
An Implementation of

Entity-Relationship Diagram Merging

Wentao He
Department of Computer Science

University of Toronto

Toronto, ON, Canada

wentao.he@mail.utoronto.ca

Abstract

Entity-Relationship model is an abstract way to describe

database. During large scale development, each database

designer often focuses on designing a particular part of the

system, and the model created by each designer may have

overlaps. How to efficiently merge these models to construct a

larger model that describes the whole system is an interesting

problem.

This report explains the implementation of an entity-

relationship model merge operator that I created for solving this

issue. The implementation is based on an algorithm that was

proposed earlier. This operator is currently at its first release

(release 1.0). Further improvement is required in terms of

visualization and inconsistency validation.

Keywords

Entity-Relationship Diagram, Merge, Operator, EMF, MMTF.

1. Introduction
Entity-Relationship diagram is a visual representation of different

data using conventions that describe how these data are related to

each other. While being able to describe almost any system, ER

diagrams are most associated with complex databases that are

used in software engineering and IT networks. In particular, ER

diagrams are frequently used during the design stage of a

development process in order to identify different system elements

and their relationships with each other.

In large scale model-based development, a key problem is to

integrate a collection of models into a larger specification. This

problem exists in the domain of entity-relationship model as well.

In this report, I will explain how I created a merge operator that

merge two entity-relationship models. This operator implements

an algorithm proposed by Mehrdad in his PHD thesis [1]. In fact,

Mehrdad had also implemented this in a tool called TReMer+ [3]

back in 2008. However, the merge operator I created has different

features and run in a different environment: MMTF, an Eclipsed

based tool framework for model management.

In the following, I will introduce the background of entity-

relationship diagram and model merge, followed by explanation

to the merge algorithm that I implemented. In section 3, I will

explain how I implemented this merge operator. In section 4, I

will illustrate an example and validate the merge operator. In

section 5, I will identify the areas where future improvements are

required for this merge operator. At last, in section 6, I will close

with some concluding remarks.

2. Background

2.1 Entity-Relationship Diagram
The concept for Entity-Relationship diagram (also called ER

diagram) was introduced in a 1976 paper by Peter Chen six years

after E.F. Codd published his seminal work defining the relational

model of data. Chen’s notation provided a way to graphically

show relationships between data models.

There are three basic elements in an ER diagram: entity,

attribute, relationship. On top of these, there are various types of

these elements such are weak entity, multi-valued attribute,

derived attribute, identifying relationship, etc. Figure 2.1 shows

the standard symbols for all of them. All the types of elements in

figure 2.1 have been implemented in the merge operator that I

developed.

Assuming the reader has the basic knowledge of ER diagrams,

introduction to each of these elements will not be covered in this

paper.

Figure 2.1 ER Diagram Symbols

2.2 Merge
In model-based development, models are usually constructed and

manipulated by distributed teams, each work on a partial view of

the overall system. A key problem is to integrate these separate

but interrelated models into one single, larger model representing

a larger view of the system.

Marsha distinguished three key integration operators – merge,

composition and weaving, and provided a detailed analysis at the

factors that one must consider in defining a merge operator,

particularly the way in which the relationships should be captured

during merge [2]. Marsha also identified a list of common criteria

that merge result is expected to meet:

 Completeness

 Non-redundancy

 Minimality

 Totality

 Soundness

All these factors and criteria apply to the ER diagram merging.

In my implementation of the ER diagram merge operator, I have

considered all these factors.

2.3 Merge Algorithm
Mehrdad proposed an algorithm in his PHD thesis [1] for merging

models. The algorithm can be adapted to any graph-based

modeling language. It treats the mappings between models in

terms of mapping between nodes and edges in the underlying

graphs. The algorithm contains two major parts as described

below.

2.3.1 Merging Sets
A system of interrelated sets is given by an interconnection

diagram whose objects are sets and whose mappings are functions.

Each function is considered as such a mapping: each element of

the domain set is mapped to a corresponding element in the co-

domain set. For example, in a three-way merge, the mappings

would show how the set C is embedded in each of A and B.

