M any believe that visual programming techniques are quite close to
developers. This article reports on some fascinating research focusing on
understanding how textual and visual representations for software differ
in effectiveness. Among other things, it is determined that the differences
lie not so much in the textual-visual distinction as in the degree to which
specific representations support the conventions experts expect.

7

Why Looking Isn‘t Always .
Readership Skills and Graphical Programming

MARIAN PETRE

“RA picture is worth a thousand words’—isn’t it?
And hence graphical representation is by its nature
universally superior to text—isn’t it? Why then isn’t
the anecdote itself expressed graphically? Perhaps
anecdotes don’t lend themselves to purely graphical
presentation. Perhaps this phrase is too simplistic to
be appropriate in the context of graphical notations.
Nevertheless, many writers on visual programming
argue in just this way: graphical representations are
better simply because they are graphical (e.g., [22]).

This article argues otherwise: that text and graph-

ics are not necessarily an equivalent exchange, and
that we still don’t fully understand ‘what’s good about
graphics’. This is not an argument for a ‘textist oppo-
sition’, but rather a call for balance and considera-
tion. Both graphics and text have their uses—and
their limitations. Pictorial and graphic media can
carry considerable information in what may be a con-
venient and attractive form, but incorporating graph-
ics into programming notations requires us to
understand the precise contribution that graphical
representations might make to the job at hand.
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In considering repre-
sentations for program-
ming, the concern is
formalisms, not art—pre-
cision, not breadth of
interpretation. The
implicit model behind at
least some of the claims
that graphical representa-
tions are superior to tex-
tual ones is that the programmer takes in a program in
the same way that a viewer takes in a painting: by stand-
ing in front of it and soaking it in, letting the eye wan-
der from place to place, receiving a ‘gestalt’
impression of the whole. But one purpose of programs
is to present information clearly and unambiguously.
Effective use requires purposeful perusal, not the
unfettered, wandering eye of the casual art viewer. The
aim is not poetic interpretation, but reliable interpre-
tation. The question is not ‘Is a picture worth a thou-
sand words?’, but ‘Does a given picture convey the
same thousand words to all viewers?’ (see Figure 1).

A programmer is more like the reader of a techni-
cal manual than the viewer of a painting: a deliberate
reader, goal-directed and hypothesis-driven. Some
studies of reading clearly show that accomplished
readers, reading for comprehension, are deliberate
readers, making great use of the typographic and
semantic cues found in well-presented text (see [2]).
To support them in this activity, typographers have
evolved ways—graphical enhancements—to make
required information quickly accessible (program
comprehension is analyzed in this style in [16]).

The programmer uses a programming notation
with specific tasks or goals in mind, tasks that may
well be complex and heterogeneous. The success of a
representation, graphical or textual, depends on
whether it makes accessible the particular informa-
tion the user needs—and on how well it copes with

Figure 1.
In notation: does a
given picture con-

vey the same thou-
sand words to all
viewers?
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the different information requirements of the user’s
various tasks.

Graphical representations are more challenging
than they appear at first. This article refers to
research results to consider why the attractions of
graphical representations are not matched by perfor-
mance, putting forth the arguments:

¢ that much of what contributes to the comprehensi-
bility of a graphical representation isn’t part of the
formal programming notation but a ‘secondary
notation’ of layout, typographic cues, and graphi-
cal enhancements that is subject to individual skill;

e that graphical readership is an acquired skill:
structure, relationships, and relevance aren’t uni-
versally obvious;

¢ that experts ‘see’ differently and use different
strategies from novice graphical programmers;

¢ that, although some of their touted qualities may
be illusory, graphical representations are neverthe-
less persistently appealing and that this appeal may
have its own value;

¢ that the role of graphics in notation must be
addressed realistically, rather than simplistically.

This article discusses these observations about how
programmers actually use different representations
and challenges the naive assumption that graphical
representations are unproblematically more ‘trans-
parent’—more accessible, comprehensible, and
memorable—than textual ones. It suggests instead
that no single representation is a panacea, but that we
need to identify appropriate criteria for choosing
representational ‘horses’ for cognitive ‘courses’.

This argument focuses on the use of graphics in
notation, specifically in graphical programming lan-
guages. The issues addressed generalize to other con-
texts, such as computer interfaces and environments,
where information must be presented precisely.



