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Abstract. Modelling is a concept fundamental for soft-
ware engineering. In this paper, the word is defined and
discussed from various perspectives. The most important
types of models are presented, and examples are given.

Models are very useful, but sometimes also dangerous,
in particular to those who use them unconsciously. Such
problems are shown. Finally, the role of models in soft-
ware engineering research is discussed.
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1 Disclaimer and goals

We use models when we think about problems, and when
we talk to each other, and when we construct mechan-
isms, and when we try to understand phenomena, and
when we teach. In short, we use models all the time.

That means: models have never been invented, they
have been around (at least) since humans started to exist.
Therefore, nobody can just define what a model is, and
expect that other people will accept this definition; end-
less discussions have proven that there is no consistent
common understanding of models.

In this paper, this difficulty is (almost) ignored, and
the term “model” is defined as if there were no conflict-
ing opinions. This approach is taken because it is the only
way (at least the only way known to the humble author)
for investigating the power and the limitation of models.
Readers are not required to accept my definitions per-
manently; but they might be prepared to accept them at
least while they read this contribution, because my judge-
ments and conclusions are based on my definitions.

This paper is intended to help the reader

e recognize models where they appear,

e know the properties and the power of models,
clearly distinguish models from the original objects,
e create new models where appropriate.

2 The air we breathe

Our ability for modelling is not acquired but given to us
from birth. Without it, we would not be able to reduce the
vast flow of information to a rate we can cope with. By
mapping visible and invisible phenomena to notions (in
German: Begriffe), the number of different observations
is significantly reduced, and we deal with some classes
of problems rather than with millions of individual prob-
lems. Hence, we can collect experiences, find generic solu-
tions and decisions, and develop strategies for surviving
in the real world. The ability for reflection, which is con-
sidered the difference between man and animal, is directly
related to the use of models.

The particular strength of models is based on the idea
of abstraction: a model is usually not related to one par-
ticular object or phenomenon only, but to many, possibly
to an unlimited number of them, it is related to a class.
They who note that the change from high tide to low tide
and from low tide to high tide follows a certain rhythm
can prepare for, or make use of it. Those who learn that
a certain class of animals rather than one single living
creature is fast, strong, and dangerous, have improved
their chances for survival.

While we live, i.e. act and react, we use models all
the time, usually unconsciously. The situation is quite dif-
ferent in research and engineering: there, the creation of
models is an explicit topic; it is the purpose of research
and an important step in producing artefacts. Research
yields theories. A theory is a special kind of model (see
below). The more influential a theory is in the world,
the higher it is estimated. Such influence ranges from
a change of our perception of the world (like switching
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from a geocentric to a heliocentric view) to a massive ef-
fect and threat like that of nuclear bombs.

The role of modelling in engineering is similar. Models
help in developing artefacts by providing information
about the consequences of building those artefacts before
they are actually made. Such information may be highly
formal (like the theory of mechanics, as it is applied in the
construction of bridges, or the theory of computational
complexity which is used in the analysis of algorithms)
or rather informal (like a rough drawing of a machine,
or a textual specification of a software system). Interface
definitions are models too; they are particularly import-
ant for the spreading of technology.

3 Definitions

The term “model” is derived from the Latin word mod-
ulus, which means measure, rule, pattern, example to be
followed. Obvious examples are toy railways and dolls,
maps, architectural models of buildings. In software en-
gineering, we have process models, design patterns, class
diagrams. Other models are less obvious, like project
plans, specifications and designs, metrics, and minutes of
project meetings.

8.1 The model criteria

In order to distinguish models from other artefacts, we
need criteria. According to Stachowiak [8], any candi-
date must meet three criteria, or otherwise it is not
a model:

e Mapping criterion: there is an original object or
phenomenon that is mapped to the model. In the se-
quel, this original object or phenomenon is referred to
as “the original”.

e Reduction criterion: not all the properties of the ori-
ginal are mapped on to the model, but the model is
somehow reduced. On the other hand, the model must
mirror at least some properties of the original.

e Pragmatic criterion: the model can replace the ori-
ginal for some purpose, i.e. the model is useful.