To describe the algorithm for merging sets, I need to introduce

the concept of disjoint union first. The disjoint union of a given

family of sets S1, S2, …, Sn, denoted S1⨄S2⨄…⨄Sn, is (isomorphic

to) the following set: S1×{1} ⋃ S2×{2} ⋃ …⋃ Sn×{n}. For

conciseness, construct the disjoint union by subscripting the

elements of each given set with the name of the set and then

taking the union. For example, if S1 = {x, y} and S2 = {x, t}, write

S1⨄S2 as {xS1, yS1, xS2, tS2}.

To merge a system of interrelated sets, start with the disjoint

union as the largest possible merged set, and refine it by grouping

together elements that get unified by the interconnections. To

identify which elements should be unified, construct a unification

graph U, a graphical representation of the symmetric binary

relation induced on the elements of the disjoint union by the

interconnections. Then combine the elements that fall in the same

connected component of U. Below shows the merge algorithm for

an interconnection diagram whose objects are sets S1, …, Sn and

whose mappings are functions f1, …, fk.

Algorithm: Set-Merge

Input: Sets S1, …, Sn

Functions f1, …, fk

Output: Merged set P

 Let U be an initially discrete graph with node-set

S1⨄S2⨄…⨄Sn;

 For every function fi (1 ≤ i≤ k):

 For every element a in the domain of fi:

 Add to U an undirected edge between the

elements corresponding to a and fi(a);

 Let P be the set of the connected components of U;

 Return P as the result of the merge operation.

Figure 2.2 shows an example of set merge. (a) shows the

interconnection diagram; (b) shows the induced unification graph

and its connected components; (c) shows the merged set.

Figure 2.2 Three-way merge example for set [1]

2.3.2 Merging Graph
The notion of graph used here is a specific kind of directed graph

used in algebraic approaches to graph-based modeling and

transformation (Ehrig & Taentzer, 1996).

Definition: Graph

A (directed) graph is a tuple G = (N, E, source, target) where N is

a set of nodes, E is a set of edges, and source, target: E -> N are

functions respectively giving the source and the target of each

edge.

To interconnect graphs, mapping needs to be defined.

Mehrdad uses homomorphism (a structure-preserving map

describing how a graph is embedded into another) to denote the

mapping.

A system of interrelated graphs is given by an interconnection

diagram whose objects are graphs and whose mappings are

homomorphisms. Merging is done component-wise for nodes and

edges. For a graph interconnection diagram with objects

G1, . . . ,Gn and mappings h1, . . . , hk, the merged object P is

computed as follows: The node-set (resp. edge-set) of P is the

result of merging the node-sets (resp. edge-sets) of G1, . . . ,Gn

with respect to the node-map (resp. edge-map) functions of

h1, . . . , hk.

To determine the source (resp. target) of each edge e in the

edge-set of the merged graph P, pick among G1, . . . ,Gn, some

graph Gi that has an edge q which is represented by e. Let s (resp.

t) denote the source (resp. target) of q in Gi; and let s′ (resp. t′)

denote the node that represents s (resp. t) in the node-set of P. We

set the source (resp. target) of e in P to s′ (resp. t′).

Figure 2.3 shows an example of graph merge. In the figure,

each homomorphism has been visualized by a set of directed

dashed lines. In addition to the homomorphisms of the

interconnection diagram, i.e., f and g, we have shown the

homomorphisms δA andδB specifying how A and B are represented

in P. The homomorphism from C to P is implied and has not been

shown.

Figure 2.3 Three-way merge example for graphs [1]

To compute the merged graph P in figure 2.3, first merge the

note-sets and edge-sets of A, B and C, using the algorithm

described in the section 2.3.1. This generates two sets: N= {u1, u2,

x3, n3}, E= {v1, p2, e2, e3}, representing the node-set and edge-set

of P. Then, to determine the source and target of each edge in E,

use the method described earlier in this section. For example, for

edge v1 in E, we get p1 in A and e1 in B that are mapped to this

edge, any source (resp. target) of these 3 edges that is contained in

N will be the source (resp. target) of v1.