Graphics Do Not Guarantee Clarity: ‘Good’ Graph-
ics Relies on Secondary Notation

The strength of graphical representations—almost
universally—is that they complement perceptually
something also expressed symbolically. For instance,
when functionally-related components are placed
close together, which is typical practice in electronics
schematics, an analog mapping is being used to sup-
ply extra information over and above the information
explicitly represented by the components and their
connections. Expert designers regard this ‘secondary
notation’ as being crucial to comprehensibility.

We adopted the term ‘secondary notation’ to
refer to such analog mappings and to emphasize that
these valuable layout cues are typically not formally
part of the notation—are ‘secondary’ to the lan-
guage definition—but that they can be used to
exhibit relationships and structures that might oth-
erwise be less accessible. In observational studies [17,
18], we interviewed a number of expert digital elec-
tronics designers and observed them at work in
order to investigate their use of graphics and text in
electronics schematics—a well-evolved, largely
graphical notation supported by sophisticated CAD
systems. These studies highlighted the notion of ‘sec-
ondary notation’: the use of layout and perceptual
cues (elements such as adjacency, clustering, white
space, labelling, and so on) to clarify information
(such as structure, function, or relationships) or to
give hints to the reader.

Secondary notation may well be the principal char-
acteristic that distinguishes graphical notations. Ray-
mond [20] argues that the possibility of analog
mapping is the only specifically visual contribution of
graphical programming languages, and that other
characteristics of contemporary graphical program-
ming languages can be realized just as well in textual
languages. ‘Good’ graphics usually means linking per-
ceptual cues to important information.

This is the “Catch-22” of secondary notation: that
a major determinant of ‘good’ graphics is not part of
the formal system. The mere presence of graphical
features does not guarantee clarity in a representa-
tion. What is required in addition is good use of sec-
ondary notation, which—like good design—is subject
to personal style and individual skill. Poor use of sec-
ondary notation is one of the things that typically dis-
tinguishes a mnovice’s representation from an
expert’s—a difference visible to the experts we inter-
viewed, for example, The difference in the design between
mechanically identical designs done by a novice and an
expert, is the novice engineer’s will be more difficult to com-
prehend because of the layout.

In the examples we gathered, novice drawings
failed in typical ways to exploit the available manipu-
lable cues; for example, they grouped things visually
that were not related logically, they dispersed related
components, they confused the signal flow, they
neglected conventions. Worse, they introduced a
number of mis-cues, using strong perceptual signals

Readership Skills and - aphical Programming

like symmetry and grouping arbitrarily, so that the
reader is led to expect associations or functions that
are not present (see figure 2). Similarly, program-
mers often fail to take advantage of local organization
that is available in text (see figure 3). It is important
to recognize that poor use of secondary notation isn’t
merely neutral, it can confuse and mislead.

Experience and personal skill play an important
role in the exploitation of secondary notation in the
production of graphical representations. Subsequent
experimental studies show that they play a role in
comprehension as well.

Knowing Where to Look Isn't Obvious; Experience
Influences Viewing Strategy
In recent experiments [8, 9], we investigated reading
comprehension using various graphical and textual
representations of nested conditional structures (Fig-
ures 4-7). The experiments included question-
answering tasks (corresponding to ‘What does this
program do?’ or ‘What made it do that?’) and same-
different comparisons between programs that
allowed us to observe subjects’ inspection strategies.
Considerable attention was given to secondary
notation in the preparation of the stimuli, both
graphical and textual. In all versions, we attempted to
maximize structural cues. Layouts were kept as
‘clean’ as possible, minimizing distractions, and tak-
ing account of grouping, alignment, white space, and
logical flow. Independent experts were asked to eval-
uate the layouts, in order to ensure that our interpre-
tation of ‘best practice’ matched expert usage.

verall, graphics was significant-
ly slower than text. Moreover,
graphics was slower than text
in all conditions, and the
effect was uniform; the mean
time for graphics conditions
was greater than the mean
time for text for every single
subject. The intrinsic difficulty of the graphics mode
was the strongest effect observed.

These results were, in general, confirmed by
Moher et al. [14] in their replication of these
experiments using three forms of Petri net repre-
sentations. They found no instances in which
graphical representations out-performed their tex-
tual counterparts. It is interesting to note that
Moher and colleagues devised Petri net variants for
the purposes of their experiment—in other words,
the differences in the graphical representations
were purely a matter of secondary notation. Moher
et al. observed that “...performance was strongly
dependent to the layout of the Petri nets. In gener-
al, the results indicate that the efficiency of a graph-
ical program representation is not only
task-specific, but also highly sensitive to seemingly
ancillary issues such as layout and the degree of fac-
toring”’—i.e., secondary notation.
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But the most interesting results from our recent
experiments lay in the differences in strategies
employed by subjects (reported fully in [19]). Strategy
differences were strongly related to prior experience;
broader experience led to more flexible and more
appropriate performance: more effective navigation of
structures, match of inspection strategy to the notation
and question, and attention to secondary notation.

