Second: Metamodels

Examp e Ma,os

,Hmu TH;
L. “4

Same visual notation,
different context,
different meaning
(Thick red

» dotted lines
[i:*\f for bicycle lanes)

Downtown
Seattle
— Feyclo Tral
- - chdoLGe
— Artrial Street
ooy comd -
— Residental Sireet
e aat ny eyt
| Ride Free Awa

B et

Designates
* Ore Way Steet

The legend
is called a metamodel.

- - Monoral

Example: State Diagrams

Statechart dingram of an order management sysiom

Initial state Intermadiats " JTransition

o

J;: tha abject / stata ‘;,-’

-
rmal
Initiali & : e
i axit
TAELON l
1= {5 A Sond order request h Select normal or
- J special order
L
Abniormal
#xd hotion Confirm order
L
) {Evinl)
InitEial 'I"'HEI-::“ .F:Tt. | . Wl
stata - -""‘*-—-
Order confirmation
Firal
state e l
Complate
transaction

l Dispatch order

- How do we know this is a syntactically valid state diagram?
- The metamodel of the state diagram language expresses the rules that
distinguish valid from invalid.

So, then, what is a
metamodel?

A description of the abstract syntax of a modelling language.
Models are instances.
In programming languages, these are sentences.

What is an abstract syntax?
The language concepts, relationships between concepts and constraints.
Not usually the tokens, symbols, etc.... (these are part of the concrete syntax).

Example: XML

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<library>
<book title="EMF Eclipse Modeling Framework" pages="744">
<author>Dave Steinberg</author>
<author>Frank Budinsky</author>
<author>Marcelo Paternostro</author>
<author>Ed Merks</author>
<published>2009</published>
</book>
<book title="Eclipse Modeling Project: A Domain-Specific Language (DSL) Toolkit" pages="736">
<author>Richard Gronback</author>
<published>2009</published>
</book>
<book title="Official Eclipse 3.0 FAQs" pages="432">
<author>John Arthorne</author>
<author>Chris Laffra</author>
<published>2004</published>
</book>
</library>

What was that”

That was an XML specification of a very simple library,
holding books (with authors), recording the page length of
the book.

We can load this into an XML editor, query it, change it, etc.
It is a model of a simple library.

But, how do we know if our XML model is valid?

* We need rules to check it against!

* One way to do this is using an XML Schema (XSD).

Example - XSD

<?xml version="1.0" encoding="UTF-8"7>
<xsd:schema targetNamespace="http://www.example.com/Library"
xmins:ecore="http://www.eclipse.org/emf/2002/Ecore"
xmins:lib="http://www.example.com/Library" xmins:xsd="http://www.w3.0rg/2001/XMLSchema">
<xsd:complexType name="Book">
<xsd:sequence>
<xsd:element name="title" type="xsd:string"/>
<xsd:element name="pages" type="xsd:int"/>
<xsd:element name="published" type="xsd:int"/>
<xsd:element name="author" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
<xsd:complexType name="Library">
<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
<xsd:element maxOccurs="unbounded" minOccurs="0"
name="books" type="lib:Book"/>
</xsd:sequence>
</xsd:complexType>
</xsd:schema>

What was that”

A Metamodel!

We can now check the library.xml model against the
library.xsd Schema.

The Schema contains rules that specity the abstract
syntax of a valid library model.

If the XML is valid (it is by the way) then we say it
conforms to the XSD.

Dually, we can say that the XML is a valid instance of the
XSD.

Metamodels are Models
themselves

e Metamodels are also models.

* This is the so-called unification property of
MDE:

e everything’s a model!
e SO, in principle, models, metamodels and tasks

applied to models can be implemented and
managed using one set of tools

Interested in the formal
definitions already”

« Amodel Mis a triple (G,w,u) where:
G is adirected multigraph,

* W is areference model (metamodel) associated with a
(potentially different) directed multigraph Gw,

e s a function associating elements of G to nodes of Gw.

* The relationship between model and reference
model is called conformance.

Conformance

* These definitions allow arbitrary levels of conformance!

e But, in practice, only three are used:

o Terminal model (M1)
 Metamodel (M2)

 Metametamodel (M3)
 Examples:
« RDBMS: instances (M1), schemas (M2), relational data model (M3)

 XML: documents (M1), schemas/XSD (M2), schema definitions (M3)

OMG Standard

« A (terminal) model is a model such that

its reference model is a metamodel. Meta-metamodel _ dnstanceois
i |
Class) -
« Example: a UML class diagram cinsience0f 7 R einstanceOfs
Metampdel !.!" \‘t,\
A metamodel is a model such that its - S
reference model is a metametamodel. S0, [/ sinstanceots
Model 5\ £
Video
« Example: the UML metamodel ety
' . . Real world ?Niﬂﬁ'{ﬂnCEth
A metametamodel is a model that is its objects
own reference model.