3. Implementation
In this section, I will first list the tools and frameworks I used,

followed by the explanation of my implementation. At the end, I

will summarize the overall features of the operator.

3.1 Tools and Frameworks
Eclipse: a multi-language software development environment

comprising an integrated development environment (IDE) and an

extensible plug-in system. I used Java language for this

implementation.

EMF: a modeling framework and code generation facility for

building tools and other applications based on a structured data

model.

MMTF: an Eclipsed based tool framework for model

management.

3.2 Create meta-model (eCore)
Meta-model describes the underlying structure of the model while

a model is then the instance of this meta-model. Below I describe

how I create the meta-model (eCore) to model ER diagram:

- Create an EClass named ERDiagram as the root.

- An ER diagram can contain multiple entities and

relationships, so create EClass Entity and EClass

Relationship, create EReference between ERDiagram and

Entity, ERDiagram and Relationship, set the upper bound to

“*”.

- Create two references between Entity and Relationship

indicating that a relationship must have one “from” entity

and one “to” entity.

- Each entity and relationship can have multiple attributes,

hence create EClass Attribute, create EReference between

Entity and Attribute, Relationship and Attribute, set the

upper bound to “*”.

- An attribute can have multiple sub attributes if it is a

composite attribute, so create EReference from Attribute to

Attribute, and set the upper bound to “*”.

- Create EAttributes for EClass Entity, Relationship and

Attribute.

Figure 3.1 shows the ER diagram eCore model that I created.

 Figure 3.1 ER Diagram eCore Model

Use the eCore file created above to produce the corresponding

genmodel which is then used to auto generate the Java

implementation of the EMF model.

http://en.wikipedia.org/wiki/Software_development_environment
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Plug-in_%28computing%29

 Figure 3.2 Auto Generated Classes

Figure 3.2 shows the auto generated classes. The generated

classes consists of the following:

- edu.toronto.cs.se.modelepedia.erdiagram

Interfaces and the Factory to create the Java classes

- edu.toronto.cs.se.modelepedia.erdiagram.impl

Concrete implementation of the interfaces defined in model

- edu.toronto.cs.se.modelepedia.erdiagram.util

The AdapterFactory

3.3 Create merge operator
Now the ER diagram meta-model has been created. The merge

operator is expected to take two instances of this meta-model and

a mapping between the two model instances as input, output a

merged model instance.

The main flow of the implementation can be summarized below:

1) Create class ERDiagramMerge.java that extends MMTF

framework class OperatorExecutableImpl.java and override

execute() method. The input parameter of execute() method

is a list of models, in my case containing two ER models

that are to be merged and a relationship between the two

models.

2) Convert the two input ER models to ERDiagram typed

objects. This type is defined in the eCore model;

Convert the relationship model to a HashMap. Key of the

hashmap represents the element in the left ER diagram while

value represents the element in the right ER diagram (For

the two input ER diagrams, I call the first one as left ER

diagram and the second one as right ER diagram).

While converting the model relationship to a HashMap,

validation happens if the user chooses to do close-world

merge, this makes sure that the user identified mapped

elements do not have inconsistencies. For example, if user

maps a strong entity in the left ER diagram to a weak entity

in the right ER diagram, validation will catch this and notify

the user of this inconsistency. However, if user chooses to

do open-world merge, such validation will not happen. For

the mapped elements, the merged ER diagram will take

either left or right elements’ naming based on user’s

preference.

3) Create a connector based on mappings between the two

input ER diagrams and populate mappings between

connector to each input ER diagram.

4) Now start merging set. I categorize the elements in ER

diagram into four different types (or levels), they are:

- Entity

- Relationship

- Entity Attribute

- Relationship Attribute

Create a disjoint union for each element type based on the

left ER diagram, the right ER diagram and the connector.

Use the algorithm described in section 2.3.1 to populate a

merged set P for each element type.