Novices vs. Experts: Observed Strategy Differences
Novice strategies were more rigid on one hand, and
more chaotic on the other. Strategies varied widely
among novice subjects. Some novices adhered to much
the same strategy regardless of the task. Other novices
dithered, chopping and changing among strategies in
mid-task, with little apparent consolidation.

Novices suffered from misreadings and confu-
sions. Their strategies took little obvious account of
the structure of the task or of the notation. They
appeared often to struggle with a mismatch of strate-
gy and notation, so that they became confused during
a reading or they mistrusted their responses.

In contrast, the expert users of graphical notations
were more consistent as a group, with different sub-
jects choosing similar strategies. They tended to use
the practice trials to identify a suitable strategy for
each style of question and then adhere to that strate-
gy for similar subsequent trials. The strategy tended
to match the question. When comparable graphical
and textual representations were presented side-by-
side, experienced readers nearly always used the text
to guide their reading of the graphics.

Unlike text, which is always amenable to a
straight, serial reading, graphics requires the reader
to identify an appropriate inspection strategy. There
are few cues to navigation in graphical representa-
tions, and some of those few rely on secondary nota-
tion. Far from guaranteeing clarity and superior
performance, graphical representations may be
more difficult to access. Novice users of graphics
tend to lack reading and search strategies—to lack
proficiency in secondary notation—and tend not to
match their strategies to the particular nature of the
task or the representation.

Figure 2. The circles on this ‘novice’ diagram enclose some significant mis-cues:
* Circle 1: Although these two components are of the same type, one has been
reflected (its inputs and outputs rearranged), giving a misleading impression of
symmetry. Their visual symmetry and proximity do not reflect logical related-
ness; on the contrary, these components are unrelated in their use.

e Circle 2: The extra bends in this wire are probably an editing fossil. Notice also

the convoluted wiring at the left of the diagram.

* Circle 3: The wires to this gate have two peculiarities: the wire enters Input 1 at
an awkward angle, and there are two routes (one redundant) into Input 1.

e Circle 4: These two gates have erroneously been made to look like a bi-stable
flip-flop. This is a striking misuse of a strong perceptual cue.

Readership Skills and Graphical Programming

Determining What is Relevant; Recognizing Sec-
ondary Notation

That novices should display more chaotic behavior
and lack strategic range is predictable from the exist-
ing literature on differences between novices and
experts (e.g., [3]). While novices are distracted by
syntax or surface features, experts are better attuned
to semantic structures and to the ways in which those
underlying structures are cued in the surface layout.
The overall pattern is that experts are able to handle
information at different levels: they are able both to
develop overviews or abstract models and to under-
stand the consequences and significance of detail.
What is more interesting here is the evidence that
novices and experts differ in what they see and in how
they value the available cues; experts apparently base
their strategies on different information, for exam-
ple, “The shape of the diagram gives information about
the content of the diagram, at least for the initiated.”
[emphasis added]

For example, novices typically have difficulty in
determining what is important or relevant—in contra-
diction to the common assumption that graphics
makes such information obviously accessible. The less
experienced subjects were unable to exploit the sec-
ondary notation of the graphical representations which
would have improved their reading performance.

Apparently, irrelevance is as much a problem as
relevance: a visible symbol is interpreted as a relevant
symbol. (cf. Anzai’s observation [1] that novices mak-
ing drawings for mathematics problem-solving record
everything, whereas experienced solvers record only
what is needed) The novices were often confused by
the explicit connections—if a line existed, it must be
relevant. They were uneasy about the completeness
of their review; they seemed unable to satisfy them-
selves that they had read the diagrams thoroughly.

