CSC2125: Modeling Methods, Tools and Techniques
Winter 2018

Marsha Chechik

Department of Computer Science
University of Toronto

Software Models

http://www.cs.toronto.edu/~chechik/courses18/csc2125

csc2125. Winter 2018, Lecture 2b

Plan for the rest of the lecture

Part 0. Modeling

Part 1. Software Models, UML, OCL

Part 2. Meta-modeling, model mappings,
DSLs / generic languages, model
transformations

Part 3 (if we have time). How usable are
models?

csc2125. Winter 2018, Lecture 2b

Model Driven Engineering

First: Models

<postal-address> ::= <name-part> <street-address> <zip-part>
<name-part> ::= <personal-part> <last-name> <opt-jr-part> <EOL>

What Is Being Modelled?

i —

welramgn hiugas
o A B .

*"T;

=

| <personal-part> <name-part>

Urenmmar Examr u
L,
WaMlzrger HTRL clenh Tk
Enmur e Agpld e iy
Cltyree | Jer
Inferiet
il e ane
SELOR MATparERIE
Risks (Failure Modes)
Participant | Partaipant | Room with required | System response | Important
doss not | does notreply | equipmentisnot [s too close to participant has last | Overall single effect
read emalls | forequests | avallable meeting minute change of countermeas|
Criticality (risk) 0.264 0468 0.01 0.297 0.375
Email reminder sent 07 07 0 0.1 0 0.542
Change the meeting,
increase time range 02 02 0 01 0 0176
System has acoess
0 personal
9-agendas 03 02 01 02 03 0.346
Change the meeting,
fewer constraints
{equipment] 0 0 09 0 0 009
Gancel a mesting
and send email
confimation 08 08 1 0.7 09 1141
Gombined risk
reduction 0.966 0.962 1 0.808 0.93

Preseelin Sondie (s ey
Frasery periers. British Library, THA

g i o
O b of sooders = R

L Teedca=| I
. Bgn o B - W

ﬂ'::l:-e-e»

e
= | L
L e T —
- P i s s e . 4

packets .. ———
= SRS
L T e —

keviess_entry — power_locks

csc2125. Winter 2018, Lecture 2b

Models as Views

' Mason's
Car'pe:n'rer s View
Architect's View
View ‘ Electrician's |
Collector's — =] Plumber's
View - L - View
Landlord "s / \ \ Interior
/ T\?ﬂﬂﬂf s Designer's
i Zoning Law Imferior: View
View Designer's
View

Every view
« obtained by a different projection, abstraction, translation
e may be expressed in a different notation (modelling language)
« reflects a different intent

csc2125. Winter 2018, Lecture 2b

Modelling Paradigms

Fundamental modelling paradigms, each emphasizing some basic
view of the software to be developed.

Structure Data System Functionality
Schema Functionality
Software
Architecture \ Use Cases
\ . /
‘ Deployment | i ‘ Algorithms |
: / \ Scenarios
Constraints
Constraints System System _
Behaviour Interactions Behaviour

csc2125. Winter 2018, Lecture 2b

Entity-Relationship Diagrams

An ER diagram is a structural model representing a software
system's data elements and relationships among them.

entity relationship attribute

title course enrolled student name
course no. L id

 originally invented for model database design (Chen, 1976)

* emphasizes concepts/data

« relationships can represent associations, navigability, containment,
dependencies, etc.

csc2125. Winter 2018, Lecture 2b

UML Class Diagrams

UML Class Diagrams are an elaborate form of ER diagram.