The mapping criterion does not imply the actual ex-
istence of the original; it may be planned, suspected,
or fictitious. The dwarfs and fairies found in many gar-
dens model fictitious creatures, and a map of Troy mir-

mapping

modeled

*~ attributes
of the original

rors a historic theory that is not at all generally ac-
cepted. Most novels and movies model a reality that
was born in the author’s fantasy. The cost estima-
tion of a software project is a speculative model of the
future.

A model may act as the original of another model, we
can find cascades of models, e.g. when a painting shows
a room with paintings. A program design is a model of
the code to be written, while the code is a model of the
computation performed by the computer when the code is
executed.

At first glance, the reduction criterion seems to de-
scribe a weakness of models, because something is lost in
the model that was present in the original. But that loss
is the real strength of models: very often, the model can
be handled while the original cannot. A map is handy and
cheap. Even when we can use a space-ship (which is nei-
ther handy nor cheap), we cannot identify most of the
details that are clearly marked in the map.

The pragmatic criterion is the reason why we use
models. Since we are not able or not willing to use the ori-
ginal, we use the model instead. That applies to a toy that
represents an extremely friendly animal, and it also ap-
plies to the theory of a big bang as the birthday of our
universe, because no scientist can directly observe what
happened billions of years ago.

Figure 1 shows the relationship between original and
model. Note that a model is not necessarily similar to
the original in any naive sense, like a toy automobile that
looks similar to a real automobile. The attributes may be
mapped in many different ways. In photography, colours
are translated into values on a grey scale. Physical proper-
ties may be recorded as numbers. Artists express feelings
by shapes and sounds; the daytime is indicated by the an-
gles of two clock hands.

As an effect of the reduction, many features of the
original (the waived attributes) are not found in the
model. For example, the name of a person is not vis-
ible in his photograph. On the other hand, features
that do not stem from the original are added (abun-
dant attributes). For example, the size of the picture
does not tell anything about the person. A Z specifica-
tion does not comprise most of the details later found
in the program, but many syntactical details (like ar-
rows etc.) that are given as part of the specification
language; their shapes have no meaning for the system to
be developed.

abundant
Attributes

O

Fig. 1. Original and model according to Stachowiak
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Let us use an identity card as an example:

The IC is issued for a particular (say female) per-
son (mapping criterion). If the card is faked, that
person does not really exist. Most of her proper-
ties are waived, like her memories, her taste, or her
favourite destination for holidays (reduction crite-
rion). A number gives her height; her residence is
indicated by her address. The IC is useful (prag-
matic criterion) when somebody wants to find out
certain properties of the person who might not be
able to answer questions (e.g. after an accident) or
not be willing to answer them correctly (e.g. when
the person tries to open a banking account).

3.2 Related terms

Many frequently used terms have a meaning that is simi-
lar to the meaning of the term “model” (see Fig. 2). Let
us discuss which of those terms can be regarded as proper
models. There is, of course, no sharp distinction.

Tool: many tools, perhaps all tools have been invented as
imitations of existing aids. A hammer is an improved
copy of the human fist. But a tool is not a model: The
relationship to its original very soon becomes obso-
lete, because the tool is modified again and again,
independently from its original. In the early days of
computing machines (i.e. two hundred years ago),
those machines copied the notes people write on pa-
per when they calculate. Modern computer hardware
no longer behaves in any way similar to what people
do; a computer is not an artificial brain.

Name: a name is not a model; while it can be used in
place of the object it identifies, it does not provide
any information about the object.

Icons represent programs and files. Any action on anicon
is a substitute for an action on the program or file.
But little, if any, information about the original ob-
ject is contained in the icon. Therefore, icons are not
regarded as models. The same is true for symbols.

Metaphor: describing a complicated machine, we often
identify a central part, and refer to it as the heart
of the machine. When a term from one area (e.g.
from biology) is used in a different area (like mechan-
ical machines) in order to describe some character-

istics (it keeps the whole thing running) it is called
a metaphor.

What about the model criteria? Let us look at the
term “software virus” as an example. First, there is
an original (the harmful code; note that the biolog-
ical virus is not the original; it only provides the
word and its connotation). Second, the metaphor is
an extremely reduced representation of the original.
(When somebody tells us about a new virus, the
metaphor conveys some information about the type
of program, but not about its size or its algorithm).
Third, the original is represented by the metaphor,
and we can use the metaphor when we think about
defence against it. (A virus is dangerous, and may
be passed to another victim unintentionally. We can
prevent an epidemic spread of a virus by keeping the
infected computer in isolation.) A metaphor is a spe-
cial type of model.

