Chapter 6

Dependence and Data
Flow Models

The control flow graph and state machine models introduced in the previous chapter
capture one aspect of the dependencies among parts of a program. They explicitly
represent control flow, but de-emphasize transmission of information through program
variables. Data flow models provide a complementary view, emphasizing and making
explicit relations involving transmission of information.

Models of data flow and dependence in software were developed originally in the
field of compiler construction, where they were (and still are) used to detect opportuni-
ties for optimization. They also have many applications in software engineering, from
testing to refactoring to reverse engineering. In test and analysis, applications range
from selecting test cases based on dependence information (as described in Chap-
ter 13) to detecting anomalous patterns that indicate probable programming errors,
such as uses of potentially uninitialized values. Moreover, the basic algorithms used to
construct data flow models have even wider application, and are of particular interest
because they can often be quite efficient in time and space.

6.1 Definition-Use Pairs

The most fundamental class of data flow model associates the point in a program where
a value is produced (called a “definition”) with the points at which the value may be
accessed (called a “use”). Associations of definitions and uses fundamentally capture
the flow of information through a program, from input to output.

Definitions occur where variables are declared or initialized, assigned values, or
received as parameters, and in general at all statements that change the value of one or
more variables. Uses occur in expressions, conditional statements, parameter passing,
return statements, and in general in all statements whose execution extracts a value
from a variable. For example, in the standard GCD algorithm of Figure 6.1, line 1
contains a definition of parameters x and y, line 3 contains a use of variable y, line 6
contains a use of variable tmp and a definition of variable y, and the return in line 8 is

77
Courtesy Pre-print for U. Toronto 2007/1

78

Dependence and Data Flow Models

AKkill

A definition-clear
path

A direct data
dependence

1 public int gcd(int x, int y) { /*A:defxy

2 int tmp; /* deftmp 7/

3 while (y 1= 0) { /*B:usey ¥

4 tmp=x%y; /* C: use Xx,y, def tmp */
5 X=Y; /* D:usey, defx ¥/

6 y =tmp; /* E:use tmp, defy ¥/
7 }

8 return x; /* F:usex*/
o}

Figure 6.1: Java implementation of Euclid’s algorithm for calculating the greatest com-
mon denominator of two positive integers. The labels A-F are provided to relate state-
ments in the source code to graph nodes in subsequent figures.

a use of variable x.

Each definition-use pair associates a definition of a variable (e.g., the assignment
to y in line 6) with a use of the same variable (e.g., the expression y != 0 in line 3).
A single definition can be paired with more than one use, and vice versa. For example,
the definition of variable y in line 6 is paired with a use in line 3 (in the loop test), as
well as additional uses in lines 4 and 5. The definition of x in line 5 is associated with
uses in lines 4 and 8.

A definition-use pair is formed only if there is a program path on which the value
assigned in the definition can reach the point of use without being overwritten by an-
other value. If there is another assignment to the same value on the path, we say that
the first definition is killed by the second. For example, the declaration of tmp in line
2 is not paired with the use of tmp in line 6, because the definition at line 2 is killed by
the definition at line 4. A definition-clear path is a path from definition to use on which
the definition is not killed by another definition of the same variable. For example,
with reference to the node labels in Figure 6.2, path E,B,C,D is a definition-clear
path from the definition of y in line 6 (node E of the control flow graph) to the use of y
in line 5 (node D). Path A, B,C, D, E is not a definition-clear path with respect to tmp,
because of the intervening definition at node C.

Definition-use pairs record a kind of program dependence, sometimes called direct
data dependence. These dependencies can be represented in the form of a graph, with
a directed edge for each definition-use pair. The data dependence graph representation
of the GCD method is illustrated in Figure 6.3 with nodes that are program statements.
Different levels of granularity are possible. For use in testing, nodes are typically basic
blocks. Compilers often use a finer-grained data dependence representation, at the
level of individual expressions and operations, to detect opportunities for performance-
improving transformations.

The data dependence graph in Figure 6.3 captures only dependence through flow
of data. Dependence of the body of the loop on the predicate governing the loop is not
represented by data dependence alone. Control dependence can be also represented
with a graph, as in Figure 6.5, which shows the control dependencies for the GCD

Courtesy Pre-print for U. Toronto 2007/1

Definition-Use Pairs

4

A
public int ged(int x, int y) { </
int tmp; def ={x, y, tmp }
use ={}
4
while (y 1= 0) Q_B/
{

def={}

use = {y}
ﬁFalse—_ﬂue

(©)
tmp=x%Yy;
def = {tmp }
use ={x, y}
4
[D
X=Yy;
def = { x}
use = {y}
E/ = tmp; E
def = {y}
use = {tmp}
L{eturn X; @
} def={}
use = {x}

—— public int god [

Figure 6.2: Control flow graph of GCD method in Figure 6.1

Courtesy Pre-print for U. Toronto 2007/1

80

Dependence and Data Flow Models

A dominator

A immediate
dominator

public int ged(int x, int y) { A
int tmp;

Gmp = xz/oly; (C}-\
‘“tmp __y.
v o

I
I
I
: a
1

~

|
|
|
|
:
|
|
|
: I \
o |
vV v
[while (y'=0) @ (x=y; ©)

{

N X
\

2

[’eturn X; q
}

Figure 6.3: Data dependence graph of GCD method in Figure 6.1, with nodes for state-
ments corresponding to the control flow graph in Figure 6.2. Each directed edge repre-
sents a direct data dependence, and the edge label indicates the variable that transmits
a value from the definition at the head of the edge to the use at the tail of the edge.