Patron Publication
i *
patron I[::l_nteger (t))--l borll'ows 0. * | call number - o
name : string orrower } al numt
address : string Eettllﬁé ?trréglg

fines : real o
depreciation : real

oan period : Duration
Loan fine rate : real

increase fines(amount:real); reserve loan period : Duration
pay fines(amount:real); due date : Date arelhnetr= el

recallNotify(pub:Publication) overdue fine : real recall period : Duration

calc due date(operation:string) loan state: {inlibrary, onloan}

calc overdue fine() reserve state : {stacks, reserve}
renew()
recall()

checkfines() : {fine, nofine};

find(title : string) : Publication

buy()

lose ()
borrow(patron:Patron)
return()

reserve()

unreserve()
decreasevalue()

7N

Book Periodical

editor: string

volume : integer
number : integer

loan period : Duration
fine rate : real

author : string

¢

Article
author : string

[Figure from Pfleeger, Atlee, 2009]

csc2125. Winter 2018, Lecture 2b

Software Architecture

A software architecture is high-level model of code structure.

Typically modelled as a "box and arrow" diagram, with a key
explaining the types of components (boxes) and connectors
(arrows).

KEY - - -
Web Web Desktop Client Application
Browser Erowser Application and Presentation
Server b T
: Web Server-side
repasitory Server Presentation
=11 publish/subscribe / \
—> request/reply Apg-l[cﬂtinn A'pPl’LﬂH an Business
_' database queries, erver Server Legic
transactions t X t
) nterprise
Application Application Enf nr‘pl?nﬂﬂnn
Database Database Systems

[Figure from Pfleeger, Atlee, 2009]

csc2125. Winter 2018, Lecture 2b

UML "Software Architecture" Models

The closest that UML comes to a software architecture model are
UML Package Diagrams and UML Deployment Diagrams.

[]

wlayers
Prasentation

T

alayers
User Interface

—Iu.-'

wlayers
Business Logic

.
.ff kS
R . i
e k|
wlLayers wlLayers
Data Access Services
T
I
|
i
wlayers
Persisience

UML Package Diagram

Workstation

i Keyboard/maniteT”__] Web browser

lser

Database Sanver

TCEAP
or local socke

(=

HTTPMHTTPS connection

Web Sever

Presentation laye
{weh interface)

{HH

MySQL database|

UML Deployment Diagram

csc2125. Winter 2018, Lecture 2b

E_f:l Diatabase interfac% Log file

AF

10

Data Flow Diagrams (DFDs)

Descriptive model of functional decomposition of the system, and
the data dependencies between functions.

actor process

/ data flow
air temp
Thermometer

Thermostat

on/off
commands
» [Furnace

air temp data store

/

set

thermostat settings

DFDs model

e collection of functions
e sources and sinks of data
 data dependencies

csc2125. Winter 2018, Lecture 2b 11

Data Flow Diagrams (DFDs)

Although DFDs are good for communicating the big picture, they
are inherently incomplete, undetailed, and ambiguous.

Payment

/~ Quoting
Invoice Nao

Customers

Full
Payment

Request

Invoice and
Payment Details

Invoice by

invoice and

Payment Details

Without
Invoice No

Payments

Untraced

Payments Payment

Produce

Search
for Invoice

Compare
Amount
d
Full
TN _/ |Payment
Part
Payment

Payment Explanation
Request
. Customers

Untraced
Payments

Payment
Details
for Banking

[Figure from M. Jackson, 1995]

csc2125. Winter 2018, Lecture 2b

12

UML Use Case Diagrams

Use Case Diagrams are a very high-level data-flow diagram.

Online Book Store
function _

: actor
Making Credit
Purchase Authorization

A Service
anaging
Shopping

Customer Cart actor
Bookseller
Inventory

Managing
Customer
Info

SS N /

Administrator
Managing
Inventory

data flow

csc2125. Winter 2018, Lecture 2b

Flowcharts

Flowcharts are an ancient modelling notation, for representing
behaviour in terms of steps of an algorithm.

