
CSC2125: Modeling Methods, Tools and Techniques

Winter 2018

Marsha Chechik

Department of Computer Science

University of Toronto

Intro and Organizational Meeting

http://www.cs.toronto.edu/~chechik/courses18/csc2125

UofT: CSC2125: Modeling, Winter 2018 1

About Me

• Ph.D. from Maryland

• At UofT since 1996

• General interests: verification (of programs), model-checking,
analysis, modeling, product lines, safety

• Office: BA3246, x3820, chechik@cs.toronto.edu

• Office Hours: after class (Monday at 4) and by appointment

UofT: CSC2125: Modeling, Winter 2018 2

Acknowledgements

• (many) slides/ideas from
• Jourgen Dingel (Queens)

• Jordi Cabot/J. Bezivin (U. Nantes)

• KSU CIS 842 (J. Hatcliff and M. Dwyer)

• T. Ruys (U Twente)

• J. Atlee (U Waterloo)

• E. Posse (Queen’s)

• I. Krueger (UCSD)

• (other sources are cited)

UofT: CSC2125: Modeling, Winter 2018 4

Several Similar Terms
Model Driven Development (MDD)

- the general notion that we can construct a model of a software

system and transform it into software

Model Driven Architecture (MDA)

- the developer creates a software model that abstracts away the

program's execution platform (e.g., the Web, CORBA, ,NET)

- tools can generate an implementation for a specific platform
automatically

Model Driven Engineering (MDE)

- the developer creates a model in terms of the user's domain,

abstracting away software-technology concepts (e.g., algorithms,

execution platform, programming language)
- tools generate an implementation automatically

Model Based Software Engineering (MBSE)
- An approach to software development in which the focus and

primary artifacts of development are models (vs programs)

UofT: CSC2125: Modeling, Winter 2018 5

This lecture

• Motivation

• Software development is hard

• It won’t get any easier

• Need more powerful techniques and tools

• Course overview / Admin stuff

UofT: CSC2125: Modeling, Winter 2018 6

What is Software?

“The programs, routines, and symbolic languages that control
the functioning of the hardware and direct its operation.”

American Heritage Dictionary

Software Hardware

?

!

Application
Domain

UofT: CSC2125: Modeling, Winter 2018 7

What is Software: Crucial

• Crucial to functioning of modern society

• critical infrastructure
• transportation

• energy

• water

• communication

• business and finance

• health care

• military

• entertainment

• education

• …

8UofT: CSC2125: Modeling, Winter 2018

What is Software: Complex (Cont’d)

• Windows 95
• 11 million lines of code

• > 200 programmers &

testers

• Windows NT
• > 16 million lines of code

• Windows XP
• 35 million lines of code

• Windows Vista
• > 50 million lines of code

 Cellphone (2005)
• 2 million lines of code

 Car
• 1981: 50,000 lines of code

• 2005: 10 million lines of code

• 2010: 100 million lines of code

 Pacemaker
• 100,000 lines of code

Software is one of the most

complex man-made artifacts!

But perhaps “Lines of code”

is a poor measure of complexity?!

[Source: “Why Software Fails”. R.N. Charette. IEEE Spectrum, Sept 2005]

UofT: CSC2125: Modeling, Winter 2018 9

What is Software: Complex (Cont’d)
• State of a program P

• snapshot of execution of P mapping variables to values

• e.g., <x=1, y=0, z=42, flag=true, A=[0,0,0]>

• State space of P

• set of reachable states of P

• State spaces can be very large

• in Java, a single integer: 4.2 billion (109) possible values

• a program with 2 integers: >16,000 quadrillion (1015) possible states

UofT: CSC2125: Modeling, Winter 2018 10

What is the size of the

state space of Windows XP?

pic of verisoft state space here

Controller ACSensor

Software is one of the most

complex man-made artifacts!

What is Software: Failing

UofT: CSC2125: Modeling, Winter 2018 11

Consequences of this complexity (Cont’d)
 Failing software

• money

 Examples: ESA Ariane 5, Mars Climate Orbiter, Skype bug in ’07,

blackout in ’04, MS Zune bug in ’09, US telephone system, …

 Cost of errors in software in US in 2001:

• lives

 Therac 25, …

 More details
 Peter Neumann’s www.risks.org

 Ivars Peterson. Fatal Defect: Chasing Killer Computer Bugs. Vintage

Books, New York, 1996.

