪ H , called

occurrence, such that

– o(L) ⊆ G and o(R) ⊆ H , i.e., the left-hand side of the rule is embedded into
the pre-state and the right-hand side into the post-state, and

4



– o(L\R) = G\H and o(R\L) = H \G, i.e., precisely that part of G is deleted
which is matched by elements of L not belonging to R and, symmetrically,
that part of H is added which is matched by elements new in R.

Figure 2 shows an application of the graph transformation rule payBill mod-
eling the payment of a bill by transferring the required amount from the account
of the client. Operationally, the application is performed in three steps. First,
find an occurrence o|L of the left-hand side L in the current object graph G. Sec-
ond, remove all the vertices and edges from G which are matched by L\R. Make
sure that the remaining structure D := G \ o(L \ R) is still a legal graph, i.e.,
that no edges are left dangling because of the deletion of their source or target
vertices. This is made sure by the dangling condition [31]1 which is checked for
a given occurrence before the application of the rule. If the condition is violated,
the application is prohibited. Third, glue D with R \ L to obtain the derived
graph H . In Fig. 2 the occurrence of the rule is designated by the shaded objects
and links in the transformation.

2.2 Variants and extensions

Graphs. The graphs introduced above are often referred to as multi-graphs be-
cause they allow for multiple parallel edges of the same type. An (untyped)
multi-graph can be regarded as a two-sorted algebraic structure. Therefore, for-
malisms dealing with such graphs are known as algebraic approaches [17, 28].

The more common alternative is to consider graphs as relational structures
G = (V, E) with E ⊆ V ×V . In this case, there exists at most one edge between
a given pair of vertices, which represents a restriction of the algebraic notion.
Other variations include, for example, undirected graphs which are formalized
as directed graphs closed under symmetry of edges, or hypergraphs, where each
edge may have a sequence of source and/or target vertices. Hypergraphs are
sometimes encoded as bipartite graphs.

Typed graphs as above combine the association of labels to nodes and edges
with structural constraints expressed by the graph structure on the label sets.
In labelled graphs, the label sets do not have any additional structure. For exam-
ple, if vertices and edges are labelled over separate label alphabets LV , LE, the
relational variant is given by (V, E, lv) with E ⊆ V ×LE × V and lv : V → LV .
Attributed graphs are graphs labelled over pre-defined abstract data types, like
strings or natural numbers [65]. An example is given in Fig. 1 above where, e.g.,
the vertex B:Bill has an attribute total = 6.

It is interesting to note that many of the notions and constructions in the
theory of graph transformation can be (and have been) described for a wide
range of the above structures. Formally, this is reflected in approaches based
on category theory like [27, 30, 10], which can be instantiated to a variety of
1 Indeed, the notion of graph transformation introduced here is a set-theoretic pre-

sentation of the categorical double-pushout (DPO) approach [31], which owes its
name to the fact that a transformation step may be characterized as a pair of gluing
diagrams (pushouts) of graphs.

5



different graph models. In the following we stick to our simple model of typed
and attributed graphs.

Rules and transformations. Co-related with the two notions of graphs, the al-
gebraic and the relational one, are two fundamentally different approaches to
rewriting which have been referred to as the gluing and the connecting ap-
proach. They differ for the mechanism used to embed the right-hand side R of
the rule in the context D (i.e., the structure left over from G after deletion). In
a gluing approach like [31, 64], graph H is formed by gluing R with the context
along common vertices. In a connecting approach like NLC [57], the embedding
is realized by a disjoint union, with additional edges connecting graph R with
the context. To establish these connections, embedding rules are specified as part
of the transformation rule to determine the connections of the right-hand side
from those of the left-hand side in the given graph.

Most practical approaches use combinations of gluing and connection [86,
39]. The first is more efficient in implementations since it allows items in the
left-hand side to be preserved by the rule. Otherwise, this option, which is obvi-
ously desirable, has to be simulated by deletion and re-generation of the items
concerned. On the other hand, the connection approach based on embedding
rules is more expressive because it allows to deal with unknown context. In fact,
operations like “turning all outgoing edges of a certain vertex into ingoing ones”
can only be specified in a gluing approach if the number of such edges is known
in advance or specific control structures are used. Instead, such operations are
typical to connecting approaches like node-label controlled (NLC) graph gram-
mars [57]. A well-known example of the limitation of gluing approaches has been
discussed above: Deletion of a vertex is prohibited by the dangling condition if
an edge in the context is attached to it. In the algebraic approach, this problem
has been solved in [64] by implicitly deleting all edges whose source or target
vertex is deleted.

The most common restriction imposed on graph transformation rules is
context-freeness in the context of graph grammars: A rule is context-free if it has
only one vertex or edge in its left-hand side. Similarly to context-free Chomsky
grammars, context-free graph grammars are interesting because of their simplic-
ity, combined with sufficient expressive power to describe many interesting graph
languages [22, 32].

Control structures and constraints. Besides approaches that increase (or restrict)
the expressiveness of individual rules, a major concern of a rule-based approach
is to control the application of rules. This includes programming language-like
control structures [85, 61] and application conditions [90, 26, 45] restricting the
admissible occurrences for a given rule.

Moreover, different kinds of constraints have been proposed, which restrict
the class of graphs and can therefore be used to control the transformation pro-
cess implicitly by ruling out transformations leaving this class. In their simplest
form, such constraints can be compared to cardinality restrictions in class di-
agrams like in Fig. 1 where, e.g., the association to connects every Bill object

6



to exactly one Account object. More complex constraints deal with the (non-)
existence of certain patterns, including paths, cycles, etc. Constraints on graphs
are formalized in terms of first- or higher-order logic [85, 20], by means of linear
inequations [40], or as graphical constraints [51, 11].

3 Modeling and Meta Modeling

As evident from the title, we distinguish between the application of graph trans-
formation to the modeling of individual systems, and to the specification of
syntax and semantics of visual modeling languages. However, in both cases, sim-
ilar notations and tools may be employed, and we refer to the latter activity as
meta modeling in order to stress the fact that a language may be defined by the
same techniques that are also used to model a system.

3.1 Modeling with graph transformation

This section illustrates the use of graph transformation for modeling functional
requirements and dynamic change of software architectures. Then, these two
aspects of a model are related by means of a common meta model. Along the way,
some more advanced concepts and constructions based on graph transformation
systems are introduced.

Object dynamics. Functional requirements are often presented in terms of use
cases, i.e., services a system shall provide to its users. Every such use case pro-
vides a more detailed description of its pre- and post-conditions and of the in-
teractions required to perform the respective service. In [47] typed graph trans-
formation systems have been proposed as a way to specify use cases in a visual,
yet formal way with the additional benefit of an executable specification. An
example for such a specification has been given in Fig. 2 with the rule payBill
and its application.

The idea of a rule-based modeling of operations by means of graphical pre-
and post-conditions can be traced back to several sources. Progres [87] provides
a database-oriented programming language and environment based on graph
transformation. In the object-oriented Fusion method [14] actions are specified
by snapshots of the object configuration before and after the operation. Catal-
ysis [23] advocates the use of UML collaboration diagrams for this purpose, an
approach which has also been adopted and implemented in the Fujaba method
and tool [59]. A formal relation between collaboration diagrams and graph trans-
formation has been established in [50].