Depict control flow rather than data flow

SBTART | cewmmmmmmem oo start / stop
ReadMN & .. . ____ input / OUtpUt
— ..
e activity
F=F*M
Mo s
M=M+1 M:N? _______________ branch
b=
Frint F
ENC

csc2125. Winter 2018, Lecture 2b

14

UMLACctivity Charts

UMLACctivity Charts are a variation on flowcharts that support
concurrent flows of control.

swimlanes

(assign actlvm(;s to person / role)

—_——~
. -
- =

- il ot
Customer Sales Stockroom
- - - - .| Request Service) C
Order
|_—| [Placed]
______ "nl: /_/'/—N
Take Order =
ar
------------- ﬂ’"*{ [Entered]
\
Order 1l
..-r"'-'f“'r
....................... ?&..S\f
Order Deliver Order
"""" [Dealiverad] = |
e vy

csc2125. Winter 2018, Lecture 2b

[Figure from M. Blaha, J. Rumbaugh, 2005]

15

Event Traces

Dynamic model of behaviour showing communication among

entities in one scenario (execution trace).

Shows a slice of behaviour, not complete behaviour.

entities, actors, systems, subsystems, objects
/ \

1 \
Visitor Turnstile Visitor

Turnstile
event, message
coin > slug >
< buzzer slug >
push > slug > life line of
Time , participant
< rotated ’
v

csc2125. Winter 2018, Lecture 2b

16

UML Sequence Diagrams

UML Sequence Diagrams are elaborate event traces....

event, method call

Time

entities, objects, s?s sWtors

printReceipt()

:PurchaseOrder ‘Product :Product :Product
print() i i
print{) i i
- print() i i

é ________________
\ result \

return message

lifeline of object

csc2125. Winter 2018, Lecture 2b

execution occurren

P LELEEELEEEY T

e

... Including branches, loops, concurrency, optional subsequences,

UML Sequence Diagrams

references to other sequence diagrams.

sd AuthenticateUser /

‘B :C
‘A ‘B :C
' ' ! authenticate(id) | l
._thX I : : ."I I
. doA > | | : doM1 |
| B | | >
: ' I : doM2 Irll
: authenticate(id) - ref ~ AuthenticateUser : :
| |
: | |
: ref J DOEoo sd DoFoo /	
	o B C
/	
interaction occurrence k __,,m{ : doX H	
note it covers a set of lifelines / I doY p	
note that the sd frame it relates to : doZ hl	

has the same lifelines: B and C

Larman, Appliying UML and Patterns, 3ed

csc2125. Winter 2018, Lecture 2b

18

State Machines

Compact representation of all event traces.

input event output event

coin/buzzer

locked unlocked

initial state

[rotated push

rotating

state

csc2125. Winter 2018, Lecture 2b

transition

19

UML StateMachine Diagrams

UML StateMachine Diagrams borrow heavily from David Harel's statecharts.

VARIABLES

reql : boolean := false (* outstanding request for floor1 *)
req2 : boolean := false (* outstanding request for floor2 *)
floor : {1, 2} (* current location of elevator *)
-

-
/reql = false Elevator
/ req2 = false
/floor =1

Stopped N

[reql

floor=1]

after (5 sec) [floor=1]

/ reql = false

after (5 sec) [floor=

[inState(Closed)
reqg2 floor=1]

MovingUp

entry /dir=up

floor=2]

/ req2 = false
entry /open -

entry /move

Closing
entry /close

blockage

closed

[inState(Closed)
reql floor=2]

MovingDown

entry /dir=down

stopped

arrivingl
[floor=1

T Y

Slowing
entry /stop

Requests

butl/reql = true

but2 / req2 = true
butUp/ reql = true

csc2125. Winter 2018, Lecture 2b

Logic

Logic is the basis for a number of languages that express
constraints on allowable interpretations of other models.

allowable instantiations of data models

Invariants among attribute values in data models

pre/post conditions of functions

event conditions in event traces

guard conditions in state machines

Object Constraint Language

OCL was designed for expressing constraints on UML diagrams.