[Source: US National Institute of
Standards and Technology] US$ 60B

UofT: CSC2125: Modeling, Winter 2018 12

Example: Therac-25 (1985-87)

• Radiotherapy machine with SW controller

• Several deaths due to burning

• Problems:
• “poor SWE practices”,

• error messages cryptic/undocumented,

• false error messages,

• user interface w/o safety checks

• References:
• N.G. Leveson and C.S. Turner. An Investigation of the Therac-25 accidents. Computer,

26(7):18-41, July 1993.

UofT: CSC2125: Modeling, Winter 2018 13

Example: ESA Ariane 5 (June 1996)

• On June 4, 1996, unmanned Ariane 5 launched by ESA explodes 40 seconds
after lift-off

• One decade of development costing $7 billion lost

• Rocket and cargo valued at $500 million destroyed

• What went wrong?
• Bad reuse of code from Ariane 4

• Bad fault-tolerance mechanism

• Bad coding practices

UofT: CSC2125: Modeling, Winter 2018 14

Example: ESA Ariane 5 (June 1996) (Cont’d)
• Example of how not to do reuse:

• Parts of Flight Control System (FCS)

taken from Ariane 4

• Horizontal velocity much greater for Ariane 5

• Unprotected conversion operation in FCS causes error

• On-board computer (OBC) interprets error code as flight data

• …

• Launcher self-destructs

• Example of how not to achieve fault-tolerance:
• FCS and backup FCS identical, thus backup also failed

• Example of how not to code:
• When code caused exception, it wasn’t even needed anymore

• References:
• [Gle96] and www.ima.umn.edu/~arnold/disasters/ariane.html

UofT: CSC2125: Modeling, Winter 2018 15

Example: NASA Mars Climate Orbiter (1999)

• Some programs worked in English units,
some metric units

• Conversion from English to metric forgotten

• Instead of 65 miles probe attempted to
orbit 65 km

(40 miles) above Mars

• $327M lost

• References:
• http://mars.jpl.nasa.gov/msp98/

orbiter/

UofT: CSC2125: Modeling, Winter 2018 16

Example: NASA Mars PathFinder

• Launched December 4, 1996

• A few days after landing on Mars, the Sojourner rover
tasks began missing their deadlines causing total
system resets

• Problem: priority inversion is the scenario where a low
priority task holds a shared resource that is required by
a high priority task

• Reference:

http://research.microsoft.com/en-us/um/

people/mbj/mars_pathfinder/

Authoritative_Account.html

UofT: CSC2125: Modeling, Winter 2018 17

Example: Skype

UofT: CSC2125: Modeling, Winter 2018 18

Example: The Blackout Bug

• 50 Million people w/o electricity

• Worst black out in North American history

• Cause: Race condition in alarm system (10^6Loc of C)

<snip>

<snip>
UofT: CSC2125: Modeling, Winter 2018 19

In the Future: Two Main Forces

Today Tomorrow

1.Computerization: mechanic &

manual

electronic &

automatic

2. Integration:
stand-alone &

incompatible

networked &

interoperable

more features, capabilities,
productivity, efficiency, …

UofT: CSC2125: Modeling, Winter 2018 20

Computerization: Example

• for innovation

[from A. Sangiovanni-Vincenticelli]

UofT: CSC2125: Modeling, Winter 2018 21

Computerization: Example (Cont’d)

• for safety

[from A. Sangiovanni-Vincenticelli]

UofT: CSC2125: Modeling, Winter 2018 22

Computerization: Example (Cont’d)

• The tire as intelligent sensor

UofT: CSC2125: Modeling, Winter 2018 23

[from A. Sangiovanni-Vincenticelli]

Computerization: Example (Cont’d)

• Software content could increase 100x in next 5-6 years!

[from A. Sangiovanni-Vincenticelli]

UofT: CSC2125: Modeling, Winter 2018 24

Integration: Examples

• Government
• IRS tax system: 100 million lines of code

• Health care
• HL7 standards (www.hl7.org)

• for exchange, management and integration

of electronic healthcare information

• Energy
• “smart-grid” projects in US

• Transportation

• Business and finance

• Military

• Communications

“Systems of Systems”
“Ultra-large-scale Systems”

UofT: CSC2125: Modeling, Winter 2018 25

A possible solution?
Model-Based Software Engineering

An approach to software development in which the focus and

primary artifacts of development are models (vs programs)

CP1
CP2 CP3

Consistency

Model
Checker

Confidence in

Correctness

Models
Asset

Repository

Model
Visualization

Model
Synthesis

Code
Generator

Product

Constraint

Simulation

Raises the abstraction level

Enables early analysis of product

Improves product quality and developer

productivity through automation

UofT: CSC2125: Modeling, Winter 2018 26

Modeling - a weapon to tame complexity?