Metaphors are particularly useful when we deal with
something that is quite new, and not yet named.
Computers, including all their details and attributes,
were invented only recently, and there was a com-
plete lack of genuine names. Few, if any, new words
were introduced; the vast majority of missing names
were replaced by metaphors. Therefore, we use the
terms jump, loop, crash, freeze, bug, overflow, stor-
age and memory, maintenance, firewall, protocol,
message, window etc. etc. Most of these metaphors
were presumably created spontaneously, only a few
were (probably) invented (like file, desktop, transac-
tion, handshake).

Some metaphors are misleading. A typical example
is inheritance, as used in object-oriented program-
ming. In its traditional meaning, inheritance applies
to individuals: when the parents die, their prop-
erty is passed on to their children. In biology, the
word was used in a similar meaning: parents pass
their genetic material to their children (but the
material is copied). The meaning of inheritance in
object-oriented programming is very different: it ap-
plies to classes of objects rather than to objects.
And it establishes a permanent dependency: when
a class is modified, all dependent classes are implic-
itly modified too. This may be the reason why so
many programmers fail to understand inheritance.

(

Camld

Fig. 2. “Model” and related terms
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Another example is maintenance. While the word
implies a conservative approach (maintain the ori-
ginal state), software maintenance is done for the
sole purpose of changing the state. The meaning has
been inverted!

Theory: a theory widely used in computer science is the
theory of finite state machines. The finite state ma-
chine is a model of the computers we use, or of some
parts of our computers. The theory of finite state
machines is a model of the behaviour of our com-
puters. The fact that switching takes some time in
any physical device (i.e. there are states between the
states) is ignored. By applying this theory, we are
able to predict the behaviour, and we can construct
useful machines. In general, every theory is a model
of some phenomena that can be observed and/or in-
duced. A theory is a highly abstract type of model; it
emphasizes results and conclusions rather than obvi-
ousness.

Note that theories need not to be formal. Brook’s law
(“Adding manpower to a late project makes it even
later”) is an example of an informal theory.

4 Model taxonomy
4.1 Descriptive and prescriptive models

Models in a narrower sense (i.e. not including metaphors)
can be classified under various aspects. A model can mir-
ror an existing original (like a photograph), or it can be
used as a specification of something to be created (like
a construction plan). In the former case, we call it a de-
scriptive model; in the latter case, we call it prescrip-
tive. When an architect sketches an old house, and then
adds to his drawing some modifications he suggests to the
owner, the model is first descriptive, later on prescriptive.
We call it a transient model.

Though we talk about descriptive or prescriptive
models, this is in fact a property of the relationship be-
tween a (particular) model and a (particular) original
rather than a property of the model. A construction plan
is not necessarily prescriptive; it may have been produced
from an existing object. Therefore, a model may be de-
scriptive with respect to one original, and, at the same
time, be prescriptive with respect to another original.
A simple example is a drawing of an antique golden ring
that is used for reproducing similar rings.

At first glance, it seems obvious that descriptive
models can only be created after the original, while pre-
scriptive models need to exist before the original is made.
The latter is in fact true, but the former is not (or not pre-
cisely) true: prognostic models that describe something
that does not yet exist are descriptive, because they are
not intended to influence the original. The weather fore-
cast is such a model: though we cannot (yet) influence
the weather consciously, we can fairly reliably describe

the weather we will see tomorrow. The same is true for
a cost estimation, which has no (direct) influence on the
actual cost. Such estimation should be clearly distin-
guished from a requirement (“The cost of the project
must not exceed 500 k€”), which is, of course, a prescrip-
tive model. If there is more than one prescriptive model,
those models may be inconsistent. There may be a re-
quirements specification that turns out to be inconsistent
with the cost limit; then, there is no solution that fits both
models.

Descriptive models are applied in order to make some
specific information about the original easily and quickly
accessible: the table of contents in a documentation re-
duces the time for finding a specific topic, and the pro-
gram size (in LOC, e.g.) can be used for simple conclu-
sions, like “if program A is ten times larger than program
B, it will probably not fit into the available memory.”

