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ABSTRACT
Partial models can be used to explicate design uncertainty in
modeling artifacts. The existing, text-based syntax for par-
tial models has been created in an ad-hoc manner without
taking into account design guidelines for modeling notations.
In this project, we perform an assessment of the effective-
ness of the existing notation based on criteria outlined in the
literature and propose a new, graphical notation following
the same criteria. To evaluate both notations, we designed
and executed an empirical user study to assess their cogni-
tive effectiveness with regard to speed, ease and accuracy,
as well as to get evidence about the preferences of users.

1. INTRODUCTION
In previous work [2], we have proposed partial models as

a means to explicate and handle design uncertainty,i.e., un-
certainty that the modeler may have about the content of
her modeling artifacts. A partial model consists of a “base”
model, decorated with uncertainty annotations, to express a
set of possible conventional models. We refer to a specific
decision about which the modeler is uncertain as a Point of
Uncertainty (PoU). In [13], we introduced MAVO partial-
ity, as a way to explicate uncertainty using syntactic an-
notations. We introduced four kinds of such annotations:
(a) May partiality: annotating a model element with m in-
dicates that we are unsure about whether it should exist in
the model or not. May elements are also given a unique id
element enclosed in a circle for use in a propositional for-
mula indicating their groupings and dependencies. (b) Abs
partiality: annotating an element with s indicates that we
are unsure about whether it should actually be a collection
of elements. (c) Var partiality: annotating an element with
v indicates that we are unsure about whether it should ac-
tually be merged with other elements. (d) OW partiality:
annotating the entire model with inc indicates that we are
unsure about whether it is complete.
Example. We show an example partial Entity-Relational
model in Figure 1. The model describes a hotel management
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system that consists of Customers, that make Reservations
of Rooms. Customers, as well as hotel Employees may have
Access to Rooms. The model contains three kinds of uncer-
tainty May, Abs and Var. In particular, the model contains
the following PoUs:

PoU1: The modeler is unsure whether Customer and Employee

should have a common superclass Person from which
to inherit the attributes name and surname.

PoU2: The modeler is unsure whether she wants to asso-
ciate Access with Customer in particular or Person

in general.
PoU3: The modeler does not know what securityAttributes

the entity Access should have.
PoU4: The modeler has not made up her mind about what

entity should the property internetAccess be as-
sociated with and what the id attribute of such an
entity-with-internet should be.

The points of uncertainty PoU1 and PoU2 are explicated
in Region II of the model, using May partiality. They are
accompanied by a May formula, shown in the bottom of
Region II, which specifies their dependency. The points of
uncertainty PoU3 and PoU4 are explicated in Region I, using
Abs and Var partiality respectively.
Motivation and Contributions. Using partial models,
we have shown how to model uncertainty [3], reason in its
presence [4], systematically remove it using refinement [13],
propagate it [14], manipulate and transform models that
contain it [5], etc. These are ample evidence that partial
models allow us to efficiently do automated reasoning in the
presence of uncertainty. However, like all forms of modeling,
apart from being formal, machine-processable artifacts, par-
tial models are also a means of human communication. This
means that partial models should be an effective means for
expressing uncertainty to other people and for understand-
ing the uncertainty expressed by other people. Both of these
communication tasks are greatly informed by notation [8].

The partial model in Figure 1 is expressed in the notation
introduced in [13], incorporating from [4] the notation for
expressing May formulas. In particular, MAVO annotations
are expressed textually and dependencies between PoUs are
expressed in a propositional May Formula over a vocabulary
of propositional variables, which are shown in the model
using annotations in black circles. While partly influenced
by work on behavioral modeling [7], This notation has been
created in an ad-hoc manner, without taking into account
the theory for the systematic design of notations proposed
by D. Moody in [8]. We will refer to this notation as MAV-
Text.



Figure 1: Motivating example in MAV-Text syntax. Region I: elements with Abs and Var uncertainty.
Region II: elements May uncertainty and May formula.

Based on this observation, in this course project we at-
tempted to do the following contributions:

C1: Provide an assessment of the existing state of partial
modeling notation, using the criteria set forth in [8].

C2: Intentionally design a graphical notation, called MAV-
Vis, for partial models that attempts to follow the same
criteria.

C3: Empirically evaluate MAV-Text and MAV-Vis by con-
ducting a user study to determine the effectiveness of
each with respect to speed, ease and accuracy, (also de-
fined in [8]) as well as to get evidence regarding user
preferences.

Scope and Limitations. An important characteristic of
MAV-Text and MAV-Vis is that they are annotation lan-
guages, as opposed to full-blown notations. In principle they
could be used to annotate arbitrary models expressed in ar-
bitrary languages. It is thus impossible to guarantee semi-
otic clarity (1:1 correspondence between symbols and con-
cepts), because there can be no guarantee (from the designer
of the annotation language) that the language of the anno-
tated model will not use the same graphical constructs to
indicate something else.