 Example: MOF (OMG’s MetaObject Facility)

Metamodelling Example:
TED Conference Management

e Develop a customized editor for domain experts
(conference managers).

e Lets domain experts build conference models that take
into account important conference timetabling concepts.

* Follow standard metamodelling process.
1. Abstract Syntax
2. Constraints

3. Concrete Syntax

1. Abstract Syntax

e Key domain concepts:

e Tracks, consisting of a number of slots in which talks
can be scheduled.

* Talks have participants (who may have to give
several talks, so we must avoid clashes)

- Lunch

* In defining an abstract syntax we identify recurring
concepts, including naming and timing (abstract these).

Abstract Syntax

E ConferenceElement]

eloments

E MNamedElement

L1 pame : EString

T

H TimedEiement ||

G haur : Elnt
G minute - Blnt

E Participant

L eountry ; EString

g Lunch

sl " 0.,"

Conference

H Track

2. Constraints

e Constraints to eliminate (as much as possible) ill-formed
models.

 Example: each speaker at a conference is a presenter of a talk
scheduled in a slot. (That is, we haven’'t missed anyone!)

* Express in OCL (Object Constraint Language)
context Conference inv:
self.speakers->includes(
self.elements->select(t/Track).

slots.talk.presenter)

3. Concrete Syntax

e Design of concrete syntax is typically done in
collaboration with end-users.

 |dentify their preferences (textual, graphical).

* What might an example concrete syntax look like”

oncrete Syntax Option

* Murtsifg el iy

E}m]s

* THe bBagt £TalE o Ve sued ines

E’l! 15

* fae we bappy?

alf 12:15 Lanch

H Techmalagy

&ll]b

* W Eesniooe Hacks

E’ Id:15

* Tha maipe of ruth sl jes (ane Pods)

@13 15

I Wiy SOFS, in @ bad idea

l!llz#:luh Gilbert, USA

: Hang Rosng, Sweden

l Dan Glibert, USA

1 fahny Lee, USA&

l Sarro Tewmpest, Swvrerand

1 Clay Shirky, US4

Concrete Syntax Option 2

CONFERENCE "TED”

TRACK "Society” :
AT 09:15 : TALK "Nurturing creativity” PRESENTED BY "Elizabeth Gilbert”
AT 10:15 : TALK "The best stats you've ever seen”
PRESENTED BY "Hans Rosling”
AT 11:15 : TALK " Are we happy?” PRESENTED BY "Dan Gilbert”

AT 12:15 LUNCH

TRACK "Technology” :
AT 13:15 : TALK "Wii Remote Hacks” PRESENTED BY "Johny Lee"
AT 14:15 : TALK "The magic of truth and lies (and iPods)”
PRESENTED BY "Marco Tempest™
AT 15:15 : TALK "Why SOPA is a bad idea” PRESENTED BY "Clay Shirky”

REGISTERED SPEAKERS :
"Elizabeth Gilbert” FROM USA,
"Hans Rosling” FROM Sweden,

"Dan Gilbert” FROM USA,

"Johny Lee” FROM USA,

"Marco Tempest” FROM Switzerland,
"Clay Shirky” FROM USA

Metamodeling:
summary

 Metamodelling is at the heart of MDE.

* Without a metamodel, it can be challenging (if not
impossible) to automatically manage diverse
models in systematic, repeatable, validated ways.

Model Driven Engineering

Third: Model Mappings

What is a Model Mapping??

* A mapping between models takes as input one or
more source models and produces one target
model as output.

 Mapping rules constrain the mapping through a
mapping function.

* The rules on model mappings are defined at the
metamodel level and apply to all sets of source
models that conform to the given metamodel.

Summary:
Models, Metamodels and Mappings

Is_captured_in describes
Model Metamodel Platform
0 L 1 1 i N [] Ba 1
L T

; Mg | My 1. 1
source target source target
Mapping application_of sy MappingFunction ‘-—1- MappingRule
1

Model Driven Engineering

Fourth: Modeling Languages and Notations

Modelling Languages and
Notations

In order to successfully apply MDE, modelling languages are
required.

A Modelling Language is a tool that allows designers to specify the
models in their system. Specification can be: graphical, textual or
both.

In all cases, models should be formally defined and should comply
with the modelling language's syntax.

Two groups of modeling languages:
« Domain Specific Languages (DSLs)

» General Purpose Languages (GPLs)

Domain Specific Languages
(DSLs)

* Languages that are designed specifically for a certain
domain or company to use in modelling their systems.

- Examples in SE:
* HTML for webpage development
e SQL for databases
* VHDL for hardware

* MatLab for mathematics and real-time systems.