• abstraction

• automation

• analysis

• decomposition

• reuse

UofT: CSC2125: Modeling, Winter 2018 27

key ingredients
to MDD
(and engineering
in general)

UofT: CSC2125: Modeling, Winter 2018 28

UofT: CSC2125: Modeling, Winter 2018 29

Bill Gates on the Topic

"Modeling is the future ...

And the promise here is that you write a lot less code,

that you have a model of the business process ...

So, modeling is pretty magic stuff, whether it's

management problems or business customization

problems or work-flow problems, visual modeling ...

It's probably the biggest thing going on ..."

Bill Gates. "What is Bill Gate Thinking? Interview", eWeek.com, 3/30/2004

UofT: CSC2125: Modeling, Winter 2018 30

A look over the fence

Software Engineering currently isn’t like engineering at all!

1. build (mathematical) models

2. analyze models rigorously

3. refine models

4. build artifact

5. little testing

1. some (informal) modeling

2. build artifact

3. some (informal) reuse

4. lots of testing

Engineering Software Engineering

Characteristics

• Very rigorous
• “front-loaded”
• Main QA technique:

Modeling & analysis

• Mostly informal
• “back-loaded”
• Main QA technique:

Testing (often >50% of
total development effort)

Characteristics

UofT: CSC2125: Modeling, Winter 2018 31

A look over the fence (Cont’d)
engineering:

“The application of scientific and mathematical principles to practical
ends such as the design, manufacture, and operation of efficient and
economical structures, machines, processes, and systems”

American Heritage Dictionary

software engineering:

“The application of a systematic, disciplined, quantifiable

approach to the development, operation, and

maintenance of software, that is, the application of

engineering to software” IEEE Standard 610.12

Yeah, right!
UofT: CSC2125: Modeling, Winter 2018 32

Modeling to the rescue

• Modeling is key to almost all human decision making

• Modeling is key to other engineering disciplines

• However, the role of models in software development is still
relatively small

• documentation, communication

• when was the last time you’ve used a model of software for
analysis?

UofT: CSC2125: Modeling, Winter 2018 33

What is Software Development?

“The system shall
do this, that, and
the other thing” manual,

costly,
error-prone

automatic,
cheap,

well-understood

“arrow
of pain”

“arrow
of joy”

UofT: CSC2125: Modeling, Winter 2018 34

A Look at History
40 years ago

Today

How do we shorten the “arrow of pain” further?

“The system
shall do this,
that, and the
other thing”

“The system
shall do this,
that, and the
other thing”

UofT: CSC2125: Modeling, Winter 2018 35

•

•

•

•

Declarative query is mapped to an relational algebra expression

Each expression represents a unique program

Expression is optimized using algebraic identities

Efficient program generated from expression

Relational Query Optimization (RQO)

SQL
select

statement

parser

inefficient
relational

algebra

expression

efficient
relational

algebra

expression
optimizer

declarative

domain-specific

language

automatic

programming

code

generator

efficient

programgenerative

programming

©Don Batory

UofT: CSC2125: Modeling, Winter 2018 36

Two Very Important Weapons

Weapon 1: Abstraction

• Put more and more higher-level

concepts into programming languages

• Examples:

• variables, basic data types (bool, arrays)

• abstract data types (data abstraction)

• functions and procedures (procedural abstraction)

• objects

• semaphores, locks

Weapon 2: Automation

• automatically compile high-level concepts
into executable code

but what makes this work in practice is

A
b

stractio
n A

u
to

m
at

io
n

…, Python,

C#, Java, VB,

C++, Ada,

Modula-2,

Smalltalk-80,

Basic, C,

Prolog, PL/1,

APL, Cobol,

LISP, Algol,

Fortran,

Assembler,

Machine

code

UofT: CSC2125: Modeling, Winter 2018 37

Better Programming Languages

• E.g., Scratch, Fortress, Go

UofT: CSC2125: Modeling, Winter 2018 38

scratch.mit.edu projectfortress.sun.com

But that is not the only thing!