To address that concern we limit ourselves to the study
of two specific modeling languages: Class Diagrams [12] and
Entity-Relationship (E-R) Diagrams [1]. These choices are
deliberate: (1) In MOF [11], Class Diagrams are used to ex-
press models of arbitrary metamodels in the abstract syntax.
Therefore, even though MAV-Text and MAV-Vis may not
be able to annotate arbitrary models in their concrete syn-
tax, we can still annotate them when expressed in abstract

syntax. (2) The E-R diagram is a simple, well-known no-
tation taught in most undergraduate curricula. This should
lower the language barrier to a level comparable to Class
Diagrams.

To create MAV-Vis, we opted to forgo the use of proposi-
tional formulas like the one shown in Figure 1 for expressing
dependencies between PoUs. Instead, we created means for
users to express these dependencies graphically. I must be
stressed that we are not attempting to create a graphical lan-
guage for expressing arbitrary propositional expressions or
even to express the most common propositional expression
patterns encountered in partial modeling. We have delib-
erately kept the dependency notation simple as a first pass,
while considering future scalability in the framework so more
complexity can be added later. In Section 7, we briefly out-
line some ideas for further elaboration of the dependency
notation.

Finally, in this project we have focused on May, Abs and
Var because OW partiality is expressed at the model level.
This means that the annotation language must be either
be explicitly combined with tooling or expressed using lan-
guages that support multiple abstraction layers, for example
macromodeling [15].

In Section 2, we present an analysis of MAV-Text, and in
Section 3, we describe the new graphical notation for par-
tial models, MAV-Vis. In Section 4 we give details about
the empirical evaluation and in Section 5 we discuss and
interpret our findings. We briefly discuss related work in
Section 6 and conclude in Section 7.

2. ANALYSIS OF MAV-TEXT



In this section, we present our analysis of MAV-Text,
based on the principles for designing effective visual nota-
tions outlined in [8]. In particular, we assessed the notation
for Semiotic Clarity, Perceptual Discriminability, Semantic
Transparency, Complexity Management, Cognitive Integra-
tion, Visual Expressiveness, Dual Coding, Graphic Economy
and Cognitive Fit. Our results are summarized in the table
shown in Figure 2. The components of MAV-Text- notations
for May, Abs, and Var uncertainty is shown in the motivat-
ing example in Figure 1. The following is our assessment of
these notations with respect to each principle.
Semiotic Clarity. There should be a one-to-one correspon-
dence between semantic constructs and graphical symbols.
This principle allows a notational system to constrain ex-
pression and interpretation without ambiguity. This avoids
anomalies such as symbol redundancy, symbol overload, sym-
bol excess, and symbol deficit.

As MAV uncertainties can apply to usage in different mod-
eling languages, the notations selected to represent them
must not overlap with those used by other modeling lan-
guages. We find that the annotation-based syntax satisfies
the principle of semiotic clarity, as each type of uncertainty
has a unique annotation associated with it, which is not
shared with other semantic constructs in any of the other
modeling languages considered. Note that here we consider
different text annotations to be distinct, despite being ho-
mographs in terms of perceptual discriminability. Our treat-
ment of this principle differs from other analyses [9], which
would evaluate this as symbol overload. The use of the May
formula is precise and expressive, and thus also satisfies this
principle. In our example, there is no ambiguity in the mean-
ing of the notations used, as each uncertainty is accurately
notated.
Perceptual Discriminability. Different symbols should be
clearly distinguishable from each other. This supports easy
and accurate visual information processing. Discriminabil-
ity of symbols is determined by the visual distance between
them, measured by the number of visual variables on which
they differ, and the magnitude of such variations. Shape is
the primary visual variable for discriminability, and using
more than one visual variable (redundant coding) to dis-
tinguish between symbols can further increase their visual
distance.

The primary uncertainty type notations in MAV-Text are
all text-based, and as such, have zero visual distance separat-
ing them according to this principle. Textual differentiation
of symbols is cognitively inefficient for diagrams with high
complexity, and interferes with the role of text as labels. We
see in our example that (M), (V), and (S) annotations are
not instantly discernable. Thus, this principle highlights an
issue with MAV-Text annotations.
Semantic Transparency. Use visual representations whose
appearance suggests their meaning. This relates to how in-
tuitive and natural the symbol is for communicating the
intended meaning. This also applies to relationships, where
the spatial arrangements and connections between elements
should also reflect how they are related.

This brings forth another potential issue with MAV-Text an-
notations, which are represented by the first letter of the
name for the uncertainty concept they relate to. The lack
of graphical symbol use is limiting to how intuitive the no-
tation can be. We can see in our example that the (M), (S),
and (V) annotations do not invoke their semantic meaning

since they are not built upon any visual conventions for rep-
resenting their corresponding uncertainties, so they are not
likely not easily associated with their semantic concepts.