Graph transformation rules like payBill provide a high-level specification of
functional requirements in terms of pre and post conditions, abstracting from
intermediate actions and states. If the more fine-grained structure of an opera-
tion is of interest, a rule may be decomposed into more elementary steps. For
example, the rule payBill(b) may be decomposed sequentially as payBill(b) =

7



t:Transfer
amount = a

src

dest

:Account

:Account

:Client
has

create
Transfer(b,t)

:Account
balance = b1

:Account
balance = b2

t:Transfer
amount = a

src

dest

:Account
balance = b1-a

:Account
balance = b2+a

execute
Transfer(t)

:Account

:Account b:Bill
total = a

to

:Client

pays

has

:Account
balance = b1

:Account
balance = b2

b:Bill
total = a

to

:Client

pays

has :Account
balance = b1-a

:Account
balance = b2+a

:Client
has

t:Transfer
amount = a

src

dest

:Account
balance = b1

:Account
balance = b2

:Client
has

create
Transfer(b,t)

execute
Transfer(t)

Fig. 3. Rule payBill(b) derived from createTransfer(b,t); executeTransfer(t)

createTransfer(b,t); executeTransfer(t), where the relation between the two ele-
mentary rules is specified by the abstract parameters b: Bill and t: Transfer. This
decomposition is shown in Fig. 3 where createTransfer(b,t) is applied to the left-
hand side of payBill(b) and executeTransfer(t) is applied to the resulting graph,
the result being the right-hand side of the original rule.

The (obvious) semantic consistency condition for this kind of decomposition
requires that, for any given graph G, there exists a transformation

G
payBill(B)

=⇒ H

if and only if there are a graph X and transformations

G
createTransfer(B,T)

=⇒ X
executeTransfer(T)

=⇒ H.

Thus, we may think of the composed rule payBill as a two-step transaction. The
desired semantic condition can be checked by composing the elementary rules
as it is shown in Fig. 3. First, createTransfer(b,t) is applied to the left-hand
side of payBill(b) at the occurrence determined by the parameter b: Bill. Then,
executeTransfer(t) is applied to the resulting graph, this time determining the
occurrence through the parameter t:Transfer. The result of this second step has
to be isomorphic to the right-hand side of the original rule. In this case, it can
be shown that the desired consistency condition holds [17].

Architectural change. A quite different interpretation of nodes and edges in
a graph is in terms of components and connectors of a software architecture
model, see e.g., [89, 60]. Here, instance and type graphs model, respectively,
configurations and architectural styles, while graph transformation rules specify
the reconfiguration of architectures.

An example of a type graph representing an architectural style for distributed
banking applications is given in Fig. 4 on the left. The style consists of compo-

8



CashBox
Card

Reader

BankingServer
PermIP

SmartCard
CardInt

r:Card
Reader

c:CardInt

r:Card
Reader

c:CardInt

insert(r,c)

eject(r,c)

i1:DialUpIP

i2:PermIP

connect(i1,i2)

disconnect(i1,i2)

0..1
0..1

DialUpIP

i1:DialUpIP

i2:PermIP:CashBox
:Card

Reader

:BankingServer
:PermIP

:SmartCard
:CardInt

:DialUpIP :BankingServer
:PermIP

i1:PermIP

i2:PermIP

connect(i1,i2)

disconnect(i1,i2)

i1:PermIP

i2:PermIP

Fig. 4. Architecture of a distributed banking system: a configuration (lower left) typed
over an architectural style (upper left) and reconfiguration rules (right).

nents like electronic cashboxes, smartcards, and banking servers—all communi-
cating through the Internet, telephone lines, or card readers. A sample configu-
ration of this style is shown in the lower left of Fig. 4. It consists of two instances
of the banking server component, and one instance each of cashbox and smart
card, where only the two banking servers are currently connected.

Beside this declarative approach to the specification of architectural styles,
constructive approaches based on graph grammars have been proposed. Here the
idea is to generate the set of all eligible configurations from a given initial one
by means of (often context-free) production rules [63, 52]. Context-freeness, i.e.,
the restriction to one component (vertex or (hyper)-edge) in the left-hand side of
rules, corresponds to the recursive refinement of components by configurations
of sub-components.

The main benefit of graph transformation for describing software architec-
tures is the ability to model dynamic reconfigurations in an abstract and visual
way. Some approaches [42, 63, 96, 93] assume a global point of view when describ-
ing reconfiguration steps which, in a real system, would correspond to the per-
spective of a centralized configuration management. In a distributed system, the
existence of such centralized services cannot be taken for granted. Therefore, [53,
52] model reconfiguration from the point of view of individual components which
synchronize to achieve non-local effects. Here, locality corresponds to context-
freeness, that is, a rule is local if it accesses only one component (or connector)
and their immediate neighborhood. Synchronization of rules is expressed in the
style of process calculi like CCS [67] or CSP [54], see [53] for a more detailed
discussion.

The rules in Fig. 4 do not require any synchronization. In the upper left, the
transformation from left to right establishes a connection between the interface of
a smart card and a card reader, modeling the insertion of the card into the reader.

9



The inverse transformation models the disconnection (ejection) of the card from
the reader. In a similar way, the two lower rules model the establishment and
release of Internet connections.

Relating object dynamics and architectural change. In the previous section, we
have shown how to model both functional requirements and architectures by
separate graph transformation systems. This section is devoted to relate these
two views both statically by relating classes to components and dynamically by
interleaving computations on objects with reconfiguration steps and communi-
cation between components.

type

Object

LinkEnd

Link

Class

AssociationEnd

Association

type

type

type

1

1

1

2

1

2

1
ComponentInst

PortInst

ConnectorInst

Component

Port

Connector

type

type

1

1

1

2

1

2

1

Function Architecture

Object

Class

ComponentInst

Component

Relation

PairType

PairInst

1

dom

dom

cod

cod

1 1

1 1

type

<<extends>> <<extends>>

1

Fig. 5. Meta model relating the functional and architectural view

The static/syntactic integration is achieved by defining the abstract syntax
of both the functional and the architectural view by means of a meta model.
Generally speaking, a meta model is a model for a modeling language expressed
within a simple subset of the language itself. This technique has become popular
with the UML whose abstract syntax is specified by a subset of UML class
diagrams [75]. This subset is determined by the meta object facility (MOF)
specification [74] which is also referred to as a meta-meta model because it has
meta models as instances whose instances, in turn, are models.

Formally, meta models are type graphs whose instance graphs represent mod-
els. That means, the type-instance mapping of typed graphs, which has so far
been used to model the relation of objects to their classes and component in-
stances to their components, shall now be reserved for the mapping between a
model and its meta model. Therefore, the object-class and component instance-
component mappings are defined in the meta model itself.

Consider, for example, the meta model in Fig. 5. It consists of three packages,
whose top left one specifies the functional view of the system by means of meta
classes Class and Association as well as Object and Link, etc. whose relation is

10



given by the meta association type. Therefore, every instance of this meta model
represents a pair of a class diagram and an associated object diagram.

A similar structure is present in the package for the architectural view whose
instances represent both a declarative definition of an architectural style (meta
classes Component, Connector, and Port with their meta associations) as well
as an individual configuration (meta classes ComponentInst, ConnectorInst, and
PortInst with their meta associations) and their interrelation by the meta asso-
ciation type.