4.2 Purposes of models

The purpose of the models is another criterion that can be
used for classifying models.

e Documentation is created when data in its most gen-
eral sense is derived from data that is already existing
and available. Therefore, it is descriptive. Three im-
portant subclasses are
e concise descriptions as stored in software databases
or included in tenders and marketing information

e minutes, protocols, like the log of a test, or of the
dialogues in which the customer describes his or
her requirements. The requirements specification
(which is prescriptive) mirrors those requirements.

e metrics, both software metrics and process metrics,
are highly abstract models. The number of pages of
a specification, the number of classes in an object-
oriented program, the response time of a program,
and the memory it occupies are examples of soft-
ware (or product) metrics. The duration and cost of
development and the number of developers are two
important process metrics.

e Instructions (like “copy the file to your harddisc”) pro-
vide information about some activity (like installation,
or test). Instructions are prescriptive.

e FEzxplorative models are transient (see Fig. 3). They are
used when the consequences of a change are to be
evaluated. The modifications are applied to the model
rather than to the real system. When their effect seems
to be positive, the modifications are applied to the ori-
ginal. If we are not sure about a new interface of an
information system, we implement a prototype that
can be evaluated, even though it does not provide the
functionality of the target system.

e FEducational models and games replace the originals for
ethical or practical reasons. Examples are models of
the human body as used in medical education, flight
simulators, and the dolls children play with. All these
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Fig. 3. Application of an explorative (i.e. transient) model

(descriptive) models somehow imitate the appearance
of the originals. This is also true for non-material
models of some objects that may be distant or non ex-
isting (“virtual reality”).

e Formal (mathematical) models (e.g. the formulas used
in physics and chemistry) are descriptive, too. Unlike
educational models, formal models do not resemble the
reality they describe. They allow us to analyse or to
forecast phenomena of the real world. Other more com-
plex models like a flight simulator often contain such
mathematical models.

5 Models in software engineering

Models can be found in all areas and applications of soft-
ware engineering. Some of them are discussed below.

While software developers create concrete models (see
below), people who do research in software engineering
work on notations and methods for developing such con-
crete models. Finite state machines and state charts,
Petri nets and data flow diagrams are a few examples of
models that use such notations.

5.1 Prescriptive models for software engineering

Most of the models used in software engineering are pre-
scriptive, for instance:

e process models, like Cleanroom Development, or Ex-
treme Programming

e information flow models like the diagrams used in
SADT

e design models, like class diagrams, or boxes represent-
ing the module structure

e models of user interaction, like use cases, or interaction
diagrams

e models of principles used for constructional details, like
design patterns

e process maturity models, like CMM or SPICE (which
are actually sets of models). In these cases, each model
implies a criterion for judging existing processes.

5.2 The document chain

When software is developed in the traditional waterfall
approach, documents are generated each of which is pre-
scriptive for the next one. Only the requirements speci-
fication is double-sided, because it describes the user’s
needs, and it prescribes the product to be developed (see
Fig. 4). Tt is this double role that makes the specifica-
tion the most important software component. The chain
runs from the specification to the architectural design,
from there to detailed design, code, and finally execution.
User’s manual and test data are descriptive models of the
specification; they can replace the specification for cer-
tain purposes.

One of the hard, basically still unsolved problems of
software engineering is the difficulty of maintaining the
logical chain of documents when any of the documents
is modified. The identification and subsequent modifi-
cation of other components in order to keep the whole
system consistent is called tracing. When the tracing fol-
lows the sequence in which the documents have been (or
should be) produced it is called forward tracing. When
the origin of change is in one of the late documents (e.g.
in the code), we need backward tracing. The problem
is extremely hard because in every step of the sequence
some information is lost, while some other information is
added. This is why there is no automatic correction of re-
lated documents.

5.8 Software as a model of the world

“In many systems the machine embodies a model
or a simulation of some part of the world. (...) The
purpose of such a model is to provide efficient and
convenient access to information about the world.
By capturing states and events of the world and
using them to build and maintain the model we pro-
vide ourselves with a stored information asset that
we can exploit later when information is needed but
would be harder or more expensive to acquire di-
rectly.” (M. Jackson in [7]).
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Fig. 4. The (simplified) document chain; some documents (like the user’s manual, e.g.) and some arrows
bypassing some of the documents are not shown in Fig. 4

One of the popular statements in software engineering
says that many (or even all) software systems represent
some part of the world. Is that true, or is it a mere
conjecture?