Whereas the less experienced readers were appar-
ently unable to recognize the secondary notational
cues available in all of the programs, the experts did
recognize and take advantage of sub-term groupings,
allowing them to reduce their search space and focus
on the portion of the structure containing the rele-
vant information. The secondary notation cues used
to emphasize these
groupings allowed expe-
rienced readers to see
how the variables divid-
ed the decision space,
so that they could limit
their search to the rele-

vant portion of the
structure.
While the experts

made use of layout
clues, they did not con-
fuse layout with logic.
Good use of secondary
notation was helpful,
but changes to layout—
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3a

while ((used!=1) | | (a[0] !=1))

{if (a[0] & Ox1) { k=1; for (c = 0; c <= used; c++)
{a[c]=3*a[c] + k; k=a[c] / 10; a[c] =a[c] % 10;}
if (a[used])

{ used++; if (used >= 72)

{ printf (“Run out of space\n”); exit(1);}}

} else {k = 0;

for (c =used - 1; ¢c >= 0; c--)

{a[c] =a[c] + 10*k; k =a[c] & Ox1; a[c] = a[c] >>1;}
if (a[used - 1] == 0) used--; }count++;

}

3b
while ((used!=1)| | (a[0] !=1))
{if(a[0]&0x 1)
{k=1;
for (c=0; c<=used; c++)
{ a[c]=3*a[c]+k;
k=a[c]/10;
a[c]=a[c]%]10;
}
if (a[used])
{ used++;
if (used>=73)
{ printf (“Run out of space\n”);
exit(1);
}

}
else

to a solution and a task, to choose (or change) their
perspective on it, and to choose what not to see—to
ignore the inessentials, whether in the search space,
in the juggling of constraints, or in a representation.

It is worth noting that expertise cannot compen-
sate for everything. Graphics was uniformly slower
than text; it is apparent that even the expert reader
of graphical notations is doing a hard job. (Said
one expert: This is hard work... There’s no easy way. It’s
going to be very difficult to explore all this maze in finite
time.) The sight of subjects crawling over the screen
with mouse or fingers, talking aloud to keep their
working memory updated, was remarkable. One of
the distinctions between expert and novice behav-
ior was that the experts made better use of their fin-
gers, occasionally using all ten to mark points along
a circuit.

What Makes Experts Expert: Choosing How
to Use Secondary Notation
What distinguishes expert designers is not just
domain knowledge, but choosing how and when to
use that knowledge. The difficulty in characterizing
their expertise lies in that ability to choose and the
elusiveness of the heuristics used for selection.
Merely capturing an expert’s declarative knowl-
edge (however long and detailed a set of declara-
tions is achieved) does not wholly capture his or her
expertise. Designing layouts, like designing systems,
is an exercise in constraint manage-
ment, and the heuristics for manag-
ing and balancing constraints within

{k=0;
for(c=used-1; c>=0; c--)
{a[cl=a[c]+10%k;
k=a[c]&0x1;
a[cl=a[c]>>1;
}
if (a[used-1]==0) used--;
}
count++;

}

although possibly inconvenient—were
usually recognized as superficial.

It appears that the expert’s catego-
rization skills and ability to organize
information on the basis of underlying
abstractions are reflected in the
expert’s ability to interpret surface fea-
tures as clues to an underlying struc-
ture. The expert’s assimilation of

Figures 3a and
3h: These frag-
ments of C code
(borrowed from an
existing commer-
cial application)
compile to the
same object code.
But the introduc-
tion of basic sec-
ondary notational
cues (spacing,
indentation, and
line breaks) in Fig-
ure 3b provides
clues for the reader
to a structure that
may be obscured in
Figure 3a.

a given context are likely to be com-
plex and subtly context-sensitive.
Exploiting  secondary notation
involves deciding what information to
emphasize—and at the expense of
what other information.

That decision must anticipate the
uses to which the representation will
be subjected, and it must take into
account the competing demands of
different uses. Resolving a conflict
among constraints may mean choosing
which rules to apply among conflicting
rules, and which rules to ignore.

Design conventions attempt to rein-
force meaningful use of secondary
notation, but such conventions are
rarely formalized or codified—proba-
bly because, although it is possible to
enumerate individual ‘rules of thumb’
(e.g., that functionally-related ele-
ments should be clustered together),

