
CSC2125: Modeling Methods, Tools and Techniques
Winter 2018

Marsha Chechik

Department of Computer Science
University of Toronto

Software Models

http://www.cs.toronto.edu/~chechik/courses18/csc2125

1csc2125. Winter 2018, Lecture 2b

Plan for the rest of the lecture

• Part 0. Modeling
• Part 1. Software Models, UML, OCL
• Part 2. Meta-modeling, model mappings,

DSLs / generic languages, model
transformations

• Part 3 (if we have time). How usable are
models?

csc2125. Winter 2018, Lecture 2b 2

csc2125. Winter 2018, Lecture 2b 3

What is Being Modelled?

<postal-address> ::= <name-part> <street-address> <zip-part>
<name-part> ::= <personal-part> <last-name> <opt-jr-part> <EOL>

| <personal-part> <name-part>

E = a KLOCb

csc2125. Winter 2018, Lecture 2b 4

Models as Views

Electrician's
View

Plumber's
View

Interior
Designer's

View

Mason's
View

Interior
Designer's

View

Carpenter's
View

Zoning Law
View

Architect's
View

Tax
Collector's

View

Landlord's
/ Tenant's

View

Every view
• obtained by a different projection, abstraction, translation
• may be expressed in a different notation (modelling language)
• reflects a different intent

csc2125. Winter 2018, Lecture 2b 5

Modelling Paradigms
Fundamental modelling paradigms, each emphasizing some basic
view of the software to be developed.

System
Functionality

System
Interactions

Data
Schema

System
Behaviour

Functionality

Use Cases

Algorithms

Scenarios

Behaviour

Structure

Software
Architecture

Deployment

Constraints

Constraints

csc2125. Winter 2018, Lecture 2b 6

Entity-Relationship Diagrams
An ER diagram is a structural model representing a software
system's data elements and relationships among them.

course student name
id

enrolledtitle
course no.

entity relationship attribute

• originally invented for model database design (Chen, 1976)

• emphasizes concepts/data

• relationships can represent associations, navigability, containment,
dependencies, etc.

csc2125. Winter 2018, Lecture 2b 7

UML Class Diagrams
UML Class Diagrams are an elaborate form of ER diagram.

[Figure from Pfleeger,Atlee, 2009]
csc2125. Winter 2018, Lecture 2b 8

Software Architecture

[Figure from Pfleeger,Atlee, 2009]

A software architecture is high-level model of code structure.

Typically modelled as a "box and arrow" diagram, with a key
explaining the types of components (boxes) and connectors
(arrows).

csc2125. Winter 2018, Lecture 2b 9

UML "Software Architecture" Models

The closest that UML comes to a software architecture model are
UML Package Diagrams and UML Deployment Diagrams.

UML Package Diagram

UML Deployment Diagram

csc2125. Winter 2018, Lecture 2b 10

Data Flow Diagrams (DFDs)
Descriptive model of functional decomposition of the system, and
the data dependencies between functions.

ThermostatThermometer Furnace
air temp

set

on/off
commands

actor processdata flow

data storeair temp

thermostat settings

DFDs model
• collection of functions
• sources and sinks of data
• data dependencies

csc2125. Winter 2018, Lecture 2b 11

Data Flow Diagrams (DFDs)
Although DFDs are good for communicating the big picture, they
are inherently incomplete, undetailed, and ambiguous.

[Figure from M. Jackson, 1995]

csc2125. Winter 2018, Lecture 2b 12

UML Use Case Diagrams
Use Case Diagrams are a very high-level data-flow diagram.

Customer

Online Book Store

actor
Credit

Authorization
Service

Managing

Making
Purchase

Shopping
Cart

Managing
Customer

Info

actor
Bookseller
Inventory

actor

function

Log In

Administrator

Managing
Inventory

data flow

csc2125. Winter 2018, Lecture 2b 13

Flowcharts
Flowcharts are an ancient modelling notation, for representing
behaviour in terms of steps of an algorithm.

Depict control flow rather than data flow

start / stop

input / output

activity

branch

csc2125. Winter 2018, Lecture 2b 14

UMLActivity Charts
UMLActivity Charts are a variation on flowcharts that support
concurrent flows of control. swimlanes

(assign activities to person / role)

activity

fork

control flow

join
object
flow

[Figure from M. Blaha, J. Rumbaugh, 2005]
csc2125. Winter 2018, Lecture 2b 15

Time
life line of
participant

Event Traces
Dynamic model of behaviour showing communication among
entities in one scenario (execution trace).

Shows a slice of behaviour, not complete behaviour.

entities, actors, systems, subsystems, objects

event, message

Visitor Turnstile

coin

buzzer

Visitor Turnstile

slug

slug

slugpush

rotated

csc2125. Winter 2018, Lecture 2b 16

:PurchaseOrder :Product :Product :Product

printReceipt()
print()

print()

print()
result

Time

UML Sequence Diagrams
UML Sequence Diagrams are elaborate event traces....

entities, objects, systems, subsystems, actors
event, method call

execution occurrence
lifeline of object

return message

csc2125. Winter 2018, Lecture 2b 17

doA

:A :B :C

doB

UML Sequence Diagrams
... including branches, loops, concurrency, optional subsequences,
references to other sequence diagrams.

sd AuthenticateUser

ref AuthenticateUserauthenticate(id)

doX

:B :C

authenticate(id)

doM1

doM2

ref DoFoo sd DoFoo

:B :C

doX

doY

doZ

interaction occurrence

note it covers a set of lifelines

note that the sd frame it relates to
has the same lifelines: B and C

Larman, Appliying UML and Patterns, 3ed

csc2125. Winter 2018, Lecture 2b 18

State Machines
Compact representation of all event traces.