The May formula, however, relies on the established nota-
tion for propositional logic. The wide acceptance of this for-
mat may yield some“naturalness” in its use in MAV-Text for
some users. Despite this, the relationships across different
May elements (combinations and dependencies) are not vis-
ibly indicated on the diagram outside of the accompanying
May formula.
Complexity Management. Include explicit mechanisms
for dealing with complexity. Complexity is measured by the
number of elements (symbol instances) on a diagram. Visual
notations should contain mechanisms for managing complex-
ity and avoiding cognitive overload. Such mechanisms can
handle modularization and hierarchical structuring to break
information into more manageable chunks and levels of ab-
straction.

This is a particularly relevant principle in the expres-
sion of uncertainty, as encoding non-concrete options into
a partial model inherently adds complexity. MAV-Text in-
troduces a new annotation element for each element with
uncertainty, and the design for their use does not provide
for any mechanisms for chunking information to manage
this additional complexity. In our example, the simple may
uncertainty alone introduces 34 new annotation elements.
Multiple points of May uncertainty with dependencies across
them can increase the number of alternatives to express in
the May formula exponentially.
Cognitive Integration. Include explicit mechanisms to
support integration of information from different diagrams.
Representing systems across multiple diagrams requires the
cognitive integration of these diagrams to form an under-
standing of the whole. Perceptual cues and contextualiza-
tion techniques can indicate how the diagrams fit together
and how to navigate between them.

MAV-Text does not provide specific mechanisms for cog-
nitive integration, however, the May formula explicitly indi-
cates how combinations of May elements as well as depen-
dencies between them. This serves to contextualize individ-
ual may elements with respect to the overall uncertainty.
Visual Expressiveness. Use the full range and capacities
of visual variables. This measures the visual variation of the
notation across the entire visual vocabulary. The number of
visual variables used to encode information determines the
degree of visual expressiveness. Perceptually rich notations
utilizing multiple visual channels provide higher degrees of
expressiveness.

MAV-Text relies solely on textual encoding and thus has
no information-carrying visual variables. While it is seman-
tically expressive, this measures to zero-degrees of visual
expressiveness. We observe in our example, that the only
visual elements in MAV-Text are the circles enclosing May
element labels. This principle suggests that exploiting more
visual channels will yield a more cognitively effective nota-
tion.
Dual Coding. Use text to complement graphics. This prin-
ciple is based on the dual coding theory, that text and graph-
ics together can convey information more effectively than
either on their own.

MAV-Text does not apply dual coding in any of its ele-
ments. Text is used for the encoding by itself, rather than as
a complement to visual graphics. Additionally, the may for-



Figure 2: Summary of our assessment of the MAV-Text syntax.

mula presents uncertainty alternatives separately from the
diagram. In our example, it is displayed at the bottom of
the diagram, with no visual connection to its referent el-
ements. The principle of spatial contiguity suggests that
in-place annotation would be more effective for this.
Graphic Economy. The number of different graphical sym-
bols should be cognitively manageable. There are cognitive
limits to the number of graphical symbols that can be effec-
tively recognized. Too great a graphic complexity can place
a burden on working memory, particularly if the symbols are
not mnemonic and a legend is required.

This is not an issue with MAV-Text, but is something
to note in further design of MAVO notation. Incorporating
more types of uncertainty and developing constraints will
require more expressiveness in the diagram.
Cognitive Fit. Use different visual dialects for different
tasks and audiences. Cognitive fit in software modeling no-
tation design is affected by user expertise and the representa-
tional medium available. This may result in complementary
visual dialects to accommodate different users and mediums.

MAV-Text is appropriate for its representational medium,
as it is suitable for both pen-and-paper as well as tooling so-
lutions. However, it requires a certain amount of user skill
in reading the may formula, which relies on knowledge of
propositional logic. More complex notations, such as those
used by the may formula in the example, can be problem-
atic for users without the appropriate background. This is
presents a limitation on accessibility.

3. DESIGN OF MAV-VIS
In this section, we briefly describe the MAV-Vis syntax

for partial models and our design rationale for it. For com-
parison, the example of Figure 1 is shown in MAV-Vis in
Figure 3.