Traditional (i.e. electrical and mechanical) engineers usu-
ally do not create models; their artefacts are tools that
do not model anything. Neither a bicycle nor a radio or
a house is a model of something; they are means that
enable us to satisfy our needs better, and with less ef-
fort than without them. And many achievements can only
be thought of when technical solutions are available: no-
body could possibly walk to the moon, or watch bacte-
ria at work. Technique enables and provides possibilities,
usually without models. The symbol of engineering, the
wheel, is an invention that does not model anything.
While software systems in general serve the same pur-
pose as other technical solutions, i.e. help us in achieving
something, they are not only described in terms of the
real world, but they often actually represent it. Explain-
ing a software system, we tend to say things like “In this
module, the customers are stored, and this procedure will
decide whether or not their orders are accepted.” The
computer system seems to be a doll’s house, a mirror of
the world outside the computer.

Why is that so? What is so special about our systems?
Our emphasis on models has good reasons:

From the very beginning, man as a thinking and de-
ciding creature with a large memory has been the ideal
for general-purpose computers. Computers (and hence
computer software) imitate man. Centuries ago, people
dreamed of machines that could generate music and play
chess, and a chess playing machine was in the mind of
Konrad Zuse as early as 1937, when he built his first
computer. (He even expected that fifty years later, prob-
ably a machine would play better chess than a human;
that was very close to reality!) That means: computers
were designed to mimic (i.e. model) human thinking, even
though we do not really understand how our brain actu-
ally works. Most of the tasks we give to the computers

have traditionally been human tasks, and we simply use
the models we have traditionally in mind. There have e.g.
been accounting systems ages ago, and there is no reason
to change our models when a machine does the job.
When we produce new software, our fantasy and creativ-
ity are insufficient for creating something that is really
new, because we are bound to the world we know, and
we cannot invent something that we cannot imagine. The
world of software is completely artificial, and it is for our
soul as comfortable as a box made from stainless steel
would be for a bird. Therefore, we need to rely on no-
tions and ideas from outside the box, i.e. on models of
the (mostly physical) world we live in. In object oriented
programming, that approach was made one of the funda-
mental concepts, but it is not that new: in JSD (Jackson
System Development [1]), we start by modelling the real
world, before we introduce mechanisms which can later
be implemented by machines.

Modelling the world in corresponding structures has also
another advantage that Jackson mentioned in the sev-
enties already: since the world is subject to change, the
software must be changed too. Changes in the world are
usually consistent with the existing structures. When the
laws for the tax on cars are modified, some software sys-
tems used for computing that tax have to be modified as
well. If entities like cars and owners exist in the software,
such changes are comparatively easy. If they do not exist
(say there is only an entity “taxable object”), then the
changes are very hard to implement.

However, the fact that we only build software systems
that imitate the existing world severely limits our possi-
bilities. It is precisely the departure from existing models
that marks the breakthroughs that many engineers have
achieved. In the early days of combustion engines, cars
looked like carriages; but that turned out to be a useless
limitation. Using high frequency radio waves for com-
munication is very different from any traditional way of
communicating; that is why it is far more powerful. In
some limited areas, the same principle has been applied
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to software systems. Quicksort and Heapsort, two sort-
ing algorithms whose performance is far better than that
of traditional sorting algorithms, are based on principles
that nobody would apply when sorting playing cards or
papers in a file. Very few people can actually understand
how a Fast Fourier Transformation works, but everybody
is surprised to see how well it works. In all of these exam-
ples, the problem to be solved can easily be described in
mathematical notation, without any fuzziness and ambi-
guities, allowing for the application of formal methods. It
is hard to say whether or not we will some day be able to
find similar approaches for problems that are really com-
plex and hard.

When the first power lines were built, engineers would try
to have a straight cable from source to sink in order to
avoid losses due to frequent changes of the direction of
flow. They apparently had in mind some flow of mate-
rial. That model was no longer necessary when the theory
of electricity was sufficiently well understood. In software
engineering, we are not nearly at that point.