- ———— =

method. The control dependence graph shows direct control dependencies, that is,
where execution of one statement controls whether another is executed. For example,
execution of the body of a loop or if statement depends on the result of a predicate.

Control dependence differs from the sequencing information captured in the control
flow graph. The control flow graph imposes a definite order on execution even when
two statements are logically independent and could be executed in either order with the
same results. If a statement is control- or data-dependent on another, then their order
of execution is not arbitrary. Program dependence representations typically include
both data dependence and control dependence information in a single graph with the
two kinds of information appearing as different kinds of edges among the same set of
nodes.

A node in the control flow graph that is reached on every execution path from
entry point to exit is control dependent only on the entry point. For any other node
N, reached on some but not all execution paths, there is some branch which controls
execution of N in the sense that, depending on which way execution proceeds from the
branch, execution of N either does or does not become inevitable. It is this notion of
control that control dependence captures.

The notion of dominators in a rooted, directed graph can be used to make this
intuitive notion of “controlling decision” precise. Node M dominates node N if every
path from the root of the graph to N passes through M. A node will typically have
many dominators, but except for the root, there is a unique immediate dominator of
node N which is closest to N on any path from the root, and which is in turn dominated
by all the other dominators of N. Because each node (except the root) has a unique

Courtesy Pre-print for U. Toronto 2007/1

Data Flow Analysis

81

immediate dominator, the immediate dominator relation forms a tree.

The point at which execution of a node becomes inevitable is related to paths from a
node to the end of execution — that is, to dominators that are calculated in the reverse
of the control flow graph, using a special “exit” node as the root. Dominators in
this direction are called post-dominators, and dominators in the normal direction of
execution can be called pre-dominators for clarity.

We can use post-dominators to give a more precise definition of control depen-
dence. Consider again a node N that is reached on some but not all execution paths.
There must be some node C with the following property: C has at least two succes-
sors in the control flow graph (i.e., it represents a control flow decision); C is not
post-dominated by N (N is not already inevitable when C is reached); and there is a
successor of C in the control flow graph that is post-dominated by N. When these con-
ditions are true, we say node N is control-dependent on node C. Figure 6.4 illustrates
the control dependence calculation for one node in the GCD example, and Figure 6.5
shows the control dependence relation for the method as a whole.

6.2 Data Flow Analysis

Definition-use pairs can be defined in terms of paths in the program control flow graph.
As we have seen in the former section, there is an association (d,u) between a definition
of variable v at d and a use of variable v at u iff there is at least one control flow path
from d to u with no intervening definition of v. We also say that definition v, reaches
u, and that v, is a reaching definition at u. If, on the other hand, a control flow path
passes through another definition e of the same variable v, we say that v, kills v, at that
point.

It would be possible to compute definition-use pairs by searching the control flow
graph for individual paths of the form described above. However, even if we consider
only loop-free paths, the number of paths in a graph can be exponentially larger than
the number of nodes and edges. Practical algorithms therefore cannot search every
individual path. Instead, they summarize the reaching definitions at a node over all the
paths reaching that node.

An efficient algorithm for computing reaching definitions (and several other prop-
erties, as we will see below) is based on the way reaching definitions at one node are
related to the reaching definitions at an adjacent node. Suppose we are calculating the
reaching definitions of node n, and there is an edge (p,n) from an immediate predeces-
sor node p. We observe:

o If the predecessor node p can assign a value to variable v, then the definition v,
reaches n. We say the definition v, is generated at p.

e If a definition v, of variable v reaches a predecessor node p, and if v is not
redefined at that node (in which case we say the v, is killed at that point), then
the definition is propagated on from p to n.

These observations can be stated in the form of an equation describing sets of reach-
ing definitions. For example, reaching definitions at node E in Figure 6.2 are those at

Courtesy Pre-print for U. Toronto 2007/1

A post-dominator
A pre-dominator

A reaching
definition

82

Dependence and Data Flow Models

——| public int gcd e

public int ged(int x, int y) { @
int tmp;

/—CWhiIe (y 1= O) (B)e
(mp = x%y; ©
(x=y; (D)

= L B
k>\return x;} (@

Figure 6.4: Calculating control dependence for node E in the control flow graph of
the GCD method. Nodes C, D, and E in the gray region are post-dominated by E,
i.e., execution of E is inevitable in that region. Node B has successors both within
and outside the gray region, so it controls whether E is executed; thus E is control-
dependent on B.

Courtesy Pre-print for U. Toronto 2007/1

Data Flow Analysis

83

Epublic int ged(int x, int y) { Q\a
int tmp;
A
while (y 1= 0) (B return x; 1 F
¥ 8 & ®
{ 3

(tmp=x%y; © (y = tmp; ®

(x=y; ©

Figure 6.5: Control dependence tree of the GCD method. The loop test and the return
statement are reached on every possible execution path, so they are control dependent
only on the entry point. The statements within the loop are control dependent on the
loop test.

node D, except that D adds a definition of y and replaces (kills) an earlier definition of
y:

Reach(E) = (Reach(D)\ {x4})U{xp}

This rule can be broken into two parts to make it a little more intuitive, and also
more efficient to implement. The first part describes how node E receives values from
its predecessor D, and the second describes how it modifies those values for its succes-
sors:

Reach(E) = ReachOut(D)
ReachOut(D) (Reach(D)\ {xa})U{xp}

In this form, we can easily express what should happen at the head of the while
loop (node B in Figure 6.2), where values may be transmitted both from the beginning
of the procedure (node A) and through the end of the body of the loop (node E). The
beginning of the procedure (node A) is treated as an initial definition of parameters
and local variables. (If a local variable is declared but not initialized, it is treated as a
definition to the special value “uninitialized.”)