The meta model allows a uniform representation where elements of different
submodels are represented as vertices of the same abstract syntax graph [2],
i.e., an instance of the meta model. Based on this uniform representation, the
different submodels can be related by extending the meta model in Fig. 5 with
a package extending the other two packages to define a relation between the
functional and the architectural view [58]. Such a relation consists of pairs of,
respectively, objects and component instances or classes and components, where
instance-level pairs are associated to type-level pairs by a meta association type:
To relate an object to a component instance, a corresponding relation between
the respective class and component is required.

:CashBox :BankingServerBS2:PermIPCB:DialUpIP

A2:Account

B:Bill

to

:BankingServerBS1:PermIP

A1:Account

C:Client

has
:SmartCard

SC:CardInt

C:Client

R:CardReader

pays

Fig. 6. Sample configuration after transmission of client data

In our example, the relation between classes and components shall be given
by { (SmartCard, Client), (CashBox,Transfer), (CashBox,Bill), (CashBox,Client),
(BankingServer,Account), (BankingServer,Transfer) }. This information could be
given in diagrammatic form, like in UML component diagrams where the relation
is expressed by containment or dependencies. Here we simply list it as a set of
pairs. A diagrammatic presentation of the object-component instance relation is
given in Fig. 6 by means of containment, combining information from all three
meta model packages.

Based on the uniform representation of object structures and architectures as
meta model instances we may now present the rules specifying functional require-
ments and architectural reconfigurations as graph transformation rules typed
over the corresponding packages of the meta model. However, this is nothing
more than a disjoint union of models, turning two distinct models into yet unre-
lated submodels of the same overall model. To map the functional requirements
on a given architecture, we assign responsibilities for operations to components
(or sets of components) by specifying the location of the objects in the cor-

11



cb:CashBox

t:Transfer
amount = a

src

dest

:Account

:Account

:Clienthas
cb.create

Transfer(b,t)

cb:CashBox
:Account

:Account b:Bill
total = a

to

:Client

pays

has

:CashBox
cb:DialUpIP

t:Transfer src
:BankingServer

bs1:PermIP

a1:Account

cbĄ bs1: 
orderTransfer(t) :CashBox

t:Transfer src
:BankingServer

a1:Account

t:Transfer

cb:DialUpIP bs1:PermIP

Fig. 7. Operation createTransfer executed on a CashBox component (top) and the effect
of transmitting a Transfer object (bottom)

responding rules. Figure 7 shows this step for the rule createTransfer which is
associated with the CashBox component.

An example of a communication rule is shown in the bottom of Fig. 7. It
models the transmission of a message orderTransfer(t) from a cashbox holding an
object t:Transfer to the banking server holding the corresponding source account.
The effect of this transmission is the replication of the object. We denote by
using the same object identity t that the object is logically shared between the
two components, that is, the banking server has access to all references and
attributes.

Related work. The integration of functional and architectural models is implicit
in many works on graph transformation for specifying software architectures.
In [93] an approach based on two-layered distributed graphs [91, 92] is presented.
The upper layer represents the network graph of a distributed system whose
nodes are attributed with object graphs on the lower layer. Two-level rules are
then used to manipulate this structure. This approach is conceptually close to
ours, but it does not foresee any means for functional decomposition of rules.

Another approach integrating functional and architectural aspects [96] uses
the coordination and programming language CommUnity to specify computa-
tions and graph transformation rules to model architectural reconfiguration. The
use of a programming notation is appropriate at the later design or implemen-
tation stages, but for requirements specification and analysis we prefer visual
notations.

Recently, the transformation of hierarchical graphs, of which our approach
presents a special case, has received much attention, see e.g. [80, 36, 21, 13, 68].
In particular [13, 68] focus on the separation of connection from hierarchy. That
is, hierarchical graphs can be seen as graphs with two kinds of structures, for
expressing links between objects or components, and for modeling hierarchy.

12



3.2 Meta modeling with graph transformation

In Section 3.1, a meta model has been used to specify the abstract syntax of static
diagrams, like class and object diagrams, and graph transformation rules were
employed to model, e.g., computations on object structures. More generally, meta
modeling techniques may be used to define the concrete syntax, abstract syntax,
or semantics of any modeling notation, be it dedicated to static or dynamic
aspects [58]. The key idea is that these structures can be specified by means of
class diagrams. Then, the crucial question is, how to relate the three levels in
order to define syntax and semantics of a language. In this section, we discuss
the use of graph transformation systems to specify mappings between concrete
and abstract syntax and between abstract syntax and semantics, as well as for
defining operational semantics based on a direct interpretation of models at the
level of abstract syntax.

[clientAccepted]

insertCard

Operating

Authentication
Started

Serving

Rejected

Transaction Handling

Idle

Card
Inserted

1

2

3
4

6

5

receiveClientData

ejectCard

[! clientAccepted]

Fig. 8. The CardReader view of the CashBox behavior as a protocol statechart

To make the discussion more concrete, we use a simple example of a protocol
statechart2 that models the behavior of the CashBox component as observed
through the CardReader interface, both introduced in Section 3.1. If the CashBox
is switched on, from the initial state (the black bullet) we enter state Operating,
moving to its default state Idle. As soon as the first card is inserted (i.e., event
insertCard occurs), the component enters the state Card Inserted and when it
receives the client data from the card (event receiveClientData), it moves to state
Authentication Started. Here, a choice occurs depending on the data received. If
the client is accepted, the component enters the state Serving otherwise the state
Rejected. In both cases – this is why we have the OR-state Transaction Handling
comprising the two substates – after processing the transaction, the component
returns to state Idle as soon as the card is ejected (event cardEjected).

2 Readers are referred to [46] for an in-depth presentation of the notation.

13



This diagram, together with its intuitive semantic interpretation is enough to
touch all aspects that define a visual notation. More precisely, we can organize
it around the three different layers of language definition as shown in Fig. 9. In
the remainder of this section, we describe in some detail the transformations on
and between these layers represented by the arrows in Fig. 9.

operational
layout

semantics

scanning and
parsing

semantics
denotational semantic

feedback

Concrete Syntax

Abstract Syntax

Semantic Domain

Fig. 9. A layered view of a visual modeling language

Scanning and Parsing. Moving top-down, each language has a concrete syntax,
which defines how users perceive the different modeling elements supplied by the
notation. Since we are thinking of diagrammatic languages, the concrete syntax
predicates in terms of bubbles, rectangles, lines, arrows, etc. Each notation el-
ement is concretely rendered in terms of the geometrical elements that define
its appearance: For example in Fig. 8, states are represented through rectan-
gles with rounded corners, initial states with back bubbles, and state transitions
with directed edges. Relationships among these elements can be: a line connects
two rectangles, a rectangle contains other rectangles, or an element is on the
left/right of another element.

At this level, a graph grammar defines the concrete syntax of the language.
It is this grammar that should be employed to scan user models. (Notice that
we do not yet assign any semantic interpretation to the graphical symbols.)
From a practical point of view, the grammar could define also the correct steps
that can be done by a user that uses a syntax-directed editor for the supported
notation. For example, Minas in [55] proposes a complete hyperedge grammar
for editing well-formed statechart diagrams, to be fed into the DiaGen tool (see
Section 5) for automatically generating a graphical statechart editor. However,
the grammar can also be used as a stand-alone definition of the concrete syntax
of statecharts.

Formally, the statechart grammar defines all correct Spatial Relationship Hy-
pergraphs (SRHG), that is, hypergraphs with edges like label, rectangle, edge, etc.

