
Chapter 7

Symbolic Execution and
Proof of Properties

Symbolic execution builds predicates that characterize the conditions under which ex-
ecution paths can be taken and the effect of the execution on program state. Extracting
predicates through symbolic execution is the essential bridge from the complexity of
program behavior to the simpler and more orderly world of logic. It finds important
applications in program analysis, in generating test data, and in formal verification1

(proofs) of program correctness.
Conditions under which a particular control flow path is taken can be determined

through symbolic execution. This is useful for identifying infeasible program paths
(those that can never be taken) and paths that could be taken when they should not. It is
fundamental to generating test data to execute particular parts and paths in a program.

Deriving a logical representation of the effect of execution is essential in methods
that compare a program’s possible behavior to a formal specification. We have noted
in earlier chapters that proving the correctness of a program is seldom an achievable or
useful goal. Nonetheless the basic methods of formal verification, including symbolic
execution, underpin practical techniques in software analysis and testing. Symbolic
execution and the techniques of formal verification find use in several domains:

• Rigorous proofs of properties of (small) critical sub-systems, such as a safety
kernel of a medical device;

• Formal verification of critical properties (e.g., security properties) that are par-
ticularly resistant to dynamic testing;

• Formal verification of algorithm descriptions and logical designs that are much
less complex than their implementations in program code.

1Throughout this book we use the term verification in the broad sense of checking whether a program
or system is consistent with some form of specification. The broad sense of verification includes, for ex-
ample, inspection techniques and program testing against informally stated specifications. The term formal
verification is used in the scientific literature in a much narrower sense to denote techniques that construct a
mathematical proof of consistency between some formal representation of a program or design and a formal
specification.

103

Courtesy Pre-print for U. Toronto 2007/1

104 Symbolic Execution and Proof of Properties

More fundamentally, the techniques of formal reasoning are a conceptual foundation
for a variety of analysis techniques, ranging from informal reasoning about program
behavior and correctness to automated checks for certain classes of errors.

7.1 Symbolic State and Interpretation

Tracing execution is familiar to any programmer who has attempted to understand the
behavior of source code by simulating execution. For example, one might trace a
single statement in the binary search routine of Figure 7.1 as shown on the left side
of Figure 7.2. One can just as easily use symbolic values like L and H in place of
concrete values, as shown on the right side of Figure 7.2. Tracing execution with
symbolic values and expressions is the basis of symbolic execution.

When tracing execution with concrete values, it is clear enough what to do with
a branch statement, e.g., an if of while test: The test predicate is evaluated with the
current values, and the appropriate branch is taken. If the values bound to variables
are symbolic expressions, however, both the True and False outcomes of the decision
may be possible. Execution can be traced through the branch in either direction, and
execution of the test is interpreted as adding a constraint to record the outcome. For
example, consider

while (high >= low) {

Suppose the symbolic state after one loop iteration is

low = 0

^ high = H�1
2 �1

^ mid = H�1
2

If we trace execution of the test assuming a True outcome (leading to a second
iteration of the loop), the loop condition becomes a constraint in the the symbolic state
immediately after the while test:

low = 0

^ high = H�1
2 �1

^ mid = H�1
2

^ H�1
2 �1� 0

Later, when we consider the branch assuming a False outcome of the test, the new
constraint is negated and becomes ¬(H�1

2 �1� 0) or, equivalently, H�1
2 �1 < 0.

Execution can proceed in this way down any path in the program. One can think
of “satisfying” the predicate by finding concrete values for the symbolic variables that
make it evaluate to True; this corresponds to finding data values that would force ex-
ecution of that program execution path. If no such satisfying values are possible, then
that execution path cannot be executed with any data values; we say it is an infeasible
path.

Courtesy Pre-print for U. Toronto 2007/1

Symbolic State and Interpretation 105

1

2 /** Binary search for key in sorted array dictKeys, returning
3 * corresponding value from dictValues or null if key does
4 * not appear in dictKeys. Standard binary search algorithm
5 * as described in any elementary text on data structures and algorithms.
6 **/
7

8 char * binarySearch(char *key, char *dictKeys[], char *dictValues[],
9 int dictSize) {

10

11 int low = 0;
12 int high = dictSize - 1;
13 int mid;
14 int comparison;
15

16 while (high >= low) {
17 mid = (high + low) / 2;
18 comparison = strcmp(dictKeys[mid], key);
19 if (comparison < 0) {
20 /* dictKeys[mid] too small; look higher */
21 low = mid + 1;
22 } else if (comparison > 0) {
23 /* dictKeys[mid] too large; look lower */
24 high = mid - 1;
25 } else {
26 /* found */
27 return dictValues[mid];
28 }
29 }
30 return 0; /* null means not found */
31 }
32

Figure 7.1: Binary search procedure

Courtesy Pre-print for U. Toronto 2007/1

106 Symbolic Execution and Proof of Properties

before
low 12
high 15
mid –

mid = (high + low) / 2;

after
low 12
high 15
mid 13

before
low L
high H
mid –

mid = (high + low) / 2;

after
low L

high H

mid L+H
2

Figure 7.2: Hand-tracing an execution step with concrete values (left) and symbolic
values (right).