Reach(B) = ReachOut(A)U ReachOut(E)
ReachOut(A) = gen(A) = {xa,ya,tmp4}
ReachOut(E) = (ReachIn(E)\{ya})U{yve}

In general, for any node n with predecessors pred(n),

Courtesy Pre-print for U. Toronto 2007/1

84

Dependence and Data Flow Models

forward analysis

Reach(n) = U ReachOut(m)
mépred(n)
ReachOut(n) = (Reachln(n)\ kill(n))U gen(n)

Remarkably, the reaching definitions can be calculated simply and efficiently, first
initializing the reaching definitions at each node in the control flow graph to the empty
set, and then applying these equations repeatedly until the results stabilize. The algo-
rithm is given as pseudocode in Figure 6.6.

6.3 Classic Analyses: Live and Avail

Reaching definition is a classic data flow analysis adapted from compiler construction
to applications in software testing and analysis. Other classical data flow analyses
from compiler construction can likewise be adapted. Moreover, they follow a common
pattern that can be used to devise a wide variety of additional analyses.

Auvailable expressions is another classical data flow analysis, used in compiler con-
struction to determine when the value of a sub-expression can be saved and re-used
rather than re-computed. This is permissible when the value of the sub-expression re-
mains unchanged regardless of the execution path from the first computation to the
second.

Auvailable expressions can be defined in terms of paths in the control flow graph. An
expression is available at a point if, for all paths through the control flow graph from
procedure entry to that point, the expression has been computed and not subsequently
modified. We say an expression is generated (becomes available) where it is computed,
and is killed (ceases to be available) when the value of any part of it changes, e.g., when
a new value is assigned to a variable in the expression.

As with reaching definitions, we can obtain an efficient analysis by describing the
relation between the available expressions that reach a node in the control flow graph
and those at adjacent nodes. The expressions that become available at each node (the
gen set) and the expressions that change and cease to be available (the kil/ set) can be
computed simply, without consideration of control flow. Their propagation to a node
from its predecessors is described by a pair of set equations:

Avail(n) = ﬂ AvailOut(m)
méepred(n)
AvailOut(n) = (Avail(n)\ kill(n)) U Gen(n)

The similarity to the set equations for reaching definitions is striking. Both propa-
gate sets of values along the control flow graph in the direction of program execution
(they are forward analyses), and both combine sets propagated along different control
flow paths. However, reaching definitions combines propagated sets using set union,

Courtesy Pre-print for U. Toronto 2007/1

Classic Analyses: Live and Avail 85

Algorithm Reaching definitions

Input: A control flow graph G = (nodes, edges)
pred(n) = {m € nodes | (m,n) € edges}
succ(m) = {n € nodes | (m,n) € edges}
gen(n) = {v,} if variable v is defined at n, otherwise {}
kill(n) = all other definitions of v if v is defined at n, otherwise {}

Output: Reach(n) = the reaching definitions at node n

for n € nodes loop
ReachOut(n) = {} ;
end loop;
workList = nodes ;
while (workList # {}) loop
// Take a node from worklist (e.g., pop from stack or queue)
n = any node in workList ;
workList = workList \ {n} ;

oldVal = ReachOut(n) ;

// Apply flow equations, propagating values from predecessars
Reach(n) = U nepred(n)REAChOUL(m);
ReachOut(n) = (Reach(n) \ kill(n)) Ugen(n) ;
if (ReachOut(n) # oldVal) then
// Propagate changed value to successor nodes
workList = workList U succ(n)
end if;
end loop;

Figure 6.6: An iterative work-list algorithm to compute reaching definitions by apply-
ing each flow equation until the solution stabilizes.

Courtesy Pre-print for U. Toronto 2007/1

86 Dependence and Data Flow Models

since a definition can reach a use along any execution path. Available expressions com-
bines propagated sets using set intersection, since an expression is considered available
all-paths analysis at a node only if it reaches that node along all possible execution paths. Thus we say
any-path analysis that, while reaching definitions is a forward, any-path analysis, available expressions is
a forward, all-paths analysis. A work-list algorithm to implement available expressions
analysis is nearly identical to that for reaching definitions, except for initialization and
the flow equations, as shown in Figure 6.7.

Applications of a forward, all-paths analysis extend beyond the common sub-expres-
sion detection for which the Avail algorithm was originally developed. We can think
of available expressions as tokens that are propagated from where they are generated
through the control flow graph to points where they might be used. We obtain different
analyses by choosing tokens that represent some other property that becomes true (is
generated) at some points, may become false (be killed) at some other points, and is
evaluated (used) at certain points in the graph. By associating appropriate sets of tokens
in gen and kill sets for a node, we can evaluate other properties that fit the pattern

“G occurs on all execution paths leading to U, and there is no intervening
occurrence of K between the last occurrence of G and U.”

G, K, and U can be any events we care to check, so long as we can mark their occur-
rences in a control flow graph.

An example problem of this kind is variable initialization. We noted in Chapter 3
that Java requires a variable to be initialized before use on all execution paths. The
analysis that enforces this rule is an instance of Avail. The tokens propagated through
the control flow graph record which variables have been assigned initial values. Since
there is no way to “uninitialize” a variable in Java, the kill sets are empty. Figure 6.8
repeats the source code of an example program from Chapter 3, and the corresponding
control flow graph is shown with definitions and uses in Figure 6.9 and annotated with
gen and kill sets for the initialized variable check in Figure 6.10.