14



and nodes representing the points where the hyperedges are connected. SRHGs
through a further set of transformation rules become Reduced Hypergraph Model
(HGM). These graphs represent the abstract syntax of the example statechart,
i.e., the next layer in our hierarchy of Fig. 9. The abstract syntax defines the
modeling elements supplied by the notation, without the concrete “sugar”, and
the relationships among them. Models at this level can be parsed to check if they
are syntactically correct. Tokens at this level are related to the semantic inter-
pretation, that is, we think of the example of Fig. 8 in terms of states (initial,
AND-decomposed, and OR-decomposed) transitions, events, and so on.

This level is comparable to the representation of UML models as instances of
the meta model [75]. The main difference is the declarative style of specification
in the meta model, which defines well-formedness by means of logic constraints,
as opposed to the constructive style of using a grammar to generate models.

t6: Transition

: startState

Idle: State

t2: Transition

CardInstd: State

Operating: ORState

TranHdlg: ORState

AuthStrd: State

t5: Transition

t4: Transition

Serving: State

Rejected: State

contains contains contains contains contains

contains
contains

t3: Transitiont1: Transition

Fig. 10. Abstract syntax graph for the statecharts of Fig. 8

Figure 10 shows a simplified abstract syntax graph for the statechart of Fig. 8.
Nodes are instances of a simple metamodel that comprises: startStates, ORStates,
States, and Transitions (further details are omitted for the sake of clarity). Edges
connect the nodes to render the connections between states and transitions in
the statechart diagram. This simple model could easily be constructed through
a special-purpose grammar by scanning user-supplied diagrams. In turn, these
abstract syntax graphs can be parsed to check if they are syntactically well-
formed.

Vice versa, mapping abstract to concrete syntax means that we define the
concrete layout of models. The grammar in this case defines how abstract con-
cepts should be rendered at the concrete level, but also the correct positioning of
each element on the canvas. Special-purpose algorithm for defining the layout of

15



user models can be implemented using graph grammar productions and textual
attributes to compute the coordinates of each graphical symbol.

Operational semantics. Visual models can be given a formal semantics in sev-
eral different ways. In the case of a class diagram the semantics is given by a
set of object diagrams. For behavioral diagrams like statecharts, an operational
semantics can be given directly on the abstract syntax of the language, through
yet another grammar. In our example of Fig. 8, a formal semantics is desirable
to specify precisely the execution of a model. If we think of performing a simple
transition, the meaning is clear enough: It moves the current state for the source
to the target state. But when we think of dealing with multiple events, AND-
and OR-decomposed states, histories, etc., then the meaning is not clear any-
more. In fact, there are several different statechart dialects, all using essentially
the same syntax, but with different rules to execute a model [94].

There are essentially two different ways to define operational semantics by
graph transformations. First, graph transformation rules can specify an abstract
interpreter for the entire language as proposed, for example, in [34]. Second, each
model can be “compiled” into a set of rules. Following the second approach, [62]
exploits structured graph transformation as means to ascribe UML statecharts
with formal dynamic semantics. Roughly, statecharts are translated to structured
graph transformation systems that satisfy the well-formedness rules imposed by
the notation. Active states are represented as state configurations which are
(isomorphic to) subgraphs of state hierarchies, that is, tree-like object diagrams
that represent instances of the metamodel for the statecharts. Active states
change by means of transition firing, specified as graph transformation rules:
the left-hand side identifies the current configuration, i.e., the current active
state(s), the right-hand side defines the configuration reached by applying the
rule (firing the transition), that is, the new set of active states. Transitions for
syntactically correct statecharts can be generated by applying the rules of the
transformation unit term(S) presented in [62]: Figure 11 shows the result for
some of the transitions of Fig. 11.

Idle: State

t5:

t1:

t6:

contains

containsAuthStrd: State

: startState Idle: State

TranHdlg: ORState

Serving: State

: State

TranHdlg: ORState

Fig. 11. Some transitions of Fig. 8 as graph transformation rules

16



Presented rules are self-explaining, but: t1 moves the current state from the
start state to Idle; t2 and t3 are similar and are not presented here. t5 moves the
current state from Authentication Started to the hierarchy Transaction Handling /
Serving. Again t4 would be similar. t6 moves the current state from the hierarchy
Transaction Handling / any contained state back to Idle.

Denotational semantics. The last layer of Fig. 9 introduces semantic domains.
Semantics defined as a mapping from the abstract syntax into a semantic domain
is referred to as denotational. In our example, to define the dynamic semantics
of statecharts, the semantic domain itself has to provide an operational model—
thus operational and denotational semantics occur in combination.

The overall approach is as follows: We choose a semantic domain, i.e., a usu-
ally simpler formal method whose execution rules are well-established, and define
the “behavior” of each abstract syntax element through a suitable mapping onto
the semantic domain. In this case, the role played by graph transformation de-
pends on the chosen formal method. If it is a textual one, the productions of the
grammar that defines the abstract syntax can be augmented with textual an-
notations to build the semantic representation. More generally, the productions
can be paired with those of the textual grammar that specify the semantic mod-
els, and the application of a production of the abstract syntax grammar would
automatically trigger the application of the paired textual production [79].

For example, if we keep thinking of statecharts and want to define its dy-
namic semantics through CSP (Communicating Sequential Processes [54]), we
can mention [35] where the left-hand side of each rule is how UML-like meta-
model instances can be built for statecharts (graph grammar productions); the
right-hand side part codes how the corresponding CSP specification must be
modified accordingly (textual grammar production). A similar approach is de-
scribed in [9] where high-level timed Petri nets are used as semantic domain and
the rules are pairs of graph grammar productions: The first production defines
how to modify the abstract syntax representation, while the second production
states the corresponding changes on the functionally equivalent Petri nets.

For example, using the transformation rules defined in [9], we could ascribe
formal dynamic semantics to the statechart of Fig. 8 through the Petri net of
Fig. 123.

The hypothesis used to transform the statechart into a functionally equiva-
lent Petri net are: States are directly mapped onto places and state transitions
into Petri net transitions. Start states are rendered with marked places. OR-
decomposed places imply that their transitions be mapped onto a set of Petri
net transitions.

3 Attributes associated with places and transitions are not shown here since the are
not needed to understand the approach, but they would simply make the Petri net
more complex.

17



Card Inserted

Authentication Started

Start

Idle
Rejected

Transaction Handling

Serving

Fig. 12. 8 in terms of Petri nets

: State

t

s

:Transition

1

2

1

2

3

: State

: State

: State

a

t

a

p

ST

1

1

4

3

5

2

ST

ST

ST

2

(a) Abstract Syntax Model (b) Semantic Model

Fig. 13. A simple transformation rule taken from [9]

18



A simple transformation rule is presented in Fig. 13. It shows how to connect
two SC4 states through an SC transition. The left production modifies the ab-
stract syntax graph by adding the new SG transition, while the right production
modifies the Petri net by adding a PN transition, together with two PN arcs
between the two places that correspond to the SC states.

Notice that even if Petri nets are formal and simpler than statechart, the
resulting net is more complex than the example diagram. Thus, such a trans-
formation is important to let users ascribe formal semantics to their models,
but usually produces formal representations that are more complex and difficult
for the reader. More sophisticated mappings could be implemented using triple
graph grammars [84], that is, besides the two grammars that define the abstract
syntax and the corresponding modifications of the semantic domain, a third
grammar states the mapping between the two paired productions explicitly.