information is not limited by the boundaries of the
formalism. Having learned to exploit cues outside
what is formally defined, the expert has access to
information ‘invisible’ to non-experts. Hence,
experts are distinguished by their acquired abilities to
‘see’: to perceive as salient the information relevant
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these will often conflict in practice, and the heuristics
that resolve the conflicts within a particular context
are buried deep in experience and expertise and are
not easily externalized. Thus, secondary notation may
well account for the difficulty in automatic genera-
tion of diagrams from code.
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if high :
if wide : So Why are Graphical Represen-
Figure 4. An example of if deep : weep tations so Appealing?
Nest-INE, a sequential nota- not deep : Given the growing evidence that
tion using nested condition- if tall : weep graphical representations can be
als with extra cues, which was not tall : cluck harder work and produce poorer
shown to assist both novices end tall performance than textual ones,
and professionals [23]. end deep why are they so appealing?
not wide : It may be simply that graphical
if long : representations provide an alterna-
if thick : gasp tive to text. Myers [15] offers a typ-
Even in electronics, a relatively not thick : roar ical description of the attraction:
mature discipline compared to end thick “...graphics tends to be a higher-
graphical programming, the rules not long : level description of the desired
of layout are not well codified. For if thick : sigh actions (often de-emphasizing
example, Horowitz and Hill, [10], not thick : gasp issues of syntax and providing a
a well-respected text in the field, end thick higher level of abstraction) and
gives only 6 rules and 14 hints on end long may therefore make the program-
“How to Draw Schematic Dia- end wide ming task easier even for profes-
grams”’ (pp. 1056-1057) and even not high : sional programmers.” (p. 100)
those leave a great deal to the if tall : burp In a recent survey, programmers
reader, for example, “In general, not tall : hiccup of all levels were interviewed about
signals go from left to right; don’t end tall their preferences among graphical
be dogmatic about this, though, if end high and  textual representations.

clarity is sacrificed.”” The rules are

mostly designed to avoid the draw-

ing of hard-to-read figures and misleading figures
which look like something else (i.e., the sorts of mis-
cues illustrated in Figure 2). In drawing the stimuli
for our reading comprehension experiments, we too
attempted to enumerate some rules of practice
gleaned from observation of experts. However, we
found that the experts who evaluated the drawings,
while recognizing the principles we employed, re-
arranged their priority order and adjusted the draw-
ings accordingly.

Experts ‘in the wild’ use secondary notation in
many different ways, and one expert will re-draw
another’s diagram in order to make it more meaning-
ful. Yet experts reliably distinguish between novice and
expert diagrams, even if the other experts’ conven-
tions differ from their own. Experts apply—and
break—the rules in a systematic way attuned to the
underlying structure being represented. Within a
given representation, they maintain a consistency of
application that gives cues to structure and is
detectable by other experts.

In explaining their judgments of drawings, experts
talk about recognizing such an underlying system of
usage—whether or not it is the usage they prefer.

howl: if honest & tidy & (lazy | sluggish)

laugh: if honest & tidy & - lazy & - sluggish

whisper: if honest & - tidy & (nasty & greedy | ~ nasty & - greedy)
bellow: if honest & - tidy & nasty & - greedy

groan: if honest & - tidy & - nasty & greedy

mutter: if - honest & sluggish

shout: if - honest & - sluggish

Graphical representations were
described as:

¢ richer; providing more information with less clut-
ter and in less space

¢ providing the ‘gestalt’ effect: providing an
overview; making structure more visible; clearer

* having a higher level of abstraction, a closer map-
ping to the problem domain

® more accessible; easier to understand; faster to grasp

* more comprehensible

* more memorable

* more fun

* ‘non-symbolic’; less formal

Richness. Graphical representations appear potentially
richer than textual ones.
The experts we observed
believed that the graphical
properties and the sec-
ondary notation made elec-
tronics schematics and
comparable programming
notations richer than any
textual equivalent and
argued that our experimen-

Figure 5. An exam-
ple of And/Or, a cir-
cumstantial notation
based on a produc-
tion system model
incorporating
Boolean expressions.

The conditional
structure shown is
logically equivalent
to the structure
shown in Figure 4,
with suitable change
of labels (e.g., Bellow
= Roar).
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tal tasks did not exploit this richness. Similarly, it was
charged in [14] that “...comparisons of textual and
graphical programming is a tricky business, indeed,
since it is difficult to match up the contenders for a
fair fight. The Gates vs. Do-If comparison employed in
[9] appears in retrospect to have pitted a heavyweight
against a lightweight.”” (Compare Figures 7 and 5.
‘Do-If” is called ‘And/Or’ in this article.)

Nevertheless, none of the subjects and none of the
experts we have consulted has been able to identify a
task that would favor this perceived richness.