Reaching definitions and available expressions are forward analyses, i.e., they prop-
agate values in the direction of program execution. Given a control flow graph model, it
backward analysis is just as easy to propagate values in the opposite direction, backward from nodes that
represent the next steps in computation. Backward analyses are useful for determin-
ing what happens after an event of interest. Live variables is a backward analysis that
determines whether the value held in a variable may be subsequently used. Because a
variable is considered live if there is any possible execution path on which it is used, a
backward, any-path analysis is used.

A variable is live at a point in the control flow graph if, on some execution path, its
current value may be used before it is changed. Live variables analysis can be expressed
as set equations as before. Where Reach and Avail propagate values to a node from its
predecessors, Live propagates values from the successors of a node. The gen sets are
variables used at a node, and the kill sets are variables whose values are replaced. Set
union is used to combine values from adjacent nodes, since a variable is live at a node
if it is live at any of the succeeding nodes.

Courtesy Pre-print for U. Toronto 2007/1

Classic Analyses: Live and Avail 87

Algorithm Available expressions

Input: A control flow graph G = (nodes, edges), with a distinguished root node start.
pred(n) = {m € nodes | (m,n) € edges}
succ(m) = {n € nodes | (m,n) € edges}
gen(n) = all expressions e computed at node n
kill(n) = expressions e computed anywhere, whose value is changed at ;
kill(start) is the set of all e.

Output: Avail(n) = the available expressions at node n

for n € nodes loop
AvailOut(n) = set of all e defined anywhere ;
end loop;
workList = nodes ;
while (workList # {}) loop
// Take a node from worklist (e.g., pop from stack or queue)
n = any node in workList ;
workList = workList \ {n} ;
oldVal = AvailOut(n) ;
// Apply flow equations, propagating values from predecessors
Avail(n) = Nepred(n)AvailOut(m);
AvailOut(n) = (Avail(n) \ kill(n)) Ugen(n) ;
if (AvailOut(n) # oldVal) then
// Propagate changes to successors
workList = workList Usucc(n)
end if;
end loop;

Figure 6.7: An iterative work-list algorithm for computing available expressions.

Courtesy Pre-print for U. Toronto 2007/1

88

Dependence and Data Flow Models

1 /** A trivial method with a potentially uninitialized variable.
2 * Java compilers reject the program. The compiler uses
3 * data flow analysis to determine that there is a potential
4 * (syntactic) execution path on which k is used before it
5 * has been assigned an initial value.
6 Y/
7 static void questionable() {
8 intk;
9 for (inti=0; i < 10; ++i) {

10 if (someCondition(i)) {

11 k=0;

12 }else {

13 K+=i;

14 }

15 }

16 System.out.printin(k);

17 }

18}

Figure 6.8: Function questionable (repeated from Chapter 3) has a potentially unini-
tialized variable, which the Java compiler can detect using data flow analysis.

Live(n) = U LiveOut(m)
mésucc(n)
LiveOut(n) = (Live(n)\ kill(n)) UGen(n)

These set equations can be implemented using a work-list algorithm analogous
to those already shown for reaching definitions and available expressions, except that
successor edges are followed in place of predecessors and vice versa.

Like available expressions analysis, live variables analysis is of interest in testing
and analysis primarily as a pattern for recognizing properties of a certain form. A
backward, any-paths analysis allows us to check properties of the following form:

“After D occurs, there is at least one execution path on which G occurs
with no intervening occurrence of K.”

Again we choose tokens that represent properties, using gen sets to mark occurrences
of G events (where a property becomes true) and kill sets to mark occurrences of K
events (where a property ceases to be true).

One application of live variables analysis is to recognize useless definitions, that
is, assigning a value that can never be used. A useless definition is not necessarily a
program error, but is often symptomatic of an error. In scripting languages like Perl and
Python, which do not require variables to be declared before use, a useless definition

Courtesy Pre-print for U. Toronto 2007/1

Classic Analyses: Live and Avail

89

| static void questionab

le() {

I
ik

def={}
use = {}
: N
E‘or (int i=0; <B/
def = {i}
use = {}
f | <
10;
e @ der=7
raduse =11
v
(if (someCondition(i)) {
def=1{}
o leme=t
tru falseﬁv
fal Gk 0;} ﬁ E [else
alse|{k = 0; =1
der =19 =i dor ~ 19
t use = {} use = {i,k}
¥ 2\
[++i)) ©
def = {i}
use = {i}
NG >(System.out.println(k); @

Y

def ={}
use = {k}

Figure 6.9: Control flow graph of the source code in Figure 6.8, annotated with variable definitions and

uses.

Courtesy Pre-print for U. Toronto 2007/1

90

Dependence and Data Flow Models

| static void questionable() {
i (K=K]

!

ik ®

Gor (int i=0; B
i gen ={j

e (i<10; (c)

\
true

v
<if (someCondition(i)) { @

vﬁtrue—J%falseﬁ

else
false E{k =0} — ; &k +=;

N fSystem.out.printIn(k); F
R

Figure 6.10: Control flow graph of the source code in Figure 6.8, annotated with gen
and kill sets for checking variable initialization using a forward, all-paths Avail analy-
sis. (Empty gen and kill sets are omitted.) The Avail set flowing from node G to node
C will be {i,k}, but the Avail set flowing from node B to node C is {i}. The all-paths
analysis intersects these values, so the resulting Avail(C) is {i}. This value propagates
through nodes C and D to node F, which has a use of k as well as a definition. Since

k & Avail(F), a possible use of an uninitialized variable is detected.