Moving from the semantic domain back to the abstract syntax layer (Fig-
ure 9), the results produced by executing the semantic representations can be
mapped onto the abstract syntax elements. For example, the firing of a PN
transition that corresponds to an SC transition could be transformed into a
suitable animation of the interested states. Also these transformations, mapping
of execution results, can be specified through a suitable grammar. Interested
readers can refer to [9] for a couple of interesting examples.

4 Theory

As mentioned in Section 2, graph transformation systems generalize other no-
tions of rewriting, like Chomsky grammars, Petri nets, and term rewriting. Such
connections have inspired the development of the theory of graph languages,
concurrency, and term graph rewriting, respectively. In this section we briefly
discuss these developments and give some references to relevant literature.

4.1 Graph languages

Chomsky grammars have inspired the notion of graph grammar, i.e., a graph
transformation system with a start graph that is meant to describe graph lan-
guages. In particular, a theory of context-free graph grammars [22, 32] has been
developed, as well as parsing algorithms for graph languages [81, 69, 12] that are
relevant to the application of graph grammars to describe the syntax of visual
languages [66].

For example, an important (negative) result of graph grammar theory states
that, unlike in the case of programming languages, context-free graph grammars
are not sufficient to generate even approximations of many interesting diagram

4 SC and PN are used here to clarify if we are referring to statechart or Petri net
elements. The event associated with the SC transition is not considered here for the
sake of simplicity.

19



languages. As an example, it can be shown that the simple language of state-
charts is not generated by any context-free graph grammar.5 The same holds for
other popular diagram languages used in software development, like object or
class diagrams. For this reason, approaches to visual language definitions, like
[81, 69], have to resort to non-context-free grammars.

4.2 Concurrency

Place-transition Petri nets are essentially rewriting systems on multisets. In this
sense, they are like graph transformation systems without edges, and without
context [15] if we consider a gluing approach. This view has inspired a variety of
developments along the lines of the concurrency theory of nets, like processes and
unfoldings, event structures, as well as the notion of typed graphs that we have
used in Section 3. These and other concepts in concurrency theory are surveyed
in [4] for the gluing approach and [56] for the connecting approach.

The related aim of generalizing to graph transformation systems certain no-
tions of morphisms of Petri nets has influenced the development of structuring
and refinement concepts for graph transformation systems. For example, the re-
lation between abstract functional requirements as exemplified by the rule payBill
in Fig. 2 and the overall system model, including the architectural aspect, can be
described as a refinement relation according to [48, 44] combining an extension
of type graphs and a (sequential) decomposition of rules.

4.3 Term graph rewriting

To support the efficient implementation of functional languages, term graph
rewriting generalizes term rewriting by replacing trees by rooted DAGS [7, 18,
78, 8]. This has given rise to theoretical questions concerning confluence and
termination of (term) graph rewriting to ensure functional behavior [78]. In
view of the previous section, such questions are relevant to the use of graph
transformation for translating models into formal specifications in terms of Petri
nets or CSP, which serve as semantic domains. In fact, in order to be well-defined,
a semantic mapping should be a total function. This is also the main motivation
of [49] studying confluence of attributed graph transformation.

5 For hyperedge replacement graph grammars, it is sufficient to observe that the graph
language of state diagrams has unbounded connectivity. It follows from the Pump-
ing Lemma (Thm. 2.4.5 in [22]) that such a language cannot be generated by hy-
peredge replacement. For node replacement grammars, observe that the language
includes all finite square grids, i.e., all graphs whose nodes can be organized into
rows and columns of the same length, and connected by horizontal and vertical
edges. Prop. 1.4.8 of [32] states that a language containing infinitely many square
grids cannot be generated by a confluent edNCE grammar, the most general form
of context-free graph grammar known in the literature. In fact, confluence is a cru-
cial feature of context-free grammars. Approaches like [72, 45] which increase the
expressive power of (otherwise) context-free rules by path expressions or application
conditions do not fall into this category.

20



More recently, research on graph transformation approaches has been influ-
enced by the use of term rewriting in the semantics of process calculi [71, 68].
Here terms representing processes, e.g., in the π or ambient calculus, are replaced
by process graphs which allow a more direct representation of their structure.

5 Tools

This section briefly describes the main tools that are available to “work” with
graphs and graph transformation. They all are good research prototypes that,
according to the taxonomy already described in Section 3, can be divided in two
main groups: general-purpose environments for modeling graph-centric problems
and environments for specifying visual languages. The main representatives of
these classes of tools are introduced in the next two sections: Interested readers
can refer to [6] for more complete descriptions.

5.1 Graph transformation tools

The first example of graph-oriented modeling environment is Progres (PRO-
grammed Graph REwriting Systems [86, 87]). Conceptually, it supplies a graph-
ical/textual language to specify attributed graph structures and graph transfor-
mations, parameterized graph queries, graph rewrite rules with complex and neg-
ative application conditions, and non-deterministic and imperative programming
of composite graph transformations (with built-in backtracking). Pragmatically,
the Progres environment offers a set of integrated tools to let users models their
artifacts. Specifications are produced through a mixed textual/graphical syntax-
directed editor (with an incrementally working table-driven pretty printer), but
they can also be edited in a fully textual way through an emacs-like text edi-
tor. Incrementally, a type-checker detects all inconsistencies with respect to the
language’s static semantics. Besides being checked, user specifications can be
translated into intermediate code and then executed. The intermediate code can
be cross-compiled into Modula 2, C, or Java code, to produce “independent”
graph manipulation components, and a user interface generator can produce
Tcl/Tk code to support rapid prototyping of graph manipulation tools. Tcl/Tk
is used also to supply a graph browser to manipulate host graphs and let users
apply their Progres specifications to particular start graphs.

The tool support offered by AGG [37], which is a rule-based visual lan-
guage supporting an algebraic approach to graph transformation, is similar. With
AGG, the behavior of a system is defined through graph rules, which can have
negative conditions, “annotated” with Java code. This means the types of rules’
nodes are defined through Java classes and standard Java libraries can be ex-
ploited to compute their attributes. The tool environment provides editors for
specifying graphs, rules, and the associated Java code, allowing users to play
what-if simulations, by specifying the starting graph and the order rules should
be applied, but supports also efficient graph parsing. This problem is undecid-
able in general, but it can be solved for restricted classes of graph grammars.

21



For parsing, AGG requires that users define a so-called parse grammar that
contains reducing parsing rules, that is, roughly rules whose left-hand and right-
hand sides are swapped, and a stop graph. The parsing algorithms are based on
back-tracking, but since it has exponential time complexity, it is improved by
exploiting critical pair analysis [12].

Moreover, being implemented in Java, AGG, can be used as hidden graph
transformation engine for all those Java applications that need to manage and
transform graphs.

Quite different is the support offered by Fujaba [1], which is an environment
for round trip engineering with UML, Java, and design patterns, based on graph
transformation. In this case, users are supplied with a standard UML-like CASE
tool to design their models, but the tool exploits graph transformation to let
them specify the behavioral aspects of their modeling elements. Like other CASE
tools, Fujaba generates Java class definitions from UML class diagrams, but it
combines UML statechart, activity, and collaboration diagrams to define story
diagrams, that is, the diagrams that users exploits to model the dynamics of their
methods. This way method bodies can automatically be generated and round
trip engineering is supported: Users can modify the generated code manually
and Fujaba is able to load modified code and to (re)establish the corresponding
diagrams.