7.2 Summary Information

If there were only a finite number of execution paths in a program, then in principle
a symbolic executor could trace each of them and obtain a precise representation of a
predicate that characterizes each one. From even a few execution steps in the small
example above, one can see that the representation of program state will quickly be-
come unwieldy. Moreover, there are a potentially infinite number of program execution
paths to consider. An automated symbolic executor can cope with much more complex
symbolic expressions than a human, but even an automated tool will not get far with
brute force evaluation of every program path.

Since the representation of program state is a logical predicate, there is an alterna-
tive to keeping a complete representation of the state at every point: a weaker predicate
can always be substituted for the complete representation. That is, if the representation
of the program state at some point in execution is P, and if W) P, then substituting
W for P will result in a predicate that still correctly describes the execution state, but
with less precision.

Consider the computation of mid in line 17 of the binary search example from
Figure 7.1. If we are reasoning about the performance of binary search, the fact that
the value of mid lies half-way between the values of low and high is important, but if
we are reasoning about functional correctness it matters only that mid lies somewhere
between them. Thus, if we had low = L^high = H ^mid = M, and if we could show
L H, we could replace M = (L+H)/2 by the weaker condition LM H.

Note that the weaker predicate L mid H is chosen based on what must be
true for the program to execute correctly. This is not information that can be derived
automatically from source code; it depends as well on our understanding of the code
and our rationale for believing it to be correct. A predicate stating what should be true
at a given point can be expressed in the form of an assertion. When we assert that
predicate W is true at a point in a program, we mark our intention both to verify it at
that point (by showing that W is implied by the predicates that describe the program
state at that point) and to replace part of the program state description P by W at that

Courtesy Pre-print for U. Toronto 2007/1

Loops and Assertions 107

point.
One of the prices of weakening the predicate in this way will be that satisfying the

predicate is no longer sufficient to find data that forces the program execution along
that path. If the complete predicate P is replaced by a weaker predicate W, then test
data that satisfies W is necessary to execute the path, but it may not be sufficient.
Showing that W cannot be satisfied is still tantamount to showing that the execution
path is infeasible.

7.3 Loops and Assertions

The number of execution paths through a program with one or more loops is potentially
infinite, or at least unimaginably huge. This may not matter for symbolic execution
along a single, relatively simple execution path. It becomes a major obstacle if sym-
bolic execution is used to reason about a path involving several iterations of a loop, or
to reason about all possible program executions.

To reason about program behavior in a loop, we can place within the loop an asser-
tion that states a predicate expected to be true each time execution reaches that point.
Such an assertion is called an invariant. Each time program execution reaches the D loop invariant

invariant assertion, we can weaken the description of program state. If the program
state is represented by P, and the assertion is W , we must first ascertain W) P (the
assertion is satisfied along that path), and then we can substitute W for P.

Suppose every loop contained such an assertion, and suppose in addition there was
an assertion at the beginning of the program (perhaps just the trivial predicate True)
and one at the end. In that case, every possible execution path would consist of a
sequence of segments from one assertion to the next. The assertion at the beginning
of a segment is the precondition for that segment, and the assertion at the end of D precondition

the segment is the postcondition. If we were able to execute each such segment D postcondition

independently, starting with only the precondition and then checking that the assertion
at the end of the segment is satisfied, we would have shown that every assertion is
satisfied on every possible program execution — i.e., we would have verified correct
execution on an infinite number of program paths, by verifying the finite number of
segments from which the paths are constructed.

We illustrate the technique by using assertions to check the logic of the binary
search algorithm implemented by the program in Figure 7.1. The first precondition and
the final postcondition serve as a specification of correct behavior as a kind of contract:
If the client ensures the precondition, the program will ensure the postcondition.

The binary search procedure depends on the array dictKeys being sorted. Thus we
might have a precondition assertion like the following:

8i, j,0 i < j < size : dictKeys[i] dictKeys[j]

Here we interpret s t for strings as indicating lexical order consistent with the C
library strcmp, i.e., we assume that s t whenever strcmp(s,t) 0. For convenience
we will abbreviate the predicate above as sorted.