Courtesy Pre-print for U. Toronto 2007/1

From Execution to Conservative Flow Analysis

91

1 class SampleForm(FormData):

2 """ Used with Python cgi module

3 to hold and validate data

4 from HTML form """

5

6 fieldnames = (name’, ’‘email’, ’comment’)
7

8 # Trivial example of validation. The bug would be
9 # harder to see in a real validation method.
10 def validate(self):
11 valid = 1;
12 if self.name=="" :valid=0
13 if self.email=="" :vald=0
14 if self.comment == "" : valid =0
15 return valid

Figure 6.11: Part of a CGI program (web form processing) in Python. The misspelled
variable name in the data validation method will be implicitly declared, and will not
be rejected by the Python compiler or interpreter, which could allow invalid data to
be treated as valid. The classic live variables data flow analysis can show that the
assignment to valid is a useless definition, suggesting that the programmer probably
intended to assign the value to a different variable.

typically indicates that a variable name has been misspelled, as in the CGI-bin script
of Figure 6.11.

We have so-far seen a forward, any-path analysis (reaching definitions), a forward,
all-paths analysis (available definitions), and a backward, any-path analysis (live vari-
ables). One might expect, therefore, to round out the repertoire of patterns with a
backward, all-paths analysis, and this is indeed possible. Since there is no classical
name for this combination, we will call it “inevitability,” and use it for properties of the
form

“After D occurs, G always occurs with no intervening occurrence of K”
or, informally,
“D inevitably leads to G before K~

Examples of inevitability checks might include ensuring that interrupts are re-enabled
after executing an interrupt-handling routine in low-level code, files are closed after
opening them, etc.

6.4 From Execution to Conservative Flow Analysis

Data flow analysis algorithms can be thought of as a kind of simulated execution. In
place of actual values, much smaller sets of possible values are maintained (e.g., a

Courtesy Pre-print for U. Toronto 2007/1

92

Dependence and Data Flow Models

single bit to indicate whether a particular variable has been initialized). All possible
execution paths are considered at once, but the number of different states is kept small
by associating just one summary state at each program point (node in the control flow
graph). Since the values obtained at a particular program point when it is reached
along one execution path may be different from those obtained on another execution
path, the summary state must combine the different values. Considering flow analysis
in this light, we can systematically derive a conservative flow analysis from a dynamic
(that is, run-time) analysis.

As an example, consider the “taint-mode” analysis that is built into the program-
ming language Perl. Taint mode is used to prevent some kinds of program errors that
result from neglecting to fully validate data before using it, particularly where invali-
dated data could present a security hazard. For example, if a Perl script wrote to a file
whose name was taken from a field in a web form, a malicious user could provide a full
path to sensitive files. Taint mode detects and prevents use of the “tainted” web form
input in a sensitive operation like opening a file. Other languages used in CGI scripts
do not provide such a monitoring function, but we will consider how an analogous
static analysis could be designed for a programming language like C.

When Perl is running in taint mode, it tracks the sources from which each variable
value was derived, and distinguishes between safe and tainted data. Tainted data is any
input (e.g., from a web form), and any data derived from tainted data. For example,
if a tainted string is concatenated with a safe string, the result is a tainted string. One
exception is that pattern-matching always returns safe strings, even when matching
against tainted data — this reflects the common Perl idiom in which pattern matching
is used to validate user input. Perl’s taint mode will signal a program error if tainted
data is used in a potentially dangerous way, e.g., as a file name to be opened.

Perl monitors values dynamically, tagging data values and propagating the tags
through computation. Thus, it is entirely possible that a Perl script might run with-
out errors in testing, but an unanticipated execution path might trigger a taint mode
program error in production use. Suppose we want to perform a similar analysis, but
instead of checking whether “tainted” data is used unsafely on a particular execution,
we want to ensure that tainted data can never be used unsafely on any execution. We
may also wish to perform the analysis on a language like C, for which run-time tagging
is not provided and would be expensive to add. So, we can consider deriving a conser-
vative, static analysis that is like Perl’s taint mode except that it considers all possible
execution paths.

A data flow analysis for taint would be a forward, any-path analysis with tokens
representing tainted variables. The gen set at a program point would be a set containing
any variable that is assigned a tainted value at that point. Sets of tainted variables would
be propagated forward to a node from its predecessors, with set union where a node in
the control flow graph has more than one predecessor (e.g., the head of a loop).

There is one fundamental difference between such an analysis and the classic data
flow analyses we have seen so far: The gen and kill sets associated with a program
point are not constants. Whether or not the value assigned to a variable is tainted (and
thus whether the variable belongs in the gen set or in the kill set) depends on the set
of tainted variables at that program point, which will vary during the course of the
analysis.

Courtesy Pre-print for U. Toronto 2007/1

From Execution to Conservative Flow Analysis

93

There is a kind of circularity here — the gen set and kill set depend on the set of
tainted variables, and the set of tainted variables may in turn depend on the gen and kill
set. Such circularities are common in defining flow analyses, and there is a standard
approach to determining whether they will make the analysis unsound. To convince
ourselves that the analysis is sound, we must show that the output values computed by
each flow equation are monotonically increasing functions of the input values. We will
say more precisely what “increasing” means below.

The determination of whether a computed value is tainted will be a simple function
of the set of tainted variables at a program point. For most operations of one or more
arguments, the output is tainted if any of the inputs are tainted. As in Perl, we may
designate one or a few operations (operations used to check an input value for validity)
as taint removers. These special operations will simply always return an untainted
value regardless of their inputs.

Suppose we evaluate the taintedness of an expression with the input set of tainted
variables being {a,b}, and again with the input set of tainted variables being {a,b,c}.
Even without knowing what the expression is, we can say with certainty that if the
expression is tainted in the first evaluation, it must also be tainted in the second evalu-
ation, in which the set of tainted input variables is larger. This also means that adding
elements to the input tainted set can only add elements to the gen set for that point, or
leave it the same, and conversely the kill set can only grow smaller or stay the same.
We say that the computation of tainted variables at a point increases monotonically.