5.2 Graph transformation-enabled tools

The tools presented in this section provide mainly automatic support to the
generation of graphical editors by making users define visual languages through
suitable grammars.

For example, DiaGen supplies two distinct components: a framework of Java
classes, to provide the generic functionality for editing and analyzing diagrams,
and a generator program, to produce Java source code for those aspects that
depend on the concrete syntax of the language.

Users specify their languages – mainly the concrete syntax, but also the other
aspects could be covered – through an hyperedge graph grammar, which allows
DiaGen to recognize the structure and syntactic correctness of diagrams during
the editing process. DiaGen allows both free-hand and syntax-directed editing,
with the former directly mapped onto defined grammar productions, and the
latter which requires that the user specification be parsed. Thus, hypergraph
transformations and grammars provide a flexible syntactic model and allow for
efficient parsing of user specifications (i.e., diagrams produced using the editor).

DiaGen provides also an automatic layout facility, which is based on flexible
geometric constraints and relies on an external constraint-solving engine.

Similarly, the GenGED approach (Generation of Graphical Environments
for Design) and toolset [5] supports the description of visual modeling languages
for producing both graphical editors – available in syntax-directed or free-hand
editing mode – and simulation environments. To this end, GenGED exploits
AGG and graphical constraint solving techniques.

22



A visual language is defined through a set of grammars: the syntax grammar
defines the actual syntax of the language and would be enough if the aim is only
to implement a syntax-directed editor. To allow for free-hand editing, GenGED
requires also a parse grammar, which has the same characteristics of the parsing
grammars supported by AGG. Moreover, if users want to simulate their models,
they must provide a simulation grammar to specify how their model behave when
fed correctly.

GenGED integrates these grammars, together with defined graphical con-
straints to properly laying out user models, and supplies an integrated environ-
ment for the specified language.

6 Conclusion

It was the aim of this tutorial paper to provide a light-weight introduction to
graph transformation, its concepts, applications, theory, and tools, from the
point of view of visual modeling techniques in software engineering. To this aim,
we have identified in the Introduction three aspects of visual modeling techniques
which complicate their definition and implementation: the graphical structure,
the number and diversity of different languages, and the view-based nature of
models which creates consistency problems.

After introducing a basic graph transformation approach, i.e., a set-theoretic
presentation of the double-pushout approach and discussing possible extensions
and alternatives, we have presented applications to the modeling of object behav-
ior and architectural dynamics, and we have demonstrated how these two views
can be consistently integrated by means of a common meta model. This part
shows the adequacy of graph transformation as a semantic domain for today’s
systems and languages.

Then, applications of graph transformation to the definition of modeling
languages have been discussed. In particular, the presentation has focussed on
concrete and abstract syntax definitions by means of graph grammars, opera-
tional semantics based on rule-based specifications of abstract interpreters, and
denotational semantics based on rule-based translations of visual models into
semantic domains.

Finally, we have mentioned the most important branches of the theory of
graph transformation based on their history in Chomsky grammars, Petri nets,
and term rewriting, and we have given a survey of tools supporting, and sup-
ported by graph transformation.

For the future, the main short-term goal of the community should be the im-
provement of the usability of graph transformation for non-experts. Today, such
applications require both theoretical background and experience to understand
potential benefits and problems in a certain domain, which is not readily ac-
cessible outside the community. One key issue, thus, is the transfer of concepts
and theory to different application domains. This requires an in-depth study
of problems and existing solutions in each domain and a presentation of graph

23



transformation techniques and tools using the domain language and notation.
It includes the preparation of learning material for people with different back-
grounds and skills, but also the organization of schools and tutorials for different
communities, trying to customize the contents on the actual needs of the hosting
community.

In return, each application domain will raise new requirements for the de-
velopment of theory and tools, and this will result in a partial shift of motiva-
tions from theory- to application-oriented. Theoretical problems with practical
motivation include the verification of graph transformation systems, the trans-
formation of “graphs with semantics” like Petri nets or UML models, and the
evolution and modularity of graph transformation systems with corresponding
compositionality results, to name only a few examples.

References

1. From UML to Java and Back Again: The Fujaba homepage. www.fujaba.de.
2. M. Andries, G. Engels, and J. Rekers. How to represent a visual specification.

In K. Marriott and B. Meyer, editors, Visual Language Theory, pages 241–255.
Springer-Verlag, 1997.

3. J.W. Backus. The syntax and semantics of the proposed international algebraic
language of the Zurich ACM-GAMM Conference. In International Conference on
Information Processing, Paris, pages 125–131, 1959.

4. P. Baldan, A. Corradini, H. Ehrig, M. Löwe, U. Montanari, and F. Rossi. Concur-
rent semantics of algebraic graph transformation. In Ehrig et al. [29], pages 107 –
188.

5. R. Bardohl and H. Ehrig. Conceptual model of the graphical editor GenGed for
the visual definition of visual languages. In Ehrig et al. [25], pages 252 – 266.

6. R. Bardohl, G. Taentzer, M. Minas, and A. Schürr. Application of graph transfor-
mation to visual languages. In Engels et al. [24], pages 105–180.

7. H. P. Barendregt, M. C. J. D. van Eekelen, J. R. W. Glauert, J. R. Kennaway,
M. J. Plasmeier, and M. R. Sleep. Term graph rewriting. In PARLE, volume 259
of LNCS, pages 141–158. Springer-Verlag, 1987.

8. E. Barendsen and S. Smeters. Graph rewriting aspects of functional programming.
In Engels et al. [24], pages 63 – 102.

9. L. Baresi. Formal customization of graphical notations. PhD thesis, Dipartimento
di Elettronica e Informazione – Politecnico di Milano, 1997. In Italian.

10. M. Bauderon and H. Jacquet. Categorical product as a generic graph rewriting
mechanism. Applied Categorical Structures, 9(1), 2001.

11. P. Bottoni, M. Koch, F. Parisi-Presicce, and G. Taentzer. A visualization of OCL
using collaborations. In Gogolla and Kobryn [43], pages 257–271.

12. P. Bottoni, A. Schürr, and G. Taentzer. Efficient Parsing of Visual Languages
based on Critical Pair Analysis and Contextual Layered Graph Transformation.
In Proc. IEEE Symposium on Visual Languages, September 2000. Long version
available as technical report SI-2000-06, University of Rom.

13. G. Busatto, G. Engels, K. Mehner, and A. Wagner. A framework for adding
packages to graph transformation approaches. In Ehrig et al. [25], pages 352–367.

14. D. Coleman, P. Arnold, S. Bodof, C. Dollin, H. Gilchrist, F. Hayes, and P. Jeremes.
Object Oriented Development, The Fusion Method. Prentice Hall, 1994.

24



15. A. Corradini and U. Montanari. Specification of Concurrent Systems: from Petri
Nets to Graph Grammars. In Quality of Communication-Based Systems, pages
35–52. Kluwer Academic Publishers, 1995.

16. A. Corradini, U. Montanari, and F. Rossi. Graph processes. Fundamenta Infor-
maticae, 26(3,4):241–266, 1996.

17. A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Algebraic
approaches to graph transformation, Part I: Basic concepts and double pushout
approach. In Rozenberg [82], pages 163–245.