5.4 Metaphors for users and developers

FEach XP software project is guided by a single over-
arching metaphor. (...) Sometimes the metaphor
needs a little explanation, like saying the com-
puter should appear as a desktop, or that pension
calculation is like a spreadsheet. (...) As devel-
opment proceeds and the metaphor matures, the
whole team will find new inspiration from exam-
ining the metaphor. (...) The metaphor in XP
replaces much of what other people call “architec-
ture.” Kent Beck [3, p. 56]

In XP (Extreme Programming), metaphors play an im-
portant role. Kent Beck seems to be sure that software
architecture and user interfaces are congruent. If it looks
like a desktop (from a user’s perspective), the developer
should think of it as a desktop, too.

This concept oversimplifies the situation. The dustbin on
the screen is not architecture; it is a simple representation
for a highly complicated device. The metaphor is weak:
it simply represents the fact that we can get rid of some-
thing by moving it into the dust bin, and we can retrieve
it as long as the bin has not been cleared. Everything else
is wrong: the electronic bin is often empty, but never full.
Any file, even a very large one, fits into the bin. The bin
contains files that are well organized, and do not have any
influence on each other: files retrieved from garbage do
not smell.

Users, in particular beginners, need metaphors in order
to master their difficulties. In many cases, the metaphor
is the only explanation the user gets. (Did anybody ever
read the specs of a desktop dustbin?) The metaphor
should be “watertight”, i.e. the system should not corrupt
it by inconsistencies. The happy few who use Macintosh
computers must move a disc into the garbage not in order

to destroy it but in order to release it from the computer.
(This is not nearly as bad as the fact that the unlucky
many have to click on “start” in order to shut down their
systems, which resembles the idea to switch off a motor
bike by using its kick starter.) When I'send a letter, I want
it to be delivered in due time and in good shape; if the
address is wrong, the letter should return to me. These
expectations hold for electronic mails as well. But some-
times we receive an error message, though the message
did arrive at its destination.

A model for the user does not imply any model for the
software architecture. In most cases, the metaphor is
faked, i.e. its outside appearance is not at all similar to
its inside structure. The architect can use the metaphor
as a specification (of the outside appearance), but not
as a hint for the architecture. When an engineer designs
an aeroplane whose rudders are controlled electronically
(“fly by wire”), there is no need to imitate any mechanical
gear. The architecture is very different from an equivalent
mechanical solution.

6 Risks from using models

A message to mapmakers: highways are not painted
red, rivers don’t have county lines running down the
middle, and you can’t see contour lines on a moun-
tain. William Kent [2]

Good models can replace the original very well. There-
fore, good models tend to be confused with the original;
very often the user does not even notice that there is such
a thing like a model. For instance, most people believe
that they can actually see a text file on the screen. They
rarely think about all the problems related to the dif-
ference between a file and its representation. And they
believe that all the details they see on the screen are the
actual details of their files. Other, more threatening ex-
amples follow below.

6.1 A distorted view on the world

The world is simply object oriented.
A professor of informatics, 1992

The French word deformation professionelle describes
the distorted picture many people have due to their pro-
fessional attitudes. A medical man tends to classify the
people he knows according to their diseases, sometimes
even in private life. A teacher of logic tells his students
that any statement is either true or false; if he applies this
wisdom to the education of his children, he will proba-
bly fail. And many software people are so happy about
the power of object-oriented programming that they re-
ally believe in an object-oriented world. When they are
hit by counterexamples, they will not hesitate to explain
to us that the reality is wrong, but their view is right.
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That is ridiculous. One of the most important achieve-
ments of modern (i.e. 16th century) physics was the per-
ception that we know nothing but models. In order to
improve our models (i.e. in order to make them more use-
ful), we have to compare the reality and our models again
and again, and if they do not agree, the reality is always
right and the model is always wrong. Those who believe in
their models are not scientists but missionaries. Software
engineering circles are full of them.

6.2 Examples from everyday life

The effects described above are frequently found, but usu-
ally less obvious. Software people call this “garbage in,
garbage out”.

If an analyst compiles the requirements in a require-
ments specification, her result is, as mentioned above,
amodel of the requirements she was given. Very often, the
people she talked to were not extremely competent, and
they were not able to check the written document against
their real expectations. The developer will nevertheless
take this document as the real and complete collection of
requirements.