To be more precise, the monotonicity argument is made by arranging the possible
values in a lattice. In the sorts of flow analysis framework considered here, the lattice
is almost always made up of subsets of some set (the set of definitions, or the set of
tainted variables, etc.); this is called a powerset lattice, because the powerset of set A
is the set of all subsets of A. The bottom element of the lattice is the empty set, the top
is the full set, and lattice elements are ordered by inclusion as in Figure 6.12. If we can
follow the arrows in a lattice from element x to element y (e.g., from {a} to {a,b,c}),
then we say y > x. A function f is monotonically increasing if

y>x=f(y) > f(x)

Not only are all of the individual flow equations for taintedness monotonic in this
sense, but in addition the function applied to merge values where control flow paths
come together is also monotonic:

ADB=AUCDBUC

If we have a set of data flow equations that is monotonic in this sense, and if we
begin by initializing all values to the bottom element of the lattice (the empty set in this
case), then we are assured that an iterative data flow analysis will converge on a unique
minimum solution to the flow equations.

The standard data flow analyses for reaching definitions, live variables, and avail-
able expressions can all be justified in terms of powerset lattices. In the case of available
expressions, though, and also in the case of other all-paths analyses such as the one we
have called “inevitability,” the lattice must be flipped over, with the empty set at the top

Courtesy Pre-print for U. Toronto 2007/1

powerset lattice

94

Dependence and Data Flow Models

{a,b,c}

{a,b} {a,c} {b,c}

{a} {b} {c}

Figure 6.12: The powerset lattice of set {a,b,c}. The powerset contains all subsets of
the set, and is ordered by set inclusion.

and the set of all variables or propositions at the bottom. (This is why we used the set
of all tokens, rather than the empty set, to initialize the Avail sets in Figure 6.7.)

6.5 Data Flow Analysis with Arrays and Pointers

The models and flow analyses described above have been limited to simple scalar vari-
ables in individual procedures. Arrays and pointers (including object references and
procedure arguments) introduce additional issues, because it is not possible in general
to determine whether two accesses refer to the same storage location. For example,
consider the following code fragment:

1 afi] =13;

2 k= afj];

Are these two lines a definition-use pair? They are if the values of i and j are equal,
which might be true on some executions and not on others. A static analysis cannot, in
general, determine whether they are always, sometimes, or never equal, so a source of
imprecision is necessarily introduced into data flow analysis.

Pointers and object references introduce the same issue, often in less obvious ways.
Consider the following snippet:

1 a[2] = 42;

2 i =b[2];

It seems that there cannot possibly be a definition-use pair involving these two

lines, since they involve none of the same variables. However, arrays in Java are dy-
namically allocated objects accessed through pointers. Pointers of any kind introduce

Courtesy Pre-print for U. Toronto 2007/1

Data Flow Analysis with Arrays and Pointers

95

the possibility of aliasing, that is, of two different names referring to the same stor-
age location. For example, the two lines above might have been part of the following
program fragment:

1 int[] a = new int[3];
2 int[]b=a;

3 a[2] = 42;

4 i =b[2];

Here a and b are aliases, two different names for the same dynamically allocated
array object, and an assignment to part of a is also an assignment to part of b.

The same phenomenon, and worse, appears in languages with lower-level pointer
manipulation. Perhaps the most egregious example is pointer arithmetic in C:

1 p = &b;

2 *(p+1) =k;

It is impossible to know which variable is defined by the second line. Even if
we knew the value of i, the result is dependent on how a particular compiler arranges
variables in memory.

Dynamic references and the potential for aliasing introduce uncertainty into data
flow analysis. In place of a definition or use of a single variable, we may have a
potential definition or use of a whole set of variables or locations that could be aliases
of each other. The proper treatment of this uncertainty depends on the use to which
the analysis will be put. For example, if we seek strong assurance that v is always
initialized before it is used, we may not wish to treat an assignment to a potential alias
of v as initialization, but we may wish to treat a use of a potential alias of v as a use of
V.

A useful mental trick for thinking about treatment of aliases is to translate the un-
certainty introduced by aliasing into uncertainty introduced by control flow. After all,
data flow analysis already copes with uncertainty about which potential execution paths
will actually be taken; an infeasible path in the control flow graph may add elements
to an any-paths analysis or remove results from an all-paths analysis. It is usually ap-
propriate to treat uncertainty about aliasing consistently with uncertainty about control
flow. For example, considering again the first example of an ambiguous reference:

1 afi] = 13;

2 k = afj];

We can imagine replacing this by the equivalent code:
afi] = 13;
if (i ==) {
k = all];
}else {
k= al];
}

In the (imaginary) transformed code, we could treat all array references as distinct,
because the possibility of aliasing is fully expressed in control flow. Now, if we are

o g~ W N =

Courtesy Pre-print for U. Toronto 2007/1

A alias

96

Dependence and Data Flow Models

using an any-paths analysis like reaching definitions, the potential aliasing will result
in creating a definition-use pair. On the other hand, an assignment to a[j] would not
kill a previous assignment to a[i]. This suggests that, for an any-path analysis, gen sets
should include everything that might be referenced, but kill sets should include only
what is definitely referenced.

If we were using an all-paths analysis, like available expressions, we would obtain
a different result. Because the sets of available expressions are intersected where con-
trol flow merges, a definition of a[i] would make only that expression, and none of its
potential aliases, available. On the other hand, an assignment to a[j] would kill a[i]. This
suggests that, for an all-paths analysis, gen sets should include only what is definitely
referenced, but kill sets should include all the possible aliases.