P is a list of element list. For each element list in P, take

only one element according to the naming preference

specified by the user, and construct another list of element

called Pdistinct, so this list contains the elements for the

merged ER diagram.

5) Now start merging graph. Create an empty ER diagram

Dmerged, and then add merged elements to this ER diagram

type by type, in the following order:

- Entity type: get all the entities from Pdistinct, add them to

Dmerged.

- Relationship type: get all the relationships from Pdistinct,

add them to Dmerged. For each relationship, check the

existence of from entity and to entity in Dmerged, if not

exists, join P to get it and set it to the relationship.

- Entity Attribute type: for each entity attribute in Pdistinct,

check the existence of its associated entity in Dmerged,

if exists, associate it to that entity; else, join P to get

the attribute and associate it to the corresponding

entity in Dmerged.

- Relationship Attribute type: for each relationship

attribute in Pdistinct, check the existence of its

associated relationship in Dmerged, if exists, associate it

to that relationship; else, join P to get the attribute and

associate it to the corresponding relationship in Dmerged.

3.4 Unit Testing
I have seen many applications where there is no robust or even no

unit testing which I see it a big risk as the application keeps

growing (it appears MMTF does not have unit test cases

accompanied by its source code).

For the ER diagram merge operator, I used JUnit framework

to create test cases and did throughout testing. As majority of my

core logic sits in private methods, I used java reflection to access

these methods from JUnit class. Figure 3.3 shows the unit test

cases I have created.

3.5 Features of the operator
Overall, here are the features that this ER diagram merge operator

supports:

- Capable of merging mapped entities, relationships,

entity attributes and relationship attributes.

- User has the option to specify the merge approach:

open-world merge or close-world merge.

- User has the option to specify naming preference: use

naming of the shared elements from left ER diagram

or right ER diagram.

 Figure 3.3 JUnit Test Cases

In addition, this operator can also work with Name Match

Operator that Alessio (the core MMTF developer) has created. If

the user wants to simply consider that elements with the same

names are same elements, run the Name Match Operator to create

a mapping relationship between the two input ER diagrams, and

then select the two ER diagrams and the mapping relationship to

produce a merged ER diagram.

4. Evaluation

4.1 Integration
In this section, I will run an end-to-end example to verify if the

operator works as expected.

Jack and Tom work in the same company, both of them have

created an ER model that describes their organization database.

See figure 4.1, the diagram at the top is created by Jack while the

diagram at the bottom is created by Tom. As we can see, these two

diagrams have some overlaps. For example, entity “Employee” is

in both of the diagrams; entity “Unit” in Jack’s diagram seems to

represent the same thing as entity “Department” in Tom’s diagram

though their names are different. After Jack and Tom sit down

together and discussed, they come up with a mapping between the

two diagrams, the mapping is depicted by the middle diagram

(connector) in figure 4.1.

Figure 4.1 Mappings between the connector

and the two ER diagrams to be merged

Now, to merge Jack and Tom’s diagrams, I first convert their

diagrams to erdiagram meta-model instances, I name them:

Company_Input1.erdiagram and Company_Input2.erdiagram.

Then create a mid-diagram in MMTF, import the two instances to

the mid-diagram, and create a mapping relationship between the

two instances (figure 4.2).

Double click on the mapping, MMTF will take me to the

relationship diagram where I specify the element mappings.

Figure 4.2 Two ER models and their

mapping in MMTF mid-diagram

The last preparation step is to specify the merge preferences,

i.e. open-world or close-world, left diagram naming or right

diagram naming. They are controlled by two flags in a properties

file. In this example, I use close-world approach and take right

diagram naming.

Now come back to the mid-diagram, select the two ER models

and the mapping, select “Run Operator -> ERDiagramMerge”

through right click menu, a merged ER model is created and

displayed in the mid-diagram. Convert the merged erdiagram

model to ER diagram (figure 4.3).

Through manual verification, we can see that all the

overlapped elements have been eliminated; right diagram naming

is taken; there is no element lost as well as no new element got

introduced. The merged diagram is exactly the same as expected.