Words are magical: when we count branches, i.e. the if-
statements in a piece of code, we get a number. There is
nothing wrong with this number. But if somebody calls this
number “the complexity of the program”, he will usually
forget very soon the primitive background of this measure,
and will accept the number as a model of the complexity.

When people have tested a program for a while, iden-
tifying n bugs in the code, they tend to believe that they
have found all the bugs. And they tell us that the program
contained n bugs before testing. (Which implies the good
news: now the program no longer contains any bugs.)

We all know: the program does contain more bugs.
But there is at least a fair chance to find any particular
bug by testing. Other deficiencies, like poor readability
of the code, bad structure, lack of useful comments etc.,
cannot even be discovered by testing. When the results
of the system test are accepted as the only indicators
of software quality, the developers will inevitably try to
optimise their work for this particular goal, producing un-
maintainable code rather than sound software.

We can put the same statement in a more construc-
tive way: in order to improve the situation in software
engineering to achieve more reliable, robust, efficient, and
maintainable software, we must develop models of soft-
ware quality which reflect those properties. Next, we must
teach the model and show its advantages. Finally, we
must make sure that producing good software is not only
beneficial for the organisation but also for the software
developers.

Or even more down to earth:

e We need metrics far beyond those introduced by Hal-
stead and McCabe which generate useful results that
describe more than one very limited aspect.

e We should apply such metrics widely.

e We should not trust in people who insist on working
without decent models, i.e. without decent plans, re-
quirements, metrics, etc.

7 Descriptive versus prescriptive models
in research

As stated in Sect. 2, creating models is the purpose of re-
search. Scientists have provided lots of models since ages.
Some of them (in Physics and Astronomy) date back to
ancient times. All those models are descriptive.
Engineers need prescriptive models for building things,
but their research produces descriptive models, too. We
have excellent models of electric circuits, bridges, and
mechanical devices. Software engineering seems to be an
exception. Most results in this field offer new prescrip-
tive models, like process models, or techniques for various
activities. Is there any reason for this special position?

7.1 The difficulties of descriptive models

In order to construct a descriptive model, we need to
know the original very well. In software engineering, the
original is the real world of software projects, with re-
quirements that are neither complete nor precise, with
customers who tend to change their mind, with devel-
opers who suffer from insufficient education, with exist-
ing software that is very hard to modify, to name only
the worst problems. In short: the real world of software
projects is a mess.

In our group at the University of Stuttgart, we
have been developing a system called SESAM (Software
Engineering Simulation using Animated Models) since
1990 [5, 6]. SESAM is based on the idea that it should be
possible to coach software project managers in the same
way aircraft pilots are coached; SESAM is not a flight
simulator but a software project simulator.

This simulator depends on adequate descriptive
models of software projects and software project manage-
ment dynamics. In order to discuss the modeling prob-
lems and challenges we experienced with SESAM, a short
introduction on SESAM is necessary.

The user or “player” (who is supposed to be female
in the sequel) takes the role of a software project man-
ager; SESAM simulates the rest (customer, documents,
process, employees). The player will start from an initial
setting as a new project manager. The interactions be-
tween player and project are handled via keyboard and
screen. The player receives messages, and enters her com-
mands in order to make her project proceed. She can hire
or fire employees and ask them to perform any of the
tasks that are useful for software development (like start
preparing a specification or revise the design document).

On the other hand, she receives messages about the
things that happen in her project (for example, when



J. Ludewig: Models in software engineering 13

documents are completed or when an employee leaves the
project). The time scale is compressed in order to cover
a whole project in a couple of hours. When the game is
over, the player receives her score, and some detailed an-
alysis of her performance.