‘Gestalt’ Overview. Graphics may benefit from a

‘gestalt’ response, an informative impression of the

whole that provides insight into the structure.
Because people need help in grasping complex

n True u
(«]Faise] »])
hungry
— thirsty
? Kick
?
[
turn
tonly (] True ]
hop
— E—I L L H
skip
[(E == =
bend
[ &} = =
leap
ﬂ reach

Figure 6. An example of Blocks, a graphical
sequential notation. This notation is interactive;
mouse clicks on the true/false buttons toggle
between the true and false arms of the condi-
tionals. The figure shows the state of the display
for Hungry = true, Thirsty = false, Lonely = true,
Cold = false. The value of Sleepy is irrelevant in
these conditions, although it is relevant in other
circumstances (cf. Figure 4, where if High is false,
the values of Wide, Deep, etc. are irrelevant). The
output is shown by sending a Boolean value to
each possible output. In this figure, the output is
Hop. The conditional structure shown is both
logically and structurally equivalent to the struc-
ture shown in Figure 4, with suitable change of
labels (e.g., Hop = Roar).
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structures quickly, this purported ‘gestalt’ attribute
makes graphics appealing. Yet in the reading com-
prehension experiments, programmers did not rec-
ognize structural similarities among the graphical
representations and often found it difficult to com-
pare two graphical programs. In contrast, those pro-
grammers who did notice structural similarities
among the programs presented were all looking at
the textual representations.

Mapping to the Domain. Graphical representations
appear to offer potential for ‘externalizing the objects
of thought'—for providing a more direct mapping
between internal and external representations by pro-
viding representations close to the domain level that
make structures and relationships accessible. It was
suggested in [12] and [21] that if relations among
objects are visually or spatially grasped, it is easier to
derive a mental model of a system structure from a
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Figure 7. An example of

crawl Gates, a graphical circum-
stantial notation. As in Fig-
ure 6, input comes from
jump the left (Sleepy, Cold, etc.)
and proceeds to the right.
The gates perform the
fly operations of AND (shown

as *), OR (shown as v ), and

TF

NOT (shown as -). The con-

et
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TF

thirsty

TF

lonely
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ditional structure shown is
both logically and struc-
turally equivalent to the
structure shown in Figure
5, with suitable change of
labels (e.g., Orbit = Bellow)
and is logically equivalent
to the structure in Figure
4, again with suitable
change of labels (e.g.,

sail Orbit = Roar).

orbit

Fun. Graphical representations
may just seem more fun or
gratifying; the fact that sec-

walk ondary notation is ‘outside the
rules’ allows the programmer
v prog

more freedom to ‘play around’
with layout. The overheads of
planning layouts may not mat-

graphical representation than from a textual one. But
meeting that potential is a challenge.

Experience in digital electronics warns that a typi-
cal novice error is too ‘literal’ a transcription of the
domain, a failure to abstract; novices often reflect the
eventual physical layout rather than the logical lay-
out. In effect, they draw a picture of the artifact,
rather than depict the structure of the solution.

Accessibility and Comprehensibility. It may be that an
analog representation appears more accessible than a
descriptive one—a notation incorporating pictures
may seem less daunting than one comprising abstract
symbols. A representation that exploits perceptual
cueing takes advantage of the abilities of the human
visual system. The analog quality appeals to mundane
experience, making the notation appear less esoteric.

Cynically, this is a variation of the ‘Cobol effect’
familiar in the history of programming languages:
because the vocabulary (in this case the component
shapes) looks familiar and ordinary, novices believe
they can understand the program. Yet graphical rep-
resentations can take longer to read and understand,
and they are often misunderstood by novices, who
cannot ‘see’ the available cues.

ter if there is satisfaction sim-
ply in the tinkering required.
The importance of sheer likeability should not be
underestimated; it can be a compelling motivator. In
general, affect may be as important as effectiveness.
The lusion of accessibility may be more important
than the reality.

Examining the Role of Graphics in

Programming Notation

The important difference between ‘textual’ and
‘purely graphical’ seems to be the trade-off between
‘descriptive’ and ‘analog’ representation.

Text, a descriptive representation, derives preci-
sion of expression from a small, fixed vocabulary, and
it achieves range of expression by regular combina-
tion of vocabulary elements. Similarly, readers learn
rules of interpretation, so that plain text is read seri-
ally (although it may be accessed at random), and
text is easily ordered and searched. Plain text doesn’t
rely on perceptual responses particular to a sensory
mode; text is easily translated from the visual to other
modes, as by reading aloud.

Pure graphics, an analog representation, gains
from the mapping of perceptual cues to information
(e.g., the association of color with type, or of size with
number). It may draw on an unlimited vocabulary.
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Graphics may benefit from a ‘gestalt’ response, an
informative impression of the whole that provides
insight into the structure, but it lacks the precision of
text, because much information is intrinsic in the
analog mappings. The rules of interpretation are not
as clearly defined as for text, and so graphics may suf-
fer from ambiguity of interpretation. Offering few
cues to navigation, graphics requires the reader to
identify some appropriate inspection strategy.