We use color to distinguish between PoUs. In particular,
each design decision about which the modeler is uncertain
is given a unique color. In the example in Figure 3, the
elements associated with PoU1 are colored green, those as-
sociated with PoU2 are colored magenta, those associated

with PoU3 are cyan and those associated with PoU4 are
colored blue. The ability to distinguish between PoUs does
not correspond directly to a concept in the formal, seman-
tic domain of partial models (e.g. in MAV-Text there are
no assumptions made about PoUs). We add this capabil-
ity to MAV-Vis only to enhance understandability. Losing
that information in e.g. a black-and-white printout does not
remove essential information from the model.
Var uncertainty. Var uncertainty is represented by a cloud
icon, as shown at the top of Region I in Figure 3. For node
graphical elements and contained graphical elements (e.g.
attributes in a class diagram), the icon annotation is placed
to the left of the name label, as is done for the Accessor and
id elements. For edge graphical elements, the annotation
icon annotation is placed on top of the element, as is done
for the edge element between Accessor and id. The idea
here is to use shape for visual discriminability and to select
a representation that can be associated with the concept, in
the form of a sketchable icon. These are to be pen-and-paper
friendly symbols that require minimal drawing skills so that
the Cognitive Fit is appropriate.
Abs uncertainty. The representation of Abs uncertainty
leverages a pile metaphor, as shown at the bottom of Re-
gion I in Figure 3. For node graphical elements, this is
done by adding a second trace of the border of the node
to look like a pile, as is done for the securityAttributes

element. For contained gaphical elements (not shown in the
example), the same effect is accomplished by first enclos-
ing them in a box and then applying the same principle as
for node elements. Edge graphical elements are annotated
by adding a second line to give the appearance of “many
lines”, as is done for the edge between SecurityClearance

and securityAttributes. We believe this would be an in-
tuitive visual notation for the Set concept, improving Se-
mantic Transparency as well as Visual Expressiveness and
Perceptual Discriminatbility.
May uncertainty. In previous work, we have elaborated
May uncertainty to also include a constraint language, namely
propositional logic [4]. A model containing May-annotated



Figure 3: The model of Figure 1, expressed in MAV-Vis.

elements can also contain a propositional “May formula”
which expresses the allowable configurations of May ele-
ments.

Explicating alternatives: For each PoU, each allowable con-
figuration of the May-annotated elements corresponds to
an alternative, i.e. a distinct way to concretize the partial
model. In MAV-Vis, alternatives are expressed as first-class
entities. An alternative A is indicated as follows: (a) All
model elements that are part of the alternative are enclosed
in a free-form dashed line. Alternatively, if A only has a
single element, that element’s border can be replaced by a
dashed line. (b) If the elements making up A are spatially
away from each other, each separate cluster is enclosed in a
separate free-form dashed line. (c) The dashed line is anno-
tated with a circular icon of the same color as the PoU for
which A is an alternative. (d) The circular icon is also given
a label of the form xn where x is the name of the PoU and
n is the ordinal number of the alternative. (e) If A consists
on many clusters (cf. point (b)) then the the circular icon
must contain a number of white dots equal to the number
of clusters. (If there are more than 5 clusters, then instead
of adding extra dots, the number of clusters is put inside a
single dot.) The dots help the reader quickly identify that
that the alternative has more than one cluster which she
should locate elsewhere in the model.

The use of dashed line treatments for elements and enclo-
sures here improves the Visual Expressiveness, adding the
Texture visual variable to the notation and making the el-
ements more easily distinguishable since they are identified
with a separate visual variable form other notations. Ad-
ditionally, the in-place grouping and identification scheme
of the May elements exhibits Dual Coding with colour and
prefix reflecting the point of uncertainty, and there is spa-
tial contiguity between the May elements and their combi-

nations.
We demonstrate these points in the example in Figure 3.

In the example, PoU1 is represented by the color green and
has two alternatives, g1, g2. The elements making up each
alternative are enclosed by dashed lines. The alternative
g2 is contiguous, so its correposning circular icon only has
the label g2, indicating that it is part of the “green” PoU
and that it is the second alternative. The alternative g1
comprises two separate clusters. The circular icon for each
one has the appropriate label, as well as two white dots,
to indicate that there are two clusters that make up the
alternative.

Each element enclosed by a dashed line is assumed to be
annotated with m. Assuming that a partial model M has
k PoUs {P1, ..., Pk}, and that a given PoU Px has n alter-
natives {aPx

1 , ..., aPx
n } and that a given alternative ay has l

model elements, explicating May uncertainty as described
above means that the May formula φM of M is:

φM =

k∧
x=1

φPx , where φPx =

n⊕
y=1

φay

where φay =
∧l

z=1 ez, ez ∈M∧ez ∈ ay (i.e., the conjunction
of the propositional encoding of the elements in the alter-
native) and the symbol ⊕ denotes propositional exclusive-or
(XOR).

Explicating dependencies between alternatives: MAV-Vis does
not support explicating arbitrary dependencies between al-
ternatives. Specifically, in this, preliminary version of the
notation, it only supports a single, yet powerful type of de-
pendency, namely, the case where the choice of one alterna-
tive in some PoU requires that some other alternative has
been chosen at a different PoU. In our example in Figure 3,
the modeler cannot choose the dependee alternative m1 of



Figure 4: Assessment of the MAV-Vis syntax (cf. Figure 2).

PoU2 (shown in magenta) unless she has also chose the de-
pendum alternative g2 of PoU1 (shown in green).