SESAM uses two models, one for the state of the
project, the other one for the rules and relations that
apply to software projects in general (Fig. 5). When run-
ning a game, the game state (which models the situation
in one particular software project) is subject to contin-
uous modifications. The rules and relations that deter-
mine these modifications constitute the so-called project
model, which can be further divided into a static model
and a dynamic one. While the static model defines the
types and relations from which our virtual projects can
be built, the dynamic model contains all the rules that
represent the invisible mechanisms of a software project.
Typical information contained in the static model is the
set of document types that are developed in the project,
and the fact that a programmer may read or write a docu-
ment. A dynamic rule describes changes, like the effect of
a review on the document that has been reviewed, or the
effect of a meeting on the participants.

e The tutor must define the initial state of the project.
This definition is transformed into an internal repre-
sentation, the so-called game state. As simulated time
proceeds, the game state (which models the situation
in a real software project) is subject to continuous
modifications.

e The rules and relations that determine these modifica-
tions constitute the so-called project model (or simply
model), which can be further divided into the static
model and the dynamic model. While the static model
defines the types and relations from which our virtual
projects can be built, the dynamic model contains all

SESAM natural

player <= language interface

tutor initial state

model creator

static and dynamic
model

the rules that represent the invisible mechanisms of
a software project. For better efficiency, the dynamic
model is transformed into an internal representation
(the executable model), which is interpreted by the
simulator.

Typical information contained in the static model is
the set of document types that are developed in the
project, and the fact that a programmer may read or
write a document. A dynamic rule describes changes, like
the effect of a review on the document that has been re-
viewed, or the effect of a meeting on the participants. In
the game state, the actual size of all documents and the
number of errors in those documents is recorded, as well
as the current motivation of the developers.

While developing and using SESAM we experienced
typical problems arising with descriptive models.

The project model represents a theory of software
projects that is based on empirical data. Such data is
extremely hard to find; little has been published, and in-
vestigating such data in industry is practically impossible
because those data have rarely been collected. Therefore,
the model must be validated. But validation suffers from
similar problems. There are no data to compare with. For
the largest model so far [4], this validation has been done,
though with a huge effort.

Other problems remain. Our model covers only a small
fraction of the world; it is a compromise of simplicity and
realism. Is it acceptable to ignore the private life of soft-
ware developers? Which attributes of documents need to
be modelled? Is it sufficient to count errors, or do we need
different classes of errors?

And, last but not least, our models are not only
limited due to technical reasons or in-sufficient know-
ledge; we had to learn that our students couldn’t handle
very complicated models. Therefore, we no longer try to

—> SESAM simulator
ame state executable
& model

model translator

Fig.5. SESAM architecture, simplified; models are shown in rounded boxes
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add more detail to the models. Students should have a fair
chance to succeed, because success is a reliable and cheap
motivator. A good model is sufficiently detailed to be in-
teresting, but sufficiently simple to allow for good results
without weeks of training.

7.2 The dangerous charm of prescriptive models

While a descriptive model like SESAM has to repre-
sent its original very well (even when the player behaves
stupidly), a prescriptive model can command whatever
its author prefers. Their authors tend to take a position
like “we do not care in what mess you are, we prefer
to tell you what a wonderful world you could possibly
live in.”

That position seems to be reasonable provided the
better world does really exist, and so does a path from
the presence to that paradise. But most research projects
have no chance at all to get to the point where they could
possibly demonstrate that their ideas are applicable, or
even superior. Most of them terminate when they have
produced a doctoral dissertation and some printed pa-
per, and their influence on the outside world remains very
limited.

The problem here is not the fact that many of the
ideas and concepts may be of little value; research has to
produce a lot of garbage in order to yield a few excellent
results. The problem is that most ideas are never tested.
Scientific magazines, conferences, funding organizations,
and university departments support the breeding of new
ideas, but not their careful and time consuming evalua-
tion and improvement.

Maybe there are too many models lacking the ma-
turity that results from steady research. If more people
contribute to our understanding of the existing world
by analytical and empirical work, and evaluate what
has been around for a while, we will get more use-
ful results, and we will experience a steady increase
of our knowledge, as expressed in generally accepted
models.

But that requires a change of goals in research: Those
who do not present new ideas, but compare and improve
existing ones, should receive far more recognition.

8 Summary

In this article, I have hopefully demonstrated:

e Models are very important, in particular for software
engineers.

e Like other central notions (e.g. information), the term
“model” is hard to define.

e People using models should make sure that they do not
confuse their models with the reality. And they should
draw conclusions from their models only very carefully,
taking into account the limitations of the models.

e Creating prescriptive models is easy, but greatly im-
proved descriptive models are what we desperately
need.
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