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Plan for the rest of the lecture

Part 0. Modeling

Part 1. Software Models, UML, OCL

Part 2. Meta-modeling, model mappings,
DSLs / generic languages, model
transformations

Part 3 (if we have time). How usable are
models?
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Model Driven Engineering

First: Models
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Models as Views

' Mason's
Car'pe:n'rer s View
Architect's View
View ‘ Electrician's |
Collector's — =] Plumber's
View - L - View
Landlord "s / \ \ Interior
/ T\?ﬂﬂﬂf s Designer's
i Zoning Law Imferior: View
View Designer's
View

Every view
« obtained by a different projection, abstraction, translation
e may be expressed in a different notation (modelling language)
« reflects a different intent
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Modelling Paradigms

Fundamental modelling paradigms, each emphasizing some basic
view of the software to be developed.

Structure Data System Functionality
Schema Functionality
Software
Architecture \ Use Cases
\ . /
‘ Deployment | i ‘ Algorithms |
: / \ Scenarios
Constraints
Constraints System System _
Behaviour Interactions Behaviour
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Entity-Relationship Diagrams

An ER diagram is a structural model representing a software
system's data elements and relationships among them.

entity relationship attribute

title course enrolled student name
course no. L id

 originally invented for model database design (Chen, 1976)

* emphasizes concepts/data

« relationships can represent associations, navigability, containment,
dependencies, etc.
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UML Class Diagrams

UML Class Diagrams are an elaborate form of ER diagram.

Patron Publication
i *
patron I[::l_nteger (t))--l borll'ows 0. * | call number - o
name : string orrower } al numt
address : string Eettllﬁé ?trréglg

fines : real o
depreciation : real

oan period : Duration
Loan fine rate : real

increase fines(amount:real); reserve loan period : Duration
pay fines(amount:real); due date : Date arelhnetr= el

recallNotify(pub:Publication) overdue fine : real recall period : Duration

calc due date(operation:string) loan state: {inlibrary, onloan}

calc overdue fine() reserve state : {stacks, reserve}
renew()
recall()

checkfines() : {fine, nofine};

find(title : string) : Publication

buy()

lose ()
borrow(patron:Patron)
return()

reserve()

unreserve()
decreasevalue()

7N

Book Periodical

editor: string

volume : integer
number : integer

loan period : Duration
fine rate : real

author : string

¢

Article
author : string

[ Figure from Pfleeger, Atlee, 2009]
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Software Architecture

A software architecture is high-level model of code structure.

Typically modelled as a "box and arrow" diagram, with a key
explaining the types of components (boxes) and connectors
(arrows).

KEY - - -
Web Web Desktop Client Application
Browser Erowser Application and Presentation
Server b T
: Web Server-side
repasitory Server Presentation
=11 publish/subscribe / \
—> request/reply Apg-l[cﬂtinn A'pPl’LﬂH an Business
_' database queries, erver Server Legic
transactions t X t
) nterprise
Application Application Enf nr‘pl?nﬂﬂnn
Database Database Systems

[ Figure from Pfleeger, Atlee, 2009]
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UML "Software Architecture" Models

The closest that UML comes to a software architecture model are
UML Package Diagrams and UML Deployment Diagrams.

[ ]

wlayers
Prasentation

T

alayers
User Interface

—Iu.-'

wlayers
Business Logic

.
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R . i
e k|
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Data Access Services
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I
|
i
wlayers
Persisience

UML Package Diagram

Workstation

i Keyboard/maniteT”__] Web browser

lser

Database Sanver

TCEAP
or local socke

(=

HTTPMHTTPS connection

Web Sever

Presentation laye
{weh interface)

{HH

MySQL database|

UML Deployment Diagram
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Data Flow Diagrams (DFDs)

Descriptive model of functional decomposition of the system, and
the data dependencies between functions.

actor process

/ data flow
air temp
Thermometer

Thermostat

on/off
commands
» [Furnace

air temp data store

/

set

thermostat settings

DFDs model

e collection of functions
e sources and sinks of data
 data dependencies
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Data Flow Diagrams (DFDs)

Although DFDs are good for communicating the big picture, they
are inherently incomplete, undetailed, and ambiguous.

Payment

/~ Quoting
Invoice Nao

Customers

Full
Payment

Request

Invoice and
Payment Details

Invoice by

invoice and

Payment Details

Without
Invoice No

Payments

Untraced

Payments Payment

Produce

Search
for Invoice

Compare
Amount
d
Full
TN _/ |Payment
Part
Payment

Payment Explanation
Request
. Customers

Untraced
Payments

Payment
Details
for Banking

[ Figure from M. Jackson, 1995 ]
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UML Use Case Diagrams

Use Case Diagrams are a very high-level data-flow diagram.

Online Book Store
function _

: actor
Making Credit
Purchase Authorization

A Service
anaging
Shopping

Customer Cart actor
Bookseller
Inventory

Managing
Customer
Info

SS N /

Administrator
Managing
Inventory

data flow
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Flowcharts

Flowcharts are an ancient modelling notation, for representing
behaviour in terms of steps of an algorithm.