This kind of dependency is indicated by adding to the
circular icon of the dependee a link to a small version of the
icon of the dependum. In our example, the circular icon of
m1 is shown with a link to a small version of the icon of g2.
This notation allows the modeler to express dependencies
locally and intuitively.

In a partial model M , a dependee alternative ad may
have a set of dependum alternatives {d1, ..., dN}. Explicat-
ing these relationships as described above means that for
each dependee ad the May formula φM is enhanced by con-
juncting the expression:

N∧
x=1

(¬dx ⇒ ¬ad)

We summarily present an evaluation of MAV-Vis based
on the criteria outlined in [8] in the table shown in Figure 4.

4. EVALUATION
We conducted an experiment to evaluate and compare the

cognitive effectiveness of our two notations: MAV-Text and
MAV-Vis . Our goal is to address the following questions:

1. For each type of uncertainty, what is the cognitive effec-
tiveness of reading and writing with each of the syntaxes?

2. What are the aspects that are most powerful and most
problematic?

3. What notational syntax is preferred?

4.1 Setup
Design. We designed a series of software modeling tasks
with the goal of measuring the cognitive effectiveness of
each syntax. Each participant was asked to start with the
Free-Form task of writing uncertainty into a model using ad
hoc notations, and was given the liberty to invent them as
needed. This task served as a “warm up” to the uncertainty
concepts, giving participants opportunity to ask questions

on items not clear in the tutorial. This task also provided
insight into what types of notations people would naturally
use to communicate these concepts. The participant was
then given a reading and writing task using one syntax type,
and this was followed by a reading and writing task using
the other syntax type. Each task involved all 3 uncertainty
types addressed by the notations (Abs, Var, and May plus
constraints), in multiple points of uncertainty (PoU’s). Fig-
ure 5 describes each modeling task.

Task A was performed on a simple E-R diagram modeling
a blog, while Tasks B and C, were based upon richer mod-
eling scenarios. The same base model was used for reading
and writing within a task. Two modeling scenarios were
used (one for each syntax) to support the reading and writ-
ing tasks: School Personnel and Hotel Administration. The
School Personnel model was a UML class diagram, while the
Hotel Administration model was an E-R diagram.

We used a within-subjects design, to reduce selection bias
and allow for each participant to compare notations and
express their preferences. We control for two independent
variables: the order in which the syntaxes are presented and
the model scenarios used for each of the syntaxes. These
were counter-balanced in a 2x2 Latin square.

We measure cognitive effectiveness with respect to speed,
ease and accuracy [8]. Speed is determined by task time,
Ease is determined by questionnaire responses, and Accu-
racy is determined by writing error counts and comprehen-
sion scores. There are two components to accuracy that
we are interested in observing in terms of the effect of the
notation style: syntax correctness, and the effect on com-
prehension and correct communication of uncertainty.
Procedure. Participants were given a background ques-
tionnaire to collect information on their areas of expertise
and prior knowledge of MAVO uncertainty, and experience
levels with UML and E-R diagrams. They were then given
an 8-minute tutorial on May, Abs, and Var uncertainty con-
cepts, including definitions for the terms point of uncertainty
and concretization. Participants all started with the Free
Form notation (Task A). Following this, participants were



Figure 5: Modeling tasks of the evaluation.

given a summary sheet explaining first syntax type to read
and use as reference for the corresponding tasks. Then, with
one of the modeling scenarios described earlier, participants
completed a reading task in that syntax type, followed by
a writing task (B1-B2 or C1-C2). This was repeated with
the other syntax type. At the end, participants filled out a
post-study questionnaire where they were asked to rate both
syntax for each uncertainty type, and indicate which syntax
was preferred and why. Before and after all tasks in Table 5,
participants recorded the displayed time.

Prior to running the experiment, a pilot evaluation was
performed with one participant. Based on issues raised dur-
ing this evaluation, clarifications were made to the instruc-
tions, and the syntax summary sheets were augmented with
more detail.
Participants. 12 unpaid participants took part in the study.
All participants had a Bachelors degree or higher in Com-
puter Science and 9 were specialized in software engineer-
ing. The average experience level with MAVO uncertainty
was 2.2 out of a 5-point Likert scale, however 3 were ex-
perts in MAVO uncertainty, and were already comfortable
with MAV-Text. The average experience level with UML
diagrams was 3.3, and the average experience level for E-R
diagrams was 2.9.
Apparatus. The experiment was performed on pen-and-

Figure 6: Speed results.

paper. Each participant was given 4 pens (black, green,
blue, and red) with an experiment packet containing colored
printouts and asked to proceed through it in order. A clock
showing the time in seconds was displayed on a projector for
the participants to use as reference for recording task times.
Participants could ask questions for clarification as needed
throughout the experiment.

4.2 Results
Due to the limited number of participants, there was not

enough data to perform statistical analysis. We report here
on general observations on quantitative measures as well as
qualitative feedback from participants.
Speed.