0.."| FrequentFlyer

program Program

T

Customer
. .| name: String
0.. title: String
program address: String

dateQfBirth: Date

Utility Class

A
N

Date

0..*| partner — owner
ProgramPartner _|0_." 1.*| ServiceLevel 0. menn"‘:s;r[')erslr?tm o
{ name : Sirin provider name : Strin T - Integ
e - : d ints - Integer
v % card | 1..*
1 1.
0 card __ CustomerCard
Service valid: Boolean
description: String izl s [[))atte
condition - Boolean g _ru_ ate _
pointsEarned: Integer colour : enum {gold, sliver}
) ErintedName: Strinﬂ

intsBurned: Integer
1‘

" [unitPurchases: Integer

today ; Date

= (d : Date) : Boolean
isBefore (d : Date) : Boolean
isAfter (d : Date) : Boolean

[

Transaction

context CustomerCard inv
self.printedName = (self.owner.title.concat(self.ownername))

context CustomerCard inv

(self.valid and self.colour=gold) implied self.membership.serviceLevel = "gold"

points: Integer
date : Date

csc2125. Winter 2018, Lecture 2b

diff” - Duration

22

UML: 13 Different Diagram Types

Structural Behavioural

o Class Diagrams Interaction Overview Diagrams
e Object Diagrams o Activity Diagrams

e Composite Structure Diagrams e Sequence Diagrams

e Component Diagrams e Communication Diagrams

o Package Diagrams « State Machine Diagrams

e Deployment Diagrams e Timing Diagrams

Functional

e Use Case Diagrams

OCL is a separate language that was invented for writing
constraints on UML models

csc2125. Winter 2018, Lecture 2b

23

What else can be modeled?

Assurance cases

Feature diagrams

Environment and controller
Performance (quantitative models)
Multiple products

Next up: Part 2

Meta-modeling
Mappings between models
DSMLs / generic modeling languages

Introduction to model transformations and
their analysis

Sources: Sahar Kokaly’s lecture in CAS756
(McMaster, 2015), Rich Paige’s lectures in York
University, UK

References

[BIRUO5] M. Blaha, J. Rumbaugh, Object-Oriented Modeling and Design
with UML, 2ed, Prentice hall, 2005.

[BRJO5] G. Booch, J. Rumbaugh, I. Jacobson. UML User Guide. 2nd
Edition. Addison Wesley. 2005.

[EJO9] S. Easterbrook, T. Johns, "Engineering the Software for
Understanding Climate Change," Computing in Science and Engineering,
pp. 65-74, November/December, 2009

[Jac95] M. Jackson, Software Requirements and Specifications, ACM
Press, 1995.

[Kra07] J. Kramer. "Is Abstraction the key to Computing?"
Communications of the ACM. April 2007/\Vol. 50, No. 4.

[KSLBO03] G. Karsal, J. Sztipanovits, A. Ledeczi, T. Bapty. "Model-
Integrated Development of Embedded Software.", Proc. IEEE, Jan 2003,
pp 145-164.

References

[KTO08] S. Kelly and J.-P. Tolvanen. Domain-Specific Modeling: Enabling Full
Code Generation. Wiley 2008.

[Lud04] Ludewig, J. 2004. "Models in software engineering--an introduction".
Software and Systems Modeling 2, 5-14.

[PTAL09] S. Pflecger, J. Atlee, Software Engineering: Theory and Practice,
Prentice Hall, 2009.

[RIBO5] Rumbaugh, Jacobson, Booch, The Unified Modeling Language
Reference Manual, 2nd ed., Addison-Wesley, 2005.

[Sch06] D.C. Schmidt. "Model-Driven Engineering." IEEE Computer, vol. 39, no.
2, Feb. 2006. Page(s):25 - 31

[Sei03] Ed Seidewitz. "What Models Mean." IEEE Software, vol. 20, no. 5, pp.

26-32, Sep./Oct. 2003.
[Sel03] Bran Selic, "The Pragmatics of Model-Driven Development,” IEEE
Software, vol. 20, no. 5, pp. 19-25, Sep./Oct. 2003.

[Sta73] H. Stachowiak, Allgemeine Modelltheorie, Springer-Verlag, 1973.

	Slide Number 1
	Plan for the rest of the lecture
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	What else can be modeled?
	Next up: Part 2
	Slide Number 26
	Slide Number 27

