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Plan for the rest of the lecture

• Part 0.  Modeling
• Part 1.  Software Models, UML, OCL
• Part 2.  Meta-modeling, model mappings, 

DSLs / generic languages, model 
transformations

• Part 3 (if we have time).  How usable are 
models?  
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What is Being Modelled?

<postal-address> ::= <name-part> <street-address> <zip-part>
<name-part> ::= <personal-part> <last-name> <opt-jr-part> <EOL>

| <personal-part> <name-part>

E = a KLOCb
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Models as Views

Electrician's
View

Plumber's
View

Interior
Designer's

View

Mason's
View

Interior
Designer's

View

Carpenter's
View

Zoning Law
View

Architect's
View

Tax
Collector's

View

Landlord's
/ Tenant's

View

Every view
• obtained by a different projection, abstraction, translation
• may be expressed in a different notation (modelling language)
• reflects a different intent
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Modelling Paradigms
Fundamental modelling paradigms, each emphasizing some basic
view of the software to be developed.

System
Functionality

System
Interactions

Data
Schema

System
Behaviour

Functionality

Use Cases

Algorithms

Scenarios

Behaviour

Structure

Software
Architecture

Deployment

Constraints

Constraints
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Entity-Relationship Diagrams
An ER diagram is a structural model representing a software
system's data elements and relationships among them.

course student name
id

enrolledtitle
course no.

entity relationship attribute

• originally invented for model database design (Chen, 1976)

• emphasizes concepts/data

• relationships can represent associations, navigability, containment,
dependencies, etc.
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UML Class Diagrams
UML Class Diagrams are an elaborate form of ER diagram.

[ Figure from Pfleeger,Atlee, 2009]
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Software Architecture

[ Figure from Pfleeger,Atlee, 2009]

A software architecture is high-level model of code structure.

Typically modelled as a "box and arrow" diagram, with a key
explaining the types of components (boxes) and connectors
(arrows).
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UML "Software Architecture" Models

The closest that UML comes to a software architecture model are
UML Package Diagrams and UML Deployment Diagrams.

UML Package Diagram

UML Deployment Diagram
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Data Flow Diagrams (DFDs)
Descriptive model of functional decomposition of the system, and
the data dependencies between functions.

ThermostatThermometer Furnace
air temp

set

on/off
commands

actor processdata flow

data storeair temp

thermostat settings

DFDs model
• collection of functions
• sources and sinks of data
• data dependencies
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Data Flow Diagrams (DFDs)
Although DFDs are good for communicating the big picture, they
are inherently incomplete, undetailed, and ambiguous.

[ Figure from M. Jackson, 1995 ]
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UML Use Case Diagrams
Use Case Diagrams are a very high-level data-flow diagram.

Customer

Online Book Store

actor
Credit

Authorization
Service

Managing

Making
Purchase

Shopping
Cart

Managing
Customer

Info

actor
Bookseller
Inventory

actor

function

Log In

Administrator

Managing
Inventory

data flow
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Flowcharts
Flowcharts are an ancient modelling notation, for representing
behaviour in terms of steps of an algorithm.

Depict control flow rather than data flow

start / stop

input / output

activity

branch
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UMLActivity Charts
UMLActivity Charts are a variation on flowcharts that support
concurrent flows of control. swimlanes

(assign activities to person / role)

activity

fork

control flow

join
object
flow

[ Figure from M. Blaha, J. Rumbaugh, 2005 ]
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Time
life line of
participant

Event Traces
Dynamic model of behaviour showing communication among
entities in one scenario (execution trace).

Shows a slice of behaviour, not complete behaviour.

entities, actors, systems, subsystems, objects

event, message

Visitor Turnstile

coin

buzzer

Visitor Turnstile

slug

slug

slugpush

rotated
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:PurchaseOrder :Product :Product :Product

printReceipt()
print()

print()

print()
result

Time

UML Sequence Diagrams
UML Sequence Diagrams are elaborate event traces....

entities, objects, systems, subsystems, actors
event, method call

execution occurrence
lifeline of object

return message
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doA

:A :B :C

doB

UML Sequence Diagrams
... including branches, loops, concurrency, optional subsequences,
references to other sequence diagrams.

sd AuthenticateUser

ref AuthenticateUserauthenticate(id)

doX

:B :C

authenticate(id)

doM1

doM2

ref DoFoo sd DoFoo

:B :C

doX

doY

doZ

interaction occurrence

note it covers a set of lifelines

note that the sd frame it relates to
has the same lifelines: B and C

Larman, Appliying UML and Patterns, 3ed
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State Machines
Compact representation of all event traces.

coin/buzzer
slug

push/rotated

initial state

rotating

state

transition

input event

locked

output event

unlocked
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Elevator

Stopped

MovingUp

entry /dir=up
entry /move

Slowing

entry /stop

Closed

[req1 floor=1]

Open

entry /open

[req2 floor=2]

after (5 sec) [floor=1]
/ req1 = false

after (5 sec) [floor=2] Closing
/ req2 = false

entry /close

blockage

closed

[inState(Closed)

req1

MovingDown

entry /dir=down

floor=2]

[inState(Closed)
req2 floor=1]

stopped

arriving1
/ floor=1

arriving2
/ floor=2

/ req1 = false
/ req2 = false
/ floor = 1

entry /move

Requests

but1 / req1 = true
but2 / req2 = true
butUp / req1 = true
butDown / req2 = true

UML StateMachine Diagrams
UML StateMachine Diagrams borrow heavily from David Harel's statecharts.

VARIABLES
req1 : boolean := false (* outstanding request for floor1 *)
req2 : boolean := false (* outstanding request for floor2 *)
floor : {1, 2} (* current location of elevator *)
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Logic
Logic is the basis for a number of languages that express
constraints on allowable interpretations of other models.

• allowable instantiations of data models

• invariants among attribute values in data models

• pre/post conditions of functions

• event conditions in event traces

• guard conditions in state machines
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Object Constraint Language
OCL was designed for expressing constraints on UML diagrams.

context CustomerCard inv
self.printedName = (self.owner.title.concat(self.ownername))

context CustomerCard inv
(self.valid and self.colour=gold) implied self.membership.serviceLevel = "gold"
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UML: 13 Different Diagram Types
Structural
• Class Diagrams
• Object Diagrams

• Component Diagrams
• Package Diagrams
• Deployment Diagrams

Behavioural
• Interaction Overview Diagrams
• Activity Diagrams

• Composite Structure Diagrams • Sequence Diagrams
• Communication Diagrams
• State Machine Diagrams
• Timing Diagrams

Functional
• Use Case Diagrams

OCL is a separate language that was invented for writing
constraints on UML models
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What else can be modeled?

• Assurance cases
• Feature diagrams
• Environment and controller
• Performance (quantitative models)
• Multiple products
• …..
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Next up:  Part 2

• Meta-modeling
• Mappings between models
• DSMLs / generic modeling languages
• Introduction to model transformations and 

their analysis

• Sources:  Sahar Kokaly’s lecture in CAS756 
(McMaster, 2015), Rich Paige’s lectures in York 
University, UK
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