Even in analysis of a single procedure, the effect of other procedures must be con-
sidered at least with respect to potential aliases. Consider, for example, this fragment
of a Java method:

public void transfer (Custinfo fromCust, Custinfo toCust) {

]
2

3 PhoneNum fromHome = fromCust.gethomePhone();
4 PhoneNum fromWork = fromCust.getworkPhone();
5
6
7

PhoneNum toHome = toCust.gethomePhone();
PhoneNum toWork = toCust.getworkPhone();

We cannot determine whether the two arguments fromCust and toCust are refer-
ences to the same object without looking at the context in which this method is called.
Moreover, we cannot determine whether fromHome and fromWork are (or could be)
references to the same object without more information about how CustInfo objects are
treated elsewhere in the program.

Sometimes it is sufficient to treat all non-local information as unknown. For ex-
ample, we could treat the two Custinfo objects as potential aliases of each other, and
similarly treat the four PhoneNum objects as potential aliases. Sometimes, though,
large sets of aliases will result in analysis results that are so imprecise as to be use-
less. Therefore data flow analysis is often preceded by an inter-procedural analysis to
calculate sets of aliases or the locations that each pointer or reference can refer to.

6.6 Inter-Procedural Analysis

Most important program properties involve more than one procedure, and as mentioned
above, some inter-procedural analysis (e.g., to detect potential aliases) is often required
as a prelude even to intra-procedural analysis. One might expect the inter-procedural
analysis and models to be a natural extension of the intra-procedural analysis, following
procedure calls and returns like intra-procedural control flow. Unfortunately this is
seldom a practical option.

If we were to extend data flow models by following control flow paths through
procedure calls and returns, using the control flow graph model and the call graph
model together in the obvious way, we would observe many spurious paths. Figure 6.13

Courtesy Pre-print for U. Toronto 2007/1

Inter-Procedural Analysis

97

Ciogn___sub(-)

Figure 6.13: Spurious execution paths result when procedure calls and returns are
treated as normal edges in the control flow graph. The path (A, X, Y, D) appears in
the combined graph, but it does not correspond to an actual execution order.

illustrates the problem: Procedure foo and procedure bar each make a call on procedure
sub. When procedure call and return are treated as if they were normal control flow, in
addition to the execution sequences (A,X,Y,B) and (C,X,Y,D), the combined graph
contains the impossible paths (A,X,Y,D) and (C,X,Y,B).

It is possible to represent procedure calls and returns precisely, e.g., by making a
copy of the called procedure for each point at which it is called. This would result in a
context sensitive analysis. The shortcoming of context sensitive analysis was already
mentioned in the previous chapter: The number of different contexts in which a proce-
dure must be considered could be exponentially larger than the number of procedures.
In practice, a context sensitive analysis can be practical for a small group of closely
related procedures (e.g., a single Java class), but is almost never a practical option for
a whole program.

Some inter-procedural properties are quite independent of context, and lend them-
selves naturally to analysis in a hierarchical, piecemeal fashion. Such a hierarchical
analysis can be both precise and efficient. The analyses that are provided as part of
normal compilation are often of this sort. The unhandled exception analysis of Java is
a good example: Each procedure (method) is required to declare the exceptions that it
may throw without handling. If method M calls method N in the same or another class,
and if N can throw some exception, then M must either handle that exception or de-
clare that it, too, can throw the exception. This analysis is simple and efficient because,
when analyzing method M, the internal structure of N is irrelevant; only the results of
the analysis at N (which, in Java, is also part of the signature of N) is needed.

Two conditions are necessary to obtain an efficient, hierarchical analysis like the ex-
ception analysis routinely carried out by Java compilers. First, the information needed
to analyze a calling procedure must be small: It must not be proportional to the size
of the called procedure, nor to the number of procedures that are directly or indirectly
called. Second, it is essential that information about the called procedure be indepen-
dent of the caller, i.e., it must be context independent. When these two conditions are
true, it is straightforward to develop an efficient analysis that works upward from leaves
of the call graph. (When there are cycles in the call graph from recursive or mutually

Courtesy Pre-print for U. Toronto 2007/1

context sensitive
analysis

98

Dependence and Data Flow Models

flow-insensitive

recursive procedures, an iterative approach similar to data flow analysis algorithms can
usually be devised.)

Unfortunately, not all important properties are amenable to hierarchical analysis.
Potential aliasing information, which is essential to data flow analysis even within in-
dividual procedures, is one of those that are not. We have seen that potential aliasing
can depend in part on the arguments passed to a procedure, so it does not have the
context independence property required for an efficient hierarchical analysis. For such
an analysis, additional sacrifices of precision must be made for the sake of efficiency.

Even when a property is context dependent, an analysis for that property may be
context insensitive, although the context insensitive analysis will necessarily be less
precise as a consequence of discarding context information. At the extreme, a linear
time analysis can be obtained by discarding both context and control flow information.

Context and flow insensitive algorithms for pointer analysis typically treat each

statement of a program as a constraint. For example, on encountering an assignment

1 X=y;

where y is a pointer, such an algorithm simply notes that x may refer to any of the
same objects that y may refer to. References(x) 2 References(y) is a constraint that is
completely independent of the order in which statements are executed. A procedure
call, in such an analysis, is just an assignment of values to arguments. Using efficient
data structures for merging sets, some analyzers can process hundreds of thousand of
lines of source code in a few seconds. The results are imprecise, but still much better
than the worst-case assumption that any two compatible pointers might refer to the
same object.