Text is essentially graphics with a very limited vocab-
ulary. Each character is a pure graphic, with perceptu-
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Figure 8. These
tiny fragments of
LabView code
show the use of

al qualities, but readers have learned to
see characters quite differently, as ‘non-
graphical’ text symbols. The plain text
system has, through a process of abstrac-
tion and evolution, suppressed the per-
ceptual qualities of the individual
graphics that comprise it. Further, the
learned associations with text disrupt
automatic perceptual processing.

Instead, text—conventional, natural-language,
printed text—has had several centuries in which to
evolve into a well-tuned medium for the conveyance
of technical information.

In some ways, many of the current ‘graphical’ pro-
gramming languages—many of them little more than
box-and-line systems—are more ‘textual’ than ‘pure-
ly graphical’; they have replaced the familiar ASCII
character set with an alternative fixed vocabulary of
symbols (often a perceptually-limited repertoire of
rectangle variants) and have not taken advantage of
the analog mapping.

Some graphical programming systems (e.g., Lab-
View, see Figure 8) provide a more analog, iconic
vocabulary, so that a component’s appearance gives
clues to its meaning. The notion that icons have the
advantage of built-in mnemonics, making use of pre-
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string out

iconic notational
elements that give
pictorial clues to
their functions.

viously-learned associations between objects and func-
tions, holds up when the icon represents a concrete
object, but Rohr [21] showed that this breaks down
when icons represent abstractions. And the advan-
tages of analog properties may diminish with size and
complexity. There is a swamping effect: when many
icons are used, discriminability decreases [9, 24].

Similarly, secondary notation is often poorly
exploited by graphical programming systems. Some
(e.g., Prograph) encourage encapsulation into many
small units, so that the layout is too fragmented to
benefit much from structure cues. For others
(e.g., LabView), even for small programs, the
layout often becomes so well-filled that little can
be done to re-arrange it to convey additional
information. The possibility of using layout in a
controlled and useful way is dominated by the
need to keep the visual picture reasonably
clean; for example, placing components to min-
imize crossings of connection lines takes priori-
ty over placing them adjacent to
functionally-related components.

Furthermore, freedom to make use of the
secondary notation potentially available may
carry high overheads, requiring users to plan
the layout of the programs as well as the algo-
rithms, for example, I quite often spend an hour
or two just moving boxes and wires around, with no
change in functionality, to make it that much more

comprehensible when I come back to it.

conclusions

Graphical Readership is an

Acquired Skill

Novice and expert readers appear to
notice and concentrate on different
graphical details—to ‘see’ differently.
Whereas novices tend to confuse visi-
bility with relevance, experts take
advantage of secondary notation cues
to enable them to recognize sub-term
groupings, to match patterns (which
novices do not recognize) and to dis-
regard irrelevant information. The programmer
learns to take advantage of available perceptual cues
and to apply acquired rules of interpretation.

The correlation between experience and reading
strategy is not exclusive to graphics. In a previous
experiment on the reading of programs, the effects
for Pascal programmers did not apply to Basic pro-
grammers, interpreting the difference as a differ-
ence between notations [7]. However, it was shown
in [5] that the results were caused by differential
training backgrounds: when Basic programmers
were taught the precepts of structured program-
ming, the differences disappeared. What a reader
sees is largely a matter of what he or she has learned
to look for.

The skills of graphical readership, both perceptual
and interpretive, are learned skills. This accords with



research on perception (e.g., [6, 25]), which empha-
sizes the role of relevance in visual processing: per-
ceptual skill means learning to discriminate relevant
features and to synthesize them into a meaningful
whole. Studies like Koga and Groner’s study of non-
Japanese subjects learning Kanji characters [11] show
that eye movements and scanning behavior change as
cognitive skills are acquired.

nowing what to expect, where to
look, and what to look for—the
cognitive components of an
inspection—affects the strategies
the individual employs in read-
ing an information structure,
and increasing expertise is evi-
ently reflected in changes of
perceptual strategy. Training and experience play a
significant role in determining what is salient.

Experts and Novices have Different

Notational Needs

For programming, one might conjecture that we
should give experts languages that have good scope
for secondary notation, because they are likely to be
creating complex programs that will need to be
understood by others (or by themselves at a later
date) and so would benefit from enriched cueing.

Novices, on the other hand, might benefit from a
more constrained system in which secondary notation
is minimized, in order to reduce the richness and the
potential for mis-cueing and misunderstanding.