18. A. Corradini and F. Rossi. A new term graph rewriting formalism: Hyperedge
replacement jungle rewriting. In Sleep M.R., Plasmeijer M.R., and M.C. van Eeke-
len, editors, Term Graph Rewriting: Theory and Practice, chapter 8, pages 101–116.
John Wiley & Sons Ltd, 1993.

19. B. Courcelle. The monadic second-order logic of graphs I, recognizable sets of finite
graphs. Information and Computation, 8521:12–75, 1990.

20. B. Courcelle. The expression of graph properties and graph transformations in
monadic second-order logic. In Rozenberg [82].

21. F. Drewes, B. Hoffmann, and D. Plump. Hierarchical graph transformation.
In J. Tiuryn, editor, Foundations of Software Science and Computation Struc-
tures (FoSSACS’00), Berlin, Germany, volume 1784 of LNCS. Springer-Verlag,
March/April 2000.

22. F. Drewes, H.-J. Kreowski, and A. Habel. Hyperedge replacement graph grammars.
In Rozenberg [82], pages 95 – 162.

23. D. D’Souza and A. Wills. Components and Frameworks with UML: The Catalysis
Approach. Addison-Wesley, 1998.

24. H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Handbook of
Graph Grammars and Computing by Graph Transformation, Volume 2: Applica-
tions, Languages, and Tools. World Scientific, 1999.

25. H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Proc. 6th
Int. Workshop on Theory and Application of Graph Transformation (TAGT’98),
Paderborn, November 1998, volume 1764 of LNCS. Springer-Verlag, 2000.

26. H. Ehrig and A. Habel. Graph grammars with application conditions. In G. Rozen-
berg and A. Salomaa, editors, The Book of L, pages 87–100. Springer-Verlag, 1985.

27. H. Ehrig, A. Habel, H.-J. Kreowski, and F. Parisi Presicce. Parallelism and concur-
rency in high-level replacement systems. Math. Struct. in Comp. Science, 1:361–
404, 1991.

28. H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner, and A. Corradini.
Algebraic approaches to graph transformation, Part II: Single pushout approach
and comparison with double pushout approach. In Rozenberg [82], pages 247–312.

29. H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg, editors. Handbook of
Graph Grammars and Computing by Graph Transformation, Volume 3: Concur-
rency and Distribution. World Scientific, 1999.

30. H. Ehrig and M. Löwe. Categorical principles, techniques and results for high-
level replacement systems in computer science. Applied Categorical Structures,
1(1):21–50, 1993.

31. H. Ehrig, M. Pfender, and H.J. Schneider. Graph grammars: an algebraic approach.
In 14th Annual IEEE Symposium on Switching and Automata Theory, pages 167–
180. IEEE, 1973.

32. J. Engelfriet and G. Rozenberg. Node replacement graph grammars. In Rozenberg
[82], pages 1 – 94.

33. G. Engels, R. Gall, M. Nagl, and W. Schäfer. Software specification using graph
grammars. Computing, 31:317–346, 1983.

25



34. G. Engels, J.H. Hausmann, R. Heckel, and St. Sauer. Dynamic meta modeling: A
graphical approach to the operational semantics of behavioral diagrams in UML.
In A. Evans, S. Kent, and B. Selic, editors, Proc. UML 2000, York, UK, volume
1939 of LNCS, pages 323–337. Springer-Verlag, 2000.

35. G. Engels, R. Heckel, and J.M. Küster. Rule-based specification of behavioral
consistency based on the UML meta model. In Gogolla and Kobryn [43].

36. G. Engels and A. Schürr. Hierarchical graphs, graph types and meta types. In Proc.
of SEGRAGRA’95 ”Graph Rewriting and Computation”, volume 2 of Electronic
Notes in TCS, 1995.

37. C. Ermel, M. Rudolf, and G. Taentzer. The AGG approach: Language and tool
environment. In Engels et al. [24], pages 551 – 601.

38. A. Finkelstein, J. Kramer, B. Nuseibeh, M. Goedicke, and L. Finkelstein. View-
points: A framework for integrating multiple perspectives in system development.
Int. Journal of Software Engineering and Knowledge Engineering, 2(1):31–58,
March 1992.

39. T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story diagrams: A new graph
transformation language based on UML and Java. In Ehrig et al. [25].

40. P. Fradet, D. Le Métayer, and M. Périn. Consistency checking for multiple view
software architectures. In Proc. Joint European Software Engineering Conference
and Symp. on Foundations of Software Engineering, ESEC/FSE’99, volume 1687
of LNCS, pages 410–428, 1999.

41. C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of Software Engineering.
Prentice Hall Int., 1991.

42. M. Goedicke. Paradigms of modular software development. In R. J. Mitchell, edi-
tor, Managing Complexity in Software Engineering, volume 17 of IEE Computing
Series. Peter Peregrinus, 1990.

43. M. Gogolla and C. Kobryn, editors. Proc. UML 2001 – Modeling Language, Con-
cepts and Tools, Toronto, Kanada, LNCS. Springer-Verlag, 2001.

44. M. Große-Rhode, F. Parisi-Presicce, and M. Simeoni. Refinement of graph trans-
formation systems via rule expressions. In Ehrig et al. [25], pages 368–382.

45. A. Habel, R. Heckel, and G. Taentzer. Graph grammars with negative application
conditions. Fundamenta Informaticae, 26(3,4):287 – 313, 1996.

46. D. Harel and A. Naamad. The STATEMATE Semantics of Statecharts. ACM
Transactions on Software Engineering and Methodology, 5(4):293–333, oct 1996.

47. J.H. Hausmann, R. Heckel, and G. Taentzer. Detecting conflicting functional
requirements in a use case driven approach: A static analysis technique based
on graph transformation. In Proc. Int. Conference on Software Engineering
(ICSE’2002), Orlando, FL, May 2002. ACM/IEEE Computer Society.

48. R. Heckel, A. Corradini, H. Ehrig, and M. Löwe. Horizontal and vertical structuring
of typed graph transformation systems. Math. Struc. in Comp. Science, 6(6):613–
648, 1996.

49. R. Heckel, J. Küster, and G. Taentzer. Confluence of typed attributed graph
transformation systems. In A. Corradini and H.-J. Kreowski, editors, Proc. 1st
Int. Conference on Graph Transformation (ICGT 02), Barcelona, Spain, LNCS.
Springer-Verlag, October 2002. To appear.

50. R. Heckel and St. Sauer. Strengthening UML collaboration diagrams by state trans-
formations. In H. Hußmann, editor, Proc. Fundamental Approaches to Software
Engineering (FASE’2001), Genova, Italy, volume 2185 of LNCS. Springer-Verlag,
April 2001.

26



51. R. Heckel and A. Wagner. Ensuring consistency of conditional graph grammars
– a constructive approach. In Proc. of SEGRAGRA’95 “Graph Rewriting and
Computation”, volume 2 of Electronic Notes in TCS, 1995.

52. D. Hirsch, P. Inverardi, and U. Montanari. Modeling software architectures
and styles with graph grammars and constraint solving. In Proceedings of the
First Working IFIP Conference on Software Architecture, San Antonio, Texas,
E.E.U.U., February 1999.

53. D. Hirsch and M. Montanari. Synchronized hyperedge replacement with name
mobility. In Proc. CONCUR 2001, Aarhus, Denmark, volume 2154 of LNCS, pages
121–136. Springer-Verlag, August 2001.