We can associate the following assertion with the while statement at line 16:

Courtesy Pre-print for U. Toronto 2007/1

108 Symbolic Execution and Proof of Properties

8i,0 i < size : dictkeys[i] = key) low i high

In other words, we assert that the key can appear only between low and high, if it
appears anywhere in the array. We will abbreviate this condition as inrange.

Inrange must be true when we first reach the loop, because at that point the range
low . . .high is the same as 0 . . .size�1. For each path through the body of the loop, the
symbolic executor would begin with the invariant assertion above, and determine that
it is true again after following that path. We say the invariant is preserved.

While the inrange predicate should be true on each iteration, it is not the complete
loop invariant. The sorted predicate remains true and will be used in reasoning. In
principle it is also part of the invariant, although in informal reasoning we may not
bother to write it down repeatedly. The full invariant is therefore sorted^ inrange.

Let us consider the path from line 16 through line 21 and back to the loop test.
We begin by assuming the loop invariant assertion holds at the beginning of the seg-
ment. Where expressions in the invariant refer to program variables whose values may
change, they are replaced by symbols representing the initial values of those variables.
The variable bindings will be

low = L
^ high = H

We need not introduce symbols to represent the values of dictKeys, dictVals, key, or
size. Since those variables are not changed in the procedure, we can use the variable
names directly. The condition, instantiated with symbolic values, will be

8i, j,0 i < j < size : dictKeys[i] dictKeys[j]
^ 8k,0 k < size : dictkeys[k] = key) L k H

Passing through the while test into the body of the loop adds the condition H � L
to the condition above. Execution of line 17 adds a binding of b(H +L)/2c to vari-
able mid, where bxc is the integer obtained by rounding x toward zero. As we have
discussed, this can be simplified with an assertion so that the bindings and condition
become

low = L (bindings)
^ high = H
^ mid = M
^ 8i, j,0 i < j < size : dictKeys[i] dictKeys[j] (sorted)
^ 8k,0 k < size : dictkeys[k] = key) L k H (inrange)
^ H �M � L

Tracing the execution path into the first branch of the if statement to line 21, we
add the constraint that strcmp(dictKeys[mid], key) returns a negative value, which we
interpret as meaning the probed entry is lexically less than the string value of the key.
Thus we arrive at the symbolic constraint

Courtesy Pre-print for U. Toronto 2007/1

Loops and Assertions 109

low = L
^ high = H
^ mid = M
^ 8i, j,0 i < j < size : dictKeys[i] dictKeys[j]
^ 8k,0 k < size : dictkeys[k] = key) L k H
^ H �M � L
^ dictKeys[M] < key

The assignment in line 21 then modifies a variable binding without otherwise dis-
turbing the conditions, giving us

low = M +1
^ high = H
^ mid = M
^ 8i, j,0 i < j < size : dictKeys[i] dictKeys[j]
^ 8k,0 k < size : dictkeys[k] = key) L k H
^ H �M � L
^ dictKeys[M] < key

Finally, we trace execution back to the while test at line 16. Now our obligation is
to show that the invariant still holds when instantiated with the changed set of variable
bindings. The sorted condition has not changed, and showing that it is still true is
trivial. The interesting part is the inrange predicate, which is instantiated with a new
value for low and thus becomes

8k,0 k < size : dictkeys[k] = key)M +1 k H

Now the verification step is to show that this predicate is a logical consequence
of the predicate describing the program state. This step requires purely logical and
mathematical reasoning, and might be carried out either by a human or by a theorem-
proving tool. It no longer depends in any way upon the program. The task performed
by the symbolic executor is essentially to transform a question about a program (is the
invariant preserved on a particular path?) into a question of logic alone.

The path through the loop on which the probed key is too large, rather than too
small, proceeds similarly. The path on which the probed key matches the sought key
returns from the procedure, and our obligation there (trivial in this case) is to verify
that the contract of the procedure has been met.

The other exit from the procedure occurs when the loop terminates without locating
a matching key. The contract of the procedure is that it should return the null pointer
(represented in the C language by 0) only if the key appears nowhere in dictKeys[0..size-
1]. Since the null pointer is returned whenever the loop terminates, the postcondition
of the loop is that key is not present in dictKeys.