Table 6 summarizes the average completion times for each
task. As expected, reading tasks took less time to com-
plete using MAV-Vis, with MAV-Text averaging at 2:08 min
longer to complete (17.8 percent). We also note that there
was a substantial amount of overhead in these tasks, since
the user was required to demonstrate their comprehension
by drawing concretizations and writing out descriptions of
the uncertainty. As this overhead was consistent across syn-
tax types, we can attribute the time difference to the por-
tion of task time used for processing the information in the
diagrams. This suggests that the impact on comprehension
speed is actually much greater than the time difference mea-
sured.
Ease. For Abs, Var, and May uncertainty, as well as May
groupings, Participants were asked to rate how intuitive,
easy to remember, efficient for reading, and efficient for writ-
ing the corresponding representations of each syntax type
were on a 5-point Likert scale, from 1 representing strong
disagreement to 5 representing strong agreement. There-
fore, higher numbers indicate more successful results. Par-
ticipants were also asked to indicate which syntax they pre-
ferred for expressing each uncertainty type, as well as which
syntax they preferred as a whole. Most participants pre-
ferred MAV-Vis overall. The tally of participants favoring
MAV-Vis to MAV-Text was 8-2; with 2 participants indicat-
ing equal no preference between them.

Participants favoring MAV-Vis overall mostly found it
clear and easy to associate with semantic meaning. One par-
ticipant commented that it“conveys much more info and [is]
easy to disambiguate [symbols]”. Another participant indi-
cated that “annotations are very similar so meanings are al-
most overloaded. I had to think to remember the meanings”.
Two participants expressed that they would ideally like a
mixed syntax, with Var and Abs following MAV-Vis nota-
tion, and May following MAV-Text notation. One of the
neutral participants indicated preference for MAV-Text for
writing and MAV-Vis for reading.

Abs: Table 7(a) shows the average scores for the Abs un-
certainty type, along with the total count of participants
preferring each syntax type used for representing it. Par-
ticipants evaluated the MAV-Vis representation of the Abs



Figure 7: Ease results. (a) Abs (b) Var (c) May (d)
May Groupings.

uncertainty to be more intuitive, easy to remember, and
efficient to read, with a 1-point differential or more in each
category. 10 participants preferred the MAV-Vis representa-
tion, versus 1 participant preferring the MAV-Text version.

Several participants preferring MAV-Vis commented that
is was “quick” and “easier to notice”, “intuitive” and “cogni-
tively effective”, making comments such as “I could get it at
the first glance”. Other participants commented on the ap-
propriateness of the representation; one stated that it was
“easy to associate with the concept”while another stated that
it “clearly denoted that it was a collection”.

The participant that preferred the MAV-Text representa-
tion found both notations equally intuitive, but indicated
that “(S) is easier to write than to draw a layered picture”.

Var: Table 7(b) shows these results for the Var uncertainty
type. While MAV-Vis was still the more favored syntax,
with a MAV-Vis to MAV-Text preference tally of 8-2, the
response to this representation was slightly less positive than
with the Abs. Participants on average found it more in-
tuitive, easy to remember, and efficient to read, with dif-
ferences of 0.8, 0.9, and 0.5 points respectively. However
they found it slightly less efficient to write by an average 0.3
points.

Participants were divided on the appropriateness of the
symbol used. Some participants expressed that cloud nota-
tion was easily associated with the Var concept, while oth-
ers had did not find it indicative of this, stating for example
“cloud does not equal var in my head”. Two of the partic-
ipants indicating this however, still stated a preference for
MAV-Vis due to its visual appeal and ability to “stand out
more”.

This issue with the semantic association of the cloud sym-
bol was the reason one participant gave for preferring for
MAV-Text. The other participant preferring it stated that
it takes longer to draw the cloud and “takes up too much
space”.

May: The May uncertainty representation in MAV-Vis was
rated higher than MAV-Text on average in all four cate-
gories, with margins of ranging from 0.5 to 0.9 across the
categories. More participants preferred the MAV-Vis no-

Figure 8: Accuracy results. (a) Reading scores (b)
Writing error counts.

tation, but by a smaller margin, with 7 preferring MAV-
Vis and 4 preferring MAV-Text. Table 7(c) displays these
results.

Many participants expressed the semantic clarity in using
dashed lines for May elements, and indicated that it was
easier to see and read, citing these as reasons they preferred
MAV-Vis notation. Some of participants however, indicated
that they found the (M) annotation to be cleaner, and easier
to draw. These were the reasons backing their preference for
MAV-Text in this case.

May Groupings: The MAV-Vis notation for May groupings
were rated higher than its MAV-Text counterpart in the
intuitive, easy to remember, and efficient to read categories,
and in the efficient to write category they were rated equally
at 3.3 points. MAV-Vis was also indicated as the preferred
notation, with 8 participants favoring it, versus 3 favoring
MAV-Text. Table 7(d) displays these results.