54. C. Hoare. Communicating sequential processes. Communicat. Associat. Comput.
Mach., 21(8):666–677, 1978.

55. B. Hoffmann and M. Minas. A generic model for diagram syntax and semantics.
In Proc. ICALP2000 Workshop on Graph Transformation and Visual Modelling
Techniques, Geneva, Switzerland. Carleton Scientific, 2000.

56. D. Janssens. Actor grammars and local actions. In Ehrig et al. [29], pages 57–106.
57. D. Janssens and G. Rozenberg. On the structure of node-label controlled graph

grammars. Information Science, 20:191–216, 1980.
58. A. Kent and D. Akehurst. A relational approach to defining transformations in

a metamodel. In Proc. UML 2002, Dresden, Germany, LNCS. Springer-Verlag,
2002. To appear.

59. H.J. Köhler, U. Nickel, J. Niere, and A. Zündorf. Integrating UML diagrams
for production control systems. In Proc. of the 22th International Conference on
Software Engineering (ICSE), Limerick, Irland. ACM Press, 2000.

60. J. Kramer and J. Magee. Distributed software architectures. In Proceedings of the
19th International Conference on Software Engineering (ICSE ’97), pages 633–634.
Springer-Verlag, May 1997.

61. H.-J. Kreowski and S. Kuske. On the interleaving semantics of transformation
units - a step into GRACE. In 5th Int. Workshop on Graph Grammars and their
Application to Computer Science, Williamsburg ’94, LNCS 1073, pages 89 – 106.
Springer-Verlag, 1996.

62. S. Kuske. A formal semantics of UML state machines based on structured graph
transformation. In Gogolla and Kobryn [43].

63. Le Métayer, D. Software architecture styles as graph grammars. In Proceedings
of the Fourth ACM SIGSOFT Symposium on the Foundations of Software Engi-
neering, volume 216 of ACM Software Engineering Notes, pages 15–23, New York,
October 16–18 1996. ACM Press.

64. M. Löwe. Algebraic approach to single-pushout graph transformation. Theoret.
Comput. Sci., 109:181–224, 1993.

65. M. Löwe, M. Korff, and A. Wagner. An algebraic framework for the transformation
of attributed graphs. In M. R. Sleep, M. J. Plasmeijer, and M.C. van Eekelen,
editors, Term Graph Rewriting: Theory and Practice, chapter 14, pages 185–199.
John Wiley & Sons Ltd, 1993.

66. K. Marriott, B. Meyer, and K.B. Wittenburg. A survey of visual language specifi-
cation and recognition. In B. Meyer K. Marriott, editor, Visual Language Theory,
chapter 2, pages 5–85. Springer-Verlag, 1998.

67. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
68. R. Milner. Bigraphical reactive systems. In Kim Guldstrand Larsen and Mogens

Nielsen, editors, Proc. 12th Intl. Conference on Concurrency Theory (CONCUR
2002), Aalborg, Denmark, volume 2154 of LNCS, pages 16–35. Springer-Verlag,
August 2001.

27



69. M. Minas. Hypergraphs as a uniform diagram representation model. In Ehrig et al.
[25], pages 281 – 295.

70. U. Montanari. Separable graphs, planar graphs and web grammars. Information
and Control 16, pages 243–267, 1970.

71. U. Montanari, M. Pistore, and F. Rossi. Modeling concurrent, mobile, and coor-
dinated systems via graph transformation. In Ehrig et al. [29], pages 189 – 268.

72. M. Nagl. Graph-Grammatiken: Theorie, Implementierung, Anwendungen. Vieweg,
1979.

73. M. Nagl, editor. Building Tightly Integrated Software Development Environments:
The IPSEN Approach, LNCS 1170. Springer-Verlag, 1996.

74. Object Management Group. Meta object facility (MOF) specification, September
1999. http://www.omg.org.

75. Object Management Group. UML specification version 1.4, 2001. http://www.

celigent.com/omg/umlrtf/.
76. J. L. Pfaltz and A. Rosenfeld. Web grammars. Int. Joint Conference on Artificial

Intelligence, pages 609–619, 1969.
77. G. Plotkin. A structural approach to operational semantics. Technical Report

DAIMI FN-19, Aarhus University, Computer Science Department, 1981.
78. D. Plump. Term graph rewriting. In Engels et al. [24], pages 3 – 62.
79. T. W. Pratt. Pair grammars, graph languages and string-to-graph translations.

Journal of Computer and System Sciences, 5:560–595, 1971.
80. T.W. Pratt. Definition of programming language semantics using grammars for

hierarchical graphs. In H. Ehrig, V. Claus, and G. Rozenberg, editors, 1st Int.
Workshop on Graph Grammars and their Application to Computer Science and
Biology, LNCS 73, volume 73 of LNCS. Springer-Verlag, 1979.

81. J. Rekers and A. Schürr. Defining and parsing visual languages with layered graph
grammars. Journal of Visual Languages and Computing, 8(1):27 –55, 1997.

82. G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph
Transformation, Volume 1: Foundations. World Scientific, 1997.

83. H.-J. Schneider. Chomsky-Systeme für partielle Ordnungen. Technical Report 3-3,
Universität Erlangen, 1970.

84. A. Schürr. Specification of graph translators with triple graph grammars. In Tin-
hofer, editor, Proc. WG’94 Int. Workshop on Graph-Theoretic Concepts in Com-
puter Science, number 903 in LNCS, pages 151–163. Springer-Verlag, 1994.

85. A. Schürr. Logic based programmed structure rewriting systems. Fundamenta
Informaticae, 26(3,4):363 – 386, 1996.

86. A. Schürr. Programmed graph replacement systems. In Rozenberg [82], pages 479
– 546.

87. A. Schürr, A.J. Winter, and A. Zündorf. The PROGRES approach: Language and
environment. In Engels et al. [24], pages 487–550.

88. D. Scott and C. Strachey. Towards a mathematical semantics for computer lan-
guages. In Computers and Automata, pages 19–46. Wiley, 1971.

89. M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging
Discipline. Prentice Hall, 1996.

90. S. H. von Solms. Node-label controlled graph grammars with context conditions.
Intern. J. Computer Math 15, pages 39–49, 1984.

91. G. Taentzer. Parallel and Distributed Graph Transformation: Formal Description
and Application to Communication-Based Systems. PhD thesis, TU Berlin, 1996.
Shaker Verlag.

92. G. Taentzer, I. Fischer, M. Koch, and V. Volle. Distributed graph transformation
with application to visual design of distributed systems. In Ehrig et al. [29].

28



93. G. Taentzer, M. Goedicke, and T. Meyer. Dynamic change manegement by dis-
tributed graph transformation: Towards configurable distributed systems. In Pro-
ceedings TAGT’98, volume 1764 of LNCS, pages 179–193. Springer-Verlag, 2000.

94. M. von der Beek. A comparison of Statecharts variants. In Formal Techniques in
Real-Time and Fault-Tolerant Systems. Springer LNCS 863, 1994.

95. C.P. Wadsworth. Semantics and Pragmatics of the Lambda Calculus. PhD thesis,
University of Oxford, 1971.

96. M. Wermelinger and J.L. Fiadero. A graph transformation approach to soft-
ware architecture reconfiguration. In H. Ehrig and G. Taentzer, editors,
Joint APPLIGRAPH/GETGRATS Workshop on Graph Transformation Systems
(GraTra’2000), Berlin, Germany, March 2000. http://tfs.cs.tu-berlin.de/

gratra2000/.

29