coin/buzzer
slug

push/rotated

initial state

rotating

state

transition

input event

locked

output event

unlocked

csc2125. Winter 2018, Lecture 2b 19

Elevator

Stopped

MovingUp

entry /dir=up
entry /move

Slowing

entry /stop

Closed

[req1 floor=1]

Open

entry /open

[req2 floor=2]

after (5 sec) [floor=1]
/ req1 = false

after (5 sec) [floor=2] Closing
/ req2 = false

entry /close

blockage

closed

[inState(Closed)

req1

MovingDown

entry /dir=down

floor=2]

[inState(Closed)
req2 floor=1]

stopped

arriving1
/ floor=1

arriving2
/ floor=2

/ req1 = false
/ req2 = false
/ floor = 1

entry /move

Requests

but1 / req1 = true
but2 / req2 = true
butUp / req1 = true
butDown / req2 = true

UML StateMachine Diagrams
UML StateMachine Diagrams borrow heavily from David Harel's statecharts.

VARIABLES
req1 : boolean := false (* outstanding request for floor1 *)
req2 : boolean := false (* outstanding request for floor2 *)
floor : {1, 2} (* current location of elevator *)

csc2125. Winter 2018, Lecture 2b 20

Logic
Logic is the basis for a number of languages that express
constraints on allowable interpretations of other models.

• allowable instantiations of data models

• invariants among attribute values in data models

• pre/post conditions of functions

• event conditions in event traces

• guard conditions in state machines

csc2125. Winter 2018, Lecture 2b 21

Object Constraint Language
OCL was designed for expressing constraints on UML diagrams.

context CustomerCard inv
self.printedName = (self.owner.title.concat(self.ownername))

context CustomerCard inv
(self.valid and self.colour=gold) implied self.membership.serviceLevel = "gold"

csc2125. Winter 2018, Lecture 2b 22

UML: 13 Different Diagram Types
Structural
• Class Diagrams
• Object Diagrams

• Component Diagrams
• Package Diagrams
• Deployment Diagrams

Behavioural
• Interaction Overview Diagrams
• Activity Diagrams

• Composite Structure Diagrams • Sequence Diagrams
• Communication Diagrams
• State Machine Diagrams
• Timing Diagrams

Functional
• Use Case Diagrams

OCL is a separate language that was invented for writing
constraints on UML models

csc2125. Winter 2018, Lecture 2b 23

What else can be modeled?

• Assurance cases
• Feature diagrams
• Environment and controller
• Performance (quantitative models)
• Multiple products
• …..

csc2125. Winter 2018, Lecture 2b 24

Next up: Part 2

• Meta-modeling
• Mappings between models
• DSMLs / generic modeling languages
• Introduction to model transformations and

their analysis

• Sources: Sahar Kokaly’s lecture in CAS756
(McMaster, 2015), Rich Paige’s lectures in York
University, UK

csc2125. Winter 2018, Lecture 2b 25

References
[BlRu05] M. Blaha, J. Rumbaugh, Object-Oriented Modeling and Design
with UML, 2ed, Prentice hall, 2005.

[BRJ05] G. Booch, J. Rumbaugh, I. Jacobson. UML User Guide. 2nd
Edition. Addison Wesley. 2005.

[EJ09] S. Easterbrook, T. Johns, "Engineering the Software for
Understanding Climate Change," Computing in Science and Engineering,
pp. 65-74, November/December, 2009

[Jac95] M. Jackson, Software Requirements and Specifications, ACM
Press, 1995.

[Kra07] J. Kramer. "Is Abstraction the key to Computing?"
Communications of the ACM. April 2007/Vol. 50, No. 4.

[KSLB03] G. Karsai, J. Sztipanovits, A. Ledeczi, T. Bapty. "Model-
Integrated Development of Embedded Software.", Proc. IEEE, Jan 2003,
pp 145-164.

csc2125. Winter 2018, Lecture 2b 26

[Sel03] Bran Selic, "The Pragmatics of Model-Driven Development," IEEE
Software, vol. 20, no. 5, pp. 19-25, Sep./Oct. 2003.

[Sta73] H. Stachowiak, Allgemeine Modelltheorie, Springer-Verlag, 1973.

References
[KT08] S. Kelly and J.-P. Tolvanen. Domain-Specific Modeling: Enabling Full
Code Generation. Wiley 2008.

[Lud04] Ludewig, J. 2004. "Models in software engineering--an introduction".
Software and Systems Modeling 2, 5-14.

[PfAt09] S. Pfleeger, J. Atlee, Software Engineering: Theory and Practice,
Prentice Hall, 2009.

[RJB05] Rumbaugh, Jacobson, Booch, The Unified Modeling Language
Reference Manual, 2nd ed., Addison-Wesley, 2005.

[Sch06] D.C. Schmidt. "Model-Driven Engineering." IEEE Computer, vol. 39, no.
2, Feb. 2006. Page(s):25 - 31

[Sei03] Ed Seidewitz. "What Models Mean." IEEE Software, vol. 20, no. 5, pp.
26-32, Sep./Oct. 2003.

csc2125. Winter 2018, Lecture 2b 27

	Slide Number 1
	Plan for the rest of the lecture
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	What else can be modeled?
	Next up: Part 2
	Slide Number 26
	Slide Number 27