Participants liked that MAV-Vis provided a way of“group-
ing and visualizing all the choices simultaneously”. Most
participants were familiar with propositional logic. One par-
ticipant noted that as a result, “the learning curve [for MAV-
Vis] is a bit steep, but it makes sense and [is] way easier than
a formula”. The participants that indicated a preference for
MAV-Vis found the May formula “more powerful” and “more
commonly known”.
Accuracy.

Reading: Reading performance for each type of uncertainty
in was evaluated based on how successfully the 3 parts in the
task was performed: Correct identification of Point of Un-
certainty, correct identification of what the uncertainty is,
and correct drawing of concretizations. Each of these parts
was given 2 points for a correct solution, 1 point for a par-
tially correct solution, and 0 points for an incorrect solution.
Table 8(a) summarized the results for average score. There
were similar performance levels for Abs and Var uncertain-
ties across the two syntaxes, however the MAV-Vis syntax
yielded much higher results for the May uncertainty and
grouping, with an average score of 4.2 (versus 2.8 in MAV-
Text).

Writing: Writing performance was evaluated as total error
counts for syntax and comprehension across all uncertainty
types. Table 8(b) displays the average error count in both
categories for each of the syntaxes. We note that both syn-
taxes resulted in the same number of comprehension errors,
but the number of syntax errors for MAV-Vis (averaging 3.0)
was greater than those for MAV-Tex (averaging 2.3). How-
ever, an average of 1.7 of these errors in MAV-Vis were at-



Figure 9: Examples of solutions given in the Free
Form task.

tributable to incorrect/absent use of color-coding for group-
ing uncertainties.
Natural Ad-Hoc Notations. We looked at the notations
invented in the Freehand task and observed some common
elements across them. Dashed lines and questions marks
were frequently used to express uncertainty of all types. El-
lipses were also used in several examples to represent the Abs
uncertainty. Additionally, we observed two different colour
schemes: one colour per uncertainty type or a single colour
different from the base model for all uncertain components.
Figure 9 displays two examples of note-worthy solutions.
Threats to Validity. There are several factors that could
have had some effect on the results. Having only 12 partici-
pants did not provide us with enough data to perform a sta-
tistical analysis, however it was sufficient to provide strong
indicators on how the syntaxes compare. Another poten-
tial issue was that 3 participants reported extensive prior
exposure to MAVO. This could have introduced some bias
towards the MAV-Text syntax. Also, an imbalanced knowl-
edge of UML vs E-R can result in some selection bias with
our small sample size, and this was the case in one partici-
pant. This participant was in the control group with MAV-
Text syntax in the more familiar base modeling language, so
this also may have strengthened the MAV-Text results.

We also note that there were varying levels of proficiency
with propositional logic amongst our participants. Since all
were in the computer science field, this variation is likely to
be reflective of the target audience for the syntax in any case.
Additionally, some participants may have had difficulty with
the underlying uncertainty concepts. This may have had an
impact on accuracy metrics, however it would have had an
equal effect on both syntaxes.

5. DISCUSSION
Our goals in the experiment were to measure the rela-

tive cognitive effectiveness of both syntaxes, identify their

strengths, and weaknesses, and determine which was pre-
ferred. We now interpret the results for each uncertainty
type with respect to these goals, and discuss the overall po-
tential of the MAV-Vis syntax.

Abs Notation: We see that the pile metaphor was well-
accepted and had good semantic transparency. While not
introducing additional demand on the user for writing, the
graphical notation in MAV-Vis improved the ease of use for
writing, as indicated by participants in the questionnaire.
While no difference was measured in accuracy, being much
more intuitive and semantically connected to the Abs con-
cept likely meant that the use of the pile notation was a
factor in the reading tasks been a factor in the overall in-
creased speed for reading tasks in MAV-Vis. Figure 9 (a)
displays the notation by one participant in the Free-hand
task, who independently came to a similar representation
for Set.

Var Notation: Var uncertainty continues to be a difficult
concept to form a notation for, due to its highly abstract
nature. The polarized view on the cloud symbol in the
MAV-Vis syntax shows room for improvement here. The
fact that even participants who indicated this semantic dis-
connect preferred this notation over the (V) annotation due
to its perceptual pop out. This indicates to us that the use
of sketchable icons as uncertainty modifiers to existing el-
ements is an appropriate solution. What the actual icon
should be however is disputable. Participants also com-
mented that name Var itself also did not yield automatic
semantic association with the intended concept.

May and May Groupings Notation: As with the Abs Nota-
tion, the use of dashed lines in MAV-Vis associates naturally
with its semantic concept. It is the only notation that ranks
higher in all categories including writing. This is likely at-
tributed to the perception of more efficiency in changing the
line treatment or enclosing groups of items rather than cre-
ating separate notations for each May element.