In addition to the example above, I have also run several other

examples to verify the operator (refer to ERDiagramMerge-

Examples folder in the project submission package), all got

expected results.

4.2 Performance
To evaluate the performance in terms of how fast the merge

respond to heavy input ER models, I wrote a short program that

automatically create two ER models containing a pre-defined

number of entities, relationships and attributes, as well as a

relationship between the two models with half of the elements

mapped. I start the number from 50 (i.e. each input ER model

contain 50 entities, 50 relationship and 50 attributes), and keep

increasing it 50 by 50 till 500. Figure 4.6 shows the time spent for

each run.

In fact, in real world barely there is company with so complex

business requirement that would require to design an ER model

involving hundreds of entities/relationships. Even if there is, it is

strongly recommended that such huge ER model should be broken

down into modules. Otherwise it’s too difficult for human to

interpret. Given this, the test result in figure 4.4 can prove that the

performance of this ER merge operator is fairly acceptable.

5. Future Improvements
What has been implemented so far is basedlined as release 1.0.

Due to the time constraint of this project, there are several features

not implemented or not implemented maturely. They are

important features for making this merge operator a “sellable”

product:

 Figure 4.3 Merged ER diagram

 Figure 4.4 Performance Testing Result

a. Visualization

Currently conversion between ER model in MMTF and ER

diagram is not implemented. User has to manually do the

conversion.

In fact, I had tried using Eclipse GMF. Displaying a simple

diagram with only very basic entity or relationship icon is

easily doable, however visualizing a rich and heavy typed ER

diagram (containing strong/weak entity, strong/weak

relationship, multi-valued/derived/primary attribute etc) like

in figure 4.3 take a lot more effort. Due to the time constraint

I decided not to include this in release 1.0.

b. Validations

Current operator is not mature in catching all possible

validation errors. The open-world vs. close-world approach

implementation is at initial stage.

For example, if user drags a relation between an entity in left

ER diagram and an attribute in right ER diagram in MMTF,

neither the operator nor the MMTF framework will be able

to catch this error (the mapped elements are of different types)

and the merge will fail. I did not implement this validation in

my operator as I believe this should be done at MMTF

framework level. Further analysis and discussion is required

here.

6. Conclusion

In this report, I explained the implementation of an entity-

relationship diagram merge operator that I have created. This

merge operator is a type of endogenous model transformation. It

merges two entity-relationship models to an entity-relationship

model that preserves all the behaviors expressed in both input

models. This operator supports both open-world and close-world

approaches (at conceptual stage), and also supports taking naming

from either of the two input models into the merged model.

I also walked through the unit testing, integration testing and

performance testing that I have conducted. The test results all

come as expected and performance look fairly acceptable.

Furthermore, I have identified some future improvements that are

required for this merge operator - visualization and validation in

order to make it a mature product.

In industry, database designer often focuses on designing a

particular part of a large system and then merge with other

designers’ models. In most companies, even today, almost all the

merge work is done manually. Manual work cost big effort and

tend to high chance of making mistakes. I believe the entity-

relationship diagram merge operator that I have created can

significantly help in solving these problems.

Acknowledgements
I would like to thank Marsha Chechik, my professor, and Rick

Salay who instructed me in finalizing the directions of the project

and approaches. And I would like to thank Alessio Di Sandro for

giving me the session of MMTF, and the technical support when I

run into issues with MMTF.

References
[1] Mehrdad Sabetzadeh. Merging and Consistency Checking of

Distributed Models. A thesis submitted in conformity with the

requirements for the degree of Doctor of Philosophy. 2008

[2] Marsha Chechik, Shiva Nejati, Mehrdad Sabetzadeh. A

Relationship-Based Approach to Model Integration. 2012

 [3] M. Sabetzadeh, S. Nejati, S. Easterbrook, and M. Chechik.

Global consistency checking of distributed models with

TReMer+. In ICSE’08: Proceedings of the 30th International

Conference on Software Engineering, pages 815–818,

2008.