We also need “to approach

the problem from the top”!

golang.org

Model-Driven Development

• Main goal:

• increase level of abstraction (weapon 1)

• through use of models

• increase degree of automation (weapon 2)

• e.g., via code generation from models

• improve analysis capabilities (weapon 3)

• e.g., through use of models

in software development

UofT: CSC2125: Modeling, Winter 2018 39

Model

Parser Optimizer?
Code

Generator

Compiled

Program
application
developer

view

MDE
infrastructure

view

Enabling MDE

UofT: CSC2125: Modeling, Winter 2018 40

Software modeling is just continuing a trend

• Models as the result of an abstraction

• Abstraction has been key to many advances in CS

• So, software modeling is just continuing that trend

UofT: CSC2125: Modeling, Winter 2018 41

UofT: CSC2125: Modeling, Winter 2018 42

Course Topics
Modelling Notations

Software models, domain-specific notations, meta-modelling

Model Management

Relationships between models, model operations (e.g., merge,
match, slice, diff), mega-modeling

Analysis and Verification

Consistency and completeness, simulation, constraint solving,
model checking, transformation verification

Model Transformations

Model-to-model transformations, code generation, model synthesis.
Maybe: generative programming, model visualization

Other topics

Safety and security, modeling and reasoning about product lines,
models@runtime, biological systems, real-time and embedded systems,
combining modeling and machine leaning

UofT: CSC2125: Modeling, Winter 2018
43

Assumed Background

Undergraduate course in software engineering

- Software development activities (e.g., requirements, design, testing)

- Modularity, information hiding

- Software modelling (e.g., UML)

- Sets, functions, relations, mathematical logic

- Knowledge of Eclipse (and EMF) is helpful

UofT: CSC2125: Modeling, Winter 2018 44

Workload and Evaluation

CS2125 is a seminar course that will cover roughly 3 research

papers per week.

Workload

• Course readings

• Class participation: 10%

• Paper presentations (2-3): 25%

• Paper reviews (5-7): 15%

• Term project: 50%
research problem or implementation project (on top of MMTF)

UofT: CSC2125: Modeling, Winter 2018 45

Presentations:

• ~30 papers to be presented by students, up to three

presentations per week

• Normally 50 minutes per paper: 25 minute presentation,

followed by presenter-led discussion

• Evaluated by the class and me (form is on course web page).

- 65% by the instructor

- 35% by your classmates

Reviews:

• Plan on reviewing 5-7 papers

• Review form is on the course web page

Paper Presentations

UofT: CSC2125: Modeling, Winter 2018 46

Project

Types of projects

• work on an open research problem (individual)

• develop / implement / verify modeling
notation/relationship/transformation (e.g., using MMINT)

See course Web site for details

Project timeline

• Feb 5: 1 page project proposals due

• April 2?: project papers/reports due

• April 9?: project presentations in class

UofT: CSC2125: Modeling, Winter 2018 47

Reading List

Reading list and schedule are on-line:

www.cs.toronto.edu/~chechik/courses18/csc2125/readings.htm

• most paper links lead to ACM, IEEE, or Springer web pages

from which the paper can be retrieved (from on-campus

machines)

• I am willing to consider alternative papers, if you have

suggestions.

UofT: CSC2125: Modeling, Winter 2018 48

Schedule

UofT: CSC2125: Modeling, Winter 2018 49

Week Topic, papers, deliverables Presenter Reviewers
1. Jan. 8 Introduction, motivation, course

organization

Marsha

2. Jan. 15 Modeling Marsha

3. Jan. 22 Modeling notations

4. Jan. 29 DSLs and DSMLs

5. Feb. 5 Meta-Modeling

1-page project proposals due

6. Feb. 12 Model Transformations and their

analysis (Marsha out of town, so TBD)

Feb. 19 Family day. No class

7. Feb. 26 Model Analysis

8. Mar. 5 Model Evolution and Management

9. Mar. 12 Product lines, Model Transformation

Testing

10. Mar. 19 Applications I

11. Mar. 26 Applications II

12. April 2 Applications III

Project write-ups are due.

DISCUSS: April 9?

April 9 Project presentations (in class).

DISCUSS: April 16?

Next Steps

Send e-mail by Sunday, January 14 to chechik@cs.toronto.edu

SUBJECT: CSC2125 Paper Selections

Message body should include

• your name

• your preferred e-mail address

• your research area

• titles of papers from the reading list that you would prefer to

present or review. Choose up to 10 papers and prioritize

your choices.

Make sure some are from foundations, some from transformations

and analysis, and some from applications.

I will try to have paper assignments on-line by January 18.

UofT: CSC2125: Modeling, Winter 2018 50

mailto:chechik@cs.toronto.edu