While the margin of participants favouring MAV-Vis is
not as high in this case, we note that 2 participants indicated
their preference for the MAV-Text annotation was due to
their familiarity with it from prior exposure. It is difficult to
evaluate the representation of May with the May groupings
completely separately, as their is overlap in representation of
May and grouping May elements in the case when a dashed
enclosure is used. We note that the other 2 participants
indicating preference for the MAV-Text notation commented
that it was due to their preference for the May formula.

There is a tradeoff with the MAV-Text and MAV-Vis no-
tations between leveraging convention in using the propo-
sitional logic language that many computer scientists are
already familiar with and introducing something new re-
quiring some learning in exchange for added visualization
power.

As an indicator that MAV-Vis is consistent with natu-
ral notations, we see that participants’ notation in Figure 9
also used dashed lines to represent uncertainty and group
elements with uncertainty, although in a different way. In
(b) a May grouping scheme similar to MAV-Vis is applied,
where the alternative number for each PoU is indicated in
place on the diagram, but with annotations rather than vi-
sual elements.

Overall Syntax: Results for all uncertainty types favour MAV-
Vis , indicating that the use of graphical elements in MAV-



Vis improves cognitive effectiveness, in particular for model
reading. For writing, the syntaxes produced similar results,
but very slightly favouring MAV-Text, particularly in the
accuracy levels. Because the main differentiator in writ-
ing accuracy were the colour-coding errors, we can consider
these results to be very similar as well. Colour coding is not
a critical error, as it is most significant for use in May, and
the diagram can be read without colouring points of uncer-
tainty since the groupings are identified with prefix labels as
well. Also, the notion and identification of points of uncer-
tainty were added in MAV-Vis, and this information is not
encapsulated by the MAV-Text syntax.

While the clear majority of participants preferred MAV-
Vis, this may not indicate that it is a universally better
solution. Different learning style and expertise may yield
different preferences. Though visual representation is indeed
powerful, a more verbally-inclined learner may work better
with the MAV-Text notation. As the Cognitive Fit princi-
ple suggests, a “one-size fits all” solution is not often ideal,
and this accounts for some of the variation in our results.
Additionally, MAV-Text notations are also more compatible
for reasoning processes.

Tooling may be a good option for supporting both syntax
styles and converting between them. Our focus was to de-
velop a tool-independent pen-and-paper friendly notation,
however this does not preclude the use of tooling to further
enhance cognition in working with partial models. Addi-
tional interactions and visualization techniques can be de-
veloped to complement the syntax. For example, abstracting
different levels of detail and supporting drill downs through
them can improve cognitive integration, while hover high-
lights can display different concretizations for May alterna-
tives.

6. RELATED WORK
Moody provides a survey of relevant background work to

visual notation theory and introduces the principles for vi-
sual notation design that we apply in our syntax assessments
[8]. This has been applied to asses the i* visual notation [9]
and to evaluate the syntax of UML [10]. There has also
been prior work in empirical syntax evaluation. An example
of such is an experiment that was conducted to perform a
comparison between two notational alternatives for process
modeling [6]. We are also comparing two syntaxes empiri-
cally, although our metrics relate to the cognitive effective-
ness criteria in [8].

7. CONCLUSION
In this project, we studied the syntax of notations that

express uncertainty in models (partial modeling) based on
the ideas presented by D.Moody in [8]. In particular, we
did an assessment of the existing text-based notation, called
MAV-Text and found that it suffers from serious design
shortcomings. To address these, we constructed a visual no-
tation, called MAV-Vis, using Moody’s principles. We then
designed and conducted a user-study, asking participants to
perform a variety of modeling tasks using both notations.

Using the data generated by the case study, we were able
to assess the two notations based on three notation effective-
ness criteria, namely speed, easy and accuracy. We found
that, overall, users preferred MAV-Vis, and that this pref-
erence was consistent with higher ease, speed and accuracy

Figure 10: Mock-up: alternative r1 from the “red”
PoU requires either b1 from the “blue” PoU or g2
from the “green” PoU, while it is incompatible with
g4 from the “green” PoU.

scores. The only exception was in writing accuracy, where
users tended to do more errors. However, most of these
concerned a secondary characteristic of MAV-Vis, namely
the different colouring of points of uncertainty, which does
not affect the semantic correctness of the model and can be
rectified by tooling.

In the future we intend to expand our investigation to in-
clude the case where elements are annotated with combina-
tions of May, Var and Abs uncertainty, as well as to include
OpenWorld uncertainty. We also intend to study the capa-
bilities of MAV-Vis to express more complex dependencies
between alternatives. Figure 10 shows a mock-up of one
preliminary idea, which incorporates concepts from Feature
Modeling in the syntax of the circular icon used to denote
May uncertainty.
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Figure 11: MAV-Text syntax summary.



Figure 12: MAV-Vis syntax summary.
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