Depict control flow rather than data flow

SBTART | cewmmmmmmem oo start / stop
ReadMN & .. . ____ input / OUtpUt
— ..
e activity
F=F*M
Mo s
M=M+1 M:N? _______________ branch
b=
Frint F
ENC
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UMLACctivity Charts

UMLACctivity Charts are a variation on flowcharts that support
concurrent flows of control.

swimlanes

(assign actlvm(;s to person / role)
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- il ot
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- - - - .| Request Service ) C
Order
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Take Order =
ar
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Event Traces

Dynamic model of behaviour showing communication among

entities in one scenario (execution trace).

Shows a slice of behaviour, not complete behaviour.

entities, actors, systems, subsystems, objects
/ \

1 \
Visitor Turnstile Visitor

Turnstile
event, message
coin > slug >
< buzzer slug >
push > slug > life line of
Time , participant
< rotated ’
v
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UML Sequence Diagrams

UML Sequence Diagrams are elaborate event traces....

event, method call

Time

entities, objects, s?s sWtors

printReceipt()

:PurchaseOrder ‘Product :Product :Product
print() i i
print{) i i
- print() i i

é ________________
\ result \

return message

lifeline of object
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... Including branches, loops, concurrency, optional subsequences,

UML Sequence Diagrams

references to other sequence diagrams.

sd AuthenticateUser /

‘B :C
‘A ‘B :C
' ' ! authenticate(id) | l
._thX I : : ."I I
. doA > | | : doM1 |
| B | | >
: ' I : doM2 Irll
: authenticate(id) - ref ~ AuthenticateUser : :
| |
: | |
| | |
| | |
| | |
: ref J DOEoo sd DoFoo /
|
| | o B C
/ | |
interaction occurrence k __,,m{ : doX H
| |
note it covers a set of lifelines / I doY p
| |
note that the sd frame it relates to : doZ hl
| |
| |

has the same lifelines: B and C

Larman, Appliying UML and Patterns, 3ed
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State Machines

Compact representation of all event traces.

input event output event

coin/buzzer

locked unlocked

initial state

[rotated push

rotating

state
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UML StateMachine Diagrams

UML StateMachine Diagrams borrow heavily from David Harel's statecharts.

VARIABLES

reql : boolean := false (* outstanding request for floor1 *)
req2 : boolean := false (* outstanding request for floor2 *)
floor : {1, 2} (* current location of elevator *)
-

-
/reql = false Elevator
/ req2 = false
/floor =1

Stopped N

[reql

floor=1]

after (5 sec) [floor=1]

/ reql = false

after (5 sec) [floor=

[inState(Closed)
reqg2  floor=1]

MovingUp

entry /dir=up

floor=2]

/ req2 = false
entry /open -

entry /move

Closing
entry /close

blockage

closed

[inState(Closed)
reql  floor=2]

MovingDown

entry /dir=down

stopped

arrivingl
[ floor=1

T Y

Slowing
entry /stop

Requests

butl/reql = true

but2 / req2 = true
butUp/ reql = true
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Logic

Logic is the basis for a number of languages that express
constraints on allowable interpretations of other models.

allowable instantiations of data models

Invariants among attribute values in data models

pre/post conditions of functions

event conditions in event traces

guard conditions in state machines



Object Constraint Language

OCL was designed for expressing constraints on UML diagrams.

0.."| FrequentFlyer

program Program

T

Customer
. .| name: String
0.. title: String
program address: String

dateQfBirth: Date

Utility Class

A
N

Date

0..*| partner — owner
ProgramPartner _|0_." 1.*| ServiceLevel 0. menn"‘:s;r[')erslr?tm o
{ name : Sirin provider name : Strin T - Integ
e - : d ints - Integer
v % card | 1..*
1 1.
0 card __ CustomerCard
Service valid: Boolean
description: String izl s [[))atte
condition - Boolean g _ru_ ate _
pointsEarned: Integer colour : enum {gold, sliver}
) ErintedName: Strinﬂ

intsBurned: Integer
1‘

" [unitPurchases: Integer

today ; Date

= (d : Date) : Boolean
isBefore (d : Date) : Boolean
isAfter (d : Date) : Boolean

[

Transaction

context CustomerCard inv
self.printedName = (self.owner.title.concat(self.ownername))

context CustomerCard inv

(self.valid and self.colour=gold) implied self.membership.serviceLevel = "gold"

points: Integer
date : Date
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UML: 13 Different Diagram Types

Structural Behavioural

o Class Diagrams  Interaction Overview Diagrams
e Object Diagrams o Activity Diagrams

e Composite Structure Diagrams e Sequence Diagrams

e Component Diagrams e Communication Diagrams

o Package Diagrams « State Machine Diagrams

e Deployment Diagrams e Timing Diagrams

Functional

e Use Case Diagrams

OCL is a separate language that was invented for writing
constraints on UML models
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What else can be modeled?

Assurance cases

Feature diagrams

Environment and controller
Performance (quantitative models)
Multiple products



Next up: Part 2

Meta-modeling
Mappings between models
DSMLs / generic modeling languages

Introduction to model transformations and
their analysis

Sources: Sahar Kokaly’s lecture in CAS756
(McMaster, 2015), Rich Paige’s lectures in York
University, UK
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