The best approach to inter-procedural pointer analysis will often lie somewhere be-
tween the astronomical expense of a precise, context and flow sensitive pointer analysis
and the imprecision of the fastest context and flow insensitive analyses. Unfortunately
there is not one best algorithm or tool for all uses. In addition to context and flow
sensitivity, important design trade-offs include the granularity of modeling references
(e.g., whether individual fields of an object are distinguished) and the granularity of
modeling the program heap (that is, which allocated objects are distinguished from
each other).

Summary

Data flow models are used widely in testing and analysis, and the data flow analysis
algorithms used for deriving data flow information can be adapted to additional uses.
The most fundamental model, complementary to models of control flow, represents the
ways values can flow from the points where they are defined (computed and stored) to
points where they are used.

Data flow analysis algorithms efficiently detect the presence of certain patterns in
the control flow graph. Each pattern involves some nodes that initiate the pattern and
some that conclude it, and some nodes that may interrupt it. The name “data flow
analysis” reflects the historical development of analyses for compilers, but patterns
may be used to detect other control flow patterns.

Courtesy Pre-print for U. Toronto 2007/1

Inter-Procedural Analysis

99

An any-path analysis determines whether there is any control flow path from the
initiation to the conclusion of a pattern without passing through an interruption. An all-
paths analysis determines whether every path from the initiation necessarily reaches a
concluding node without first passing through an interruption. Forward analyses check
for paths in the direction of execution, and backward analyses check for paths in the
opposite direction. The classic data flow algorithms can all be implemented using
simple work-list algorithms.

A limitation of data flow analysis, whether for the conventional purpose or to check
other properties, is that it cannot distinguish between a path that can actually be exe-
cuted and a path in the control flow graph that cannot be followed in any execution. A
related limitation is that it cannot always determine whether two names or expressions
refer to the same object.

Fully detailed data flow analysis is usually limited to individual procedures or a few
closely related procedures, e.g., a single class in an object-oriented program. Analyses
that span whole programs must resort to techniques that discard or summarize some
information about calling context, control flow, or both. If a property is independent
of calling context, a hierarchical analysis can be both precise and efficient. Potential
aliasing is a property for which calling context is significant, and there is therefore a
trade-off between very fast but imprecise alias analysis techniques and more precise
but much more expensive techniques.

Further Reading

Data flow analysis techniques were developed originally for compilers, as a system-
atic way to detect opportunities for code-improving transformations, and to ensure that
those transformations would not introduce errors into programs (an all-too-common
experience with early optimizing compilers). The compiler construction literature re-
mains an important source of reference information for data flow analysis, and the
classic “Dragon Book” text [ASUS86] is a good starting point.

Fosdick and Osterweil recognized the potential of data flow analysis to detect pro-
gram errors and anomalies that suggested the presence of errors more than two decades
ago [FO76]. While the classes of data flow anomaly detected by Fosdick and Oster-
weil’s system has largely been obviated by modern strongly-typed programming lan-
guages, they are still quite common in modern scripting and prototyping languages.
Olender and Osterweil later recognized that the power of data flow analysis algo-
rithms for recognizing execution patterns is not limited to properties of data flow,
and developed a system for specifying and checking general sequencing properties
[0090, O092].

Inter-procedural pointer analyses — either directly determining potential aliasing
relations, or deriving a “points-to” relation from which aliasing relations can be derived
— remains an area of active research. At one extreme of the cost-versus-precision
spectrum of analyses are completely context and flow insensitive analyses like those
described by Steensgaard [Ste96]. Many researchers have proposed refinements that
obtain significant gains in precision at small costs in efficiency. An important direc-
tion for future work is obtaining acceptably precise analyses of a portion of a large

Courtesy Pre-print for U. Toronto 2007/1

100

Dependence and Data Flow Models

program, either because a whole program analysis cannot obtain sufficient precision at
acceptable cost, or because modern software development practices (e.g., incorporat-
ing externally developed components) mean that the whole program is never available
in any case. Rountev et al present initial steps toward such analyses [RRL99]. A very
readable overview of the state of the art and current research directions (circa 2001) is
provided by Hind [HinO1].

Exercises

6.1. For a graph G = (N, V) with a root r € N, node m dominates node n if every path
from r to n passes through m. The root node is dominated only by itself.

The relation can be restated using flow equations.

1. When dominance is restated using flow equations, will it be stated in the
form of an any-path problem or an all-paths problem? Forward or back-
ward? What are the tokens to be propagated, and what are the gen and kill
sets?

2. Give a flow equation for Dom(n).

3. If the flow equation is solved using an iterative data flow analysis, what
should the set Dom(n) be initialized to at each node n?

4. Implement an iterative solver for the dominance relation in a programming
language of your choosing.

The first line of input to your program is an integer between 1 and 100 in-
dicating the number k of nodes in the graph. Each subsequent line of input
will consist of two integers, m and n, representing an edge from node m
to node n. Node 0 designates the root, and all other nodes are designated
by integers between 0 and k — 1. The end of the input is signaled by the
pseudo-edge (—1,—1).

The output of your program should be a sequences of lines, each containing
two integers separated by blanks. Each line represents one edge of the Dom
relation of the input graph.

5. The Dom relation itself is not a tree. The immediate dominators relation
is a tree. Write flow equations to calculate immediate dominators, and
then modify the program from part d to compute the immediate dominance
relation.

6.2. Write flow equations for inevitability, a backward, all-paths intra-procedural
analysis. Event (or program point) g is inevitable at program point p if every
execution path from p to a normal exit point passes through ¢.

Courtesy Pre-print for U. Toronto 2007/1