The loop invariant is used to show that the postcondition holds when the loop termi-
nates. What symbolic execution can verify immediately after a loop is that the invariant

Courtesy Pre-print for U. Toronto 2007/1

110 Symbolic Execution and Proof of Properties

is true but the loop test is false. Thus we have

low = L (bindings)
^ high = H
^ 8i, j,0 i < j < size : dictKeys[i] dictKeys[j] (sorted)
^ 8k,0 k < size : dictkeys[k] = key) L k H (inrange)
^ L > H

Knowing that presence of the key in the array implies L H, and that in fact L > H,
we can conclude that the key is not present. Thus the postcondition is established, and
the procedure fulfills its contract by returning the null pointer in this case.

Finding and verifying a complete set of assertions, including an invariant assertion
for each loop, is difficult in practice. Even the small example above is rather tedious
to verify by hand. More realistic examples can be quite demanding even with the aid
of symbolic execution tools. If it were easy or could be fully automated, we might
routinely use this method to prove the correctness of programs. Writing down a full
set of assertions formally, and rigorously verifying them, is usually reserved for small
and extremely critical modules, but the basic approach we describe here can also be
applied in a much less formal manner, and is quite useful in finding holes in an informal
correctness argument.

7.4 Compositional Reasoning

The binary search procedure is very simple. There is only one loop, containing a single
if statement. It was not difficult to reason about individual paths through the control
flow. If the procedure contained nested loops or more conditional branches, we could
in principle still proceed in that manner as long as each cycle in the control flow graph
were broken by at least one assertion. It would, however, be very difficult to think
about programs in this manner, and to choose appropriate assertions. It is better if our
approach follows the hierarchical structure of the program, both at a small scale (e.g.,
control flow within a single procedure) and at larger scales (across multiple procedures,
classes, subsystems, etc.).

The steps for verifying the binary search procedure above already hint at a hier-
archical approach. The loop invariant was not placed just anywhere in the loop. We
associated it with the beginning of the loop so that we could follow a standard style
of reasoning that allows us to compose facts about individual pieces of a program to
derive facts about larger pieces. In this hierarchical or compositional style, the effect
of any program block is described by a Hoare triple:Hoare triple

(| pre |) block (| post |)

The meaning of this triple is that if the program is in a state satisfying the precondition
pre at entry to the block, then after execution of the block it will be in a state satisfying
the postcondition post.

There are standard templates, or schemata, for reasoning with triples. In the previ-
ous section we were following this schema for reasoning about while loops:

Courtesy Pre-print for U. Toronto 2007/1

Reasoning about Data Structures and Classes 111

(|I^C|) S (|I|)
(|I|) while(C) { S } (|I^¬C|)

The formula above the line is the premise of an inference, and the formula below
the line is the conclusion. An inference rule states that if we can verify the premise,
then we can infer the conclusion. The premise of this inference rule says that the loop
body preserves invariant I: If the invariant I is true before the loop, and if the condition
C governing the loop is also true, then the invariant is established again after executing
the loop body S. The conclusion says that the loop as a whole takes the program from
a state in which the invariant is true to a state satisfying a postcondition composed of
the invariant and the negation of the loop condition.

The important characteristic of these rules is that they allow us to compose proofs
about small parts of the program into proofs about larger parts. The inference rule for
while allows us to take a triple about the body of a loop and infer a triple about the
whole loop. There are similar rules for building up triples describing other kinds of
program blocks. For example:

(|P^C|) thenpart (|Q|) (|P^¬C|) elsepart (|Q|)
(|P|) if (C) {thenpart } else { elsepart } (|Q|)

This style of reasoning essentially lets us summarize the effect of a block of pro-
gram code by a precondition and a postcondition. Most importantly, we can summarize
the effect of a whole procedure in the same way. The contract of the procedure is a
precondition (what the calling client is required to provide) and a postcondition (what
the called procedure promises to establish or return). Once we have characterized the
contract of a procedure in this way, we can use that contract wherever the procedure
is called. For example, we might summarize the effect of the binary search procedure
this way:

(|8i, j,0 i < j < size : keys[i] keys[j]|)
s = binarySearch(k, keys, vals, size)

(| (s = v^9i,0 i < size : keys[i] = k^vals[i] = v)
_ (s = 0^ 6 9i,0 i < size : keys[i] = k) |)

7.5 Reasoning about Data Structures and Classes

The contract of the binary search procedure can be specified in a relatively simple,
self-contained manner. Imagine, though, that it is part of a module that maintains a
dictionary structure, e.g., the relation between postal codes and the nearest airport with
air-freight capability. In that case, the responsibility for keeping the table in sorted
order would belong to the module itself, and not to its clients. If implemented in a
modern object-oriented language, the data structure would not even be visible to the
client, but would rather be encapsulated within a class.

Courtesy Pre-print for U. Toronto 2007/1