This conjecture is apparently at odds with more
familiar arguments, in which graphical programming
is usually advocated for less skilled groups, for novices
learning to program or for ‘end-user’ or ‘casual’ pro-
grammers. This article does challenge the advocacy—
on the grounds of accessibility—of graphical
representations for novices, because the available evi-
dence suggests that less skilled groups are precisely
those less likely to benefit from the secondary nota-
tion that enhances access, because novices are unlike-
ly to have the necessary readership skills.

Yet this article also recognizes the appeal of graphi-
cal representations, especially for those who have not
developed the readership skills for formal representa-
tions. The conflict is not unresolvable: the answer still
lies in distinguishing between expert and novice skills,
and hence in designing systems for novices that
embody a disciplined and insightful use of secondary
notation in a way that provides appropriate constraints
for the novices who will use it. Using graphics to pro-

Readership Skills and Graphical Programming

vide fun doesn’t necessitate a graphical free-for-all.

It is essential to move away from the superlativist
claims in the literature and toward a recognition that
graphics requires readership—and production—
skills in the same way that text does, and to provide
support in the environment and in the culture for
the acquisition and exercise of those skills. Graphical
representations, especially those used in notation,
far from being intuitively obvious, may require more
training from both the originator and the reader to
achieve the most effective communication—but may
prove richer for expert users. The challenge for the
designer is to make good use of secondary notation,
‘good’ in supporting access to relevant information,
‘good’ in avoiding mis-cueing, ‘good’ in matching
the secondary notational conventions used by
experts in the domain under study, and ‘good’ in
nurturing effective graphical readership.

Accept the ‘Bad’ with the ‘Good’
The hope is that ‘good’ use of secondary notation can
direct attention to relevant information; but ‘good-
ness’ relies on individual skill and insight, and readers
must learn to recognize the cues. Surprisingly few pro-
ponents of graphical superiority have identified what
kind of graphics are suitable for particular tasks, even
though there are some empirically validated metrics in
the literature. The range of accuracy in human per-
ception when using seven different pure graphical
techniques for displaying quantitative information was
shown in [4]. This was extended to compare thirteen
different techniques in perceptual accuracy for quan-
titative, ordinal, and nominal data in [13]. Such analy-
ses must be extended to describe graphical notations.
‘Good’ graphics usually means linking perceptual
cues to important information, which means both
identifying and capturing what is important, and guid-
ing the reader with appropriate cues. It is time to rec-
ognize the impact of ‘bad’ graphics—of haphazard use
of perceptual cues and secondary notation—mis-cue-
ing, misleading, misreading, and misunderstanding.
It appears that graphical notations can have a
greater capacity to ‘go wrong’ than textual nota-
tions—a graphical representation with distorted sec-
ondary notation can cause more confusion than a
textual notation which misuses secondary notation.
The giddy intertwining connections of a too-complex
or poorly designed boxes-and-lines-style representa-
tion makes vivid the notion of ‘spaghetti code’. Text
devoid of secondary notational cues is still compre-
hensible with an amount of work—moreover, textual
programs can be formatted or reformatted by algo-

‘Good’ graphics usuadlly means linking
perceptual cues to important information,
which means both identifying and capturing what is important,

and guiding the reader with appropriate cues.
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rithm, either by rote or by machine, into something
comprehensible. ‘Pretty printers’ of structured lan-
guages are familiar tools. But formatting a graphical
representation into something comprehensible is not
currently reliably possible by algorithm. Even the best
examples of ‘graphical pretty printers’ are satisfacto-
ry only in highly constrained domains.

In constraint lies the key: ‘good’ secondary nota-
tion involves disciplined and appropriate application
of constraints to the available freedoms of presenta-
tion. Text is by nature more constrained; its linear
character provides clues for the reader even when
the secondary notation is dysfunctional. But the ‘flip
side’ of the greater freedom afforded by graphical
representations is the greater potential for mis-cue-
ing and confusion.

Even a well-evolved notation is vulnerable to weak-
nesses in individual expressive skill. Graphical repre-
sentations share this problem with textual ones:
quality is not guaranteed. There are bad diagrams as
well as good ones, just as there are both bad and good
textual representations, and there are more or less
gifted practitioners as well as more or less experi-
enced ones. The power of secondary notation can be
expressive—or expensive.

There is no single panacea. But if we can identify
the particular strengths of different sorts of represen-
tation, we will be able to design appropriate solutions
with a full repertoire of notational options.
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