General Purpose Languages
(GPLs)

» General Purpose (modelling) Languages (GPLs) represent general
tools that can be applied to any domain or industrial sector (be it
automotive, health, etc) for the purpose of modelling their systems.

e Examples:
« UML

e Petri Nets
« Choosing whether to use a GPL or a DSL is not always clear.

 UML is better suited for mainly object-oriented software systems.

« UML does not serve well for some domains like those that involve user
interaction design, and a DSL could work better there.

Model Driven Engineering

Fifth: Model Transformations

Model Transformations

Model transformations allow passing relevant information from one
modelling formalism to another

The “heart and soul” of model-driven software development.
Multiple uses in MDE:
e example: transform a UML statechart into code

« example: transform a statechart into a formalism amenable to
verification by some existing tool

Exist in traditional software development, although implicitly.

Model Transformation Languages Examples: ATL, QVT

Classification

One-to-One (most cases) vs. Many-to-One (e.g., model merging)

Endogenous: source and target same type vs.
Exogenous: source and target different types

Out-place: create an output model from scratch vs.
In-place: rewrite input model

Horizontal: operate on models at the same level of abstraction
(e.g., model migration) vs.

Vertical: operate on different levels of abstraction (e.g., model
refinement)

Syntactical vs. Semantical

Model to Model (M2M)

 Models do not exist in isolation in a system

* As part of the MDE process, Model-to-Model Transformations (M2M) are
applied on models so they can be:

merged (e.g., to homogenize different versions of a systems)

aligned (e.g., to create a global representation of the system from different
views to reason about consistency)

refactored (to improve their internal structure without changing their
observable behaviour)

refined (to detail high-level models)

translated (to other languages/representations, e.g., as part of code-
generation or verification/simulation processes).

Model to Text (M2T)

e Model-to-Text Transformations are used in the
activity of Model Driven Code Generation.

e Also used in automating other software engineering
tasks such as the generation of documentation
from the models.

* Analogously, Text-to-Model (T2M) Transformations
have a text string as input and a model as output.
Such transformations are typically applied in model
driven reverse-engineering.

Incremental Model
Transformations

Batch Transformations: transform every time the entire input model to a new
output model created from scratch.

Incremental Model Transformations: consider the differences between the
current input model and the input model used in the last transformation run,
as to minimize the changes to be done on the output model which already
exists from the previous transformation.

Example: If a new element is added to the input model, only the rules that are
a match for the new element will be executed to update the output model.

Advantages:
 More efficient transformations

* Changes applied to output model are preserved

Bidirectional Model
Transformations

Bidirectional Model Transformations are transformation that
have a forward direction (from source to target), and a
backward direction (from target to source).

Important for ensuring model consistency

Used for the purpose of model synchronization.

Many bidirectional transformation languages still lack a proper
understanding of the semantic implications, which hampers

their use in practice.

Some of the more successful bidirectional transformation
languages out there are QVT, TGG and JTL.

Higher Order
Transformations (HOTS)

The same tools that are used for creating models, can be used
for creating transformation models.

This creates a recursive framework, meaning transformations of
transformations can be transformed themselves.

Just as regular models can be created, modified and augmented
through transformations, we can use so called Higher Order
Transformations (HOTSs) to create, modify and augment
transformation models.

HOTSs therefore take as input one or more model transformations
and/or generate as output a model transformation.

Analysis of Model
Transformations

e To be able to guarantee certain properties of a
produced artifact, it may be very helpful, or even
important, to also have knowledge of the producing
transtormation.

* The Analysis of Model Transformations involves
looking at techniques that help ensure that model
transformations produce models of sufficient
quality and with desirable properties.

Verification of Model
Transformations

Important for the quality of the whole software development process that
transformations be correct.

Model transformations verification is similar to the verification of software.

Typically done by proving that a given program has certain formal
properties that ensure a certain level of correctness regarding that
programs specification.

Two types of approaches:

* Proving that certain relations hold between the grammar of the input
models and the grammar of the output model. (Syntactic)

* Proving that parts of the meaning, or semantics of input models are
given the correct semantics in the output model. (Semantic)

Model Transformation
Languages and lools

* Declarative transformation languages

» generally limited to scenarios where the source and target metamodels are similar to each other in terms of
structure

* the transformation is a matter of a simple mapping
* sometimes difficult to address cases where significant processing and complex mappings are involved.
* Imperative transformation languages

* capable of addressing a wider range of transformation scenarios.

* operate at a lower level of abstraction which means that users need to manually address issues such as tracing
and resolving target elements from their source counterparts and orchestrating the transformation execution.

Hybrid languages
« ATL and QVT

* provide both a declarative rule-based execution scheme as well as imperative features for handling complex
transformation scenarios

