
Towards a Decision Making Framework for Model
Transformation Languages

Soroosh Nalchigar
Department of Computer Science

University of Toronto
Toronto, Canada

soroosh@cs.toronto.edu

ABSTRACT
Model transformations play increasingly important role in
Model Driven Engineering (MDE). A wide variety of tools
and languages are generated and released for model trans-
formations. A challenging task of software engineer is to
choose a particular model transformation language, given a
set of alternatives, that is best suited for non-functional re-
quirements of the context, which are mostly intangible and
difficult to measure, if not impossible. This paper proposes
a decision making framework that aids software engineer
to select most proper model transformation language, given
non-functional requirements (of which some are conflicting).
The proposed framework is based on Fuzzy-Analytic Hier-
archy Process (AHP) technique, and uses relative degree
of importance of non-functional requirements for the given
context in terms of fuzzy linguistic terms. The output is
ranking of model transformation languages. The approach
is implemented and its applicability is illustrated in three
different cases.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering

General Terms
DESIGN, LANGUAGES

Keywords
Model Transformation, Non-Functional Requirement

1. INTRODUCTION
Model Driven Engineering (MDE) is a software engineer-
ing discipline in which models are the prime artifacts and
play a central role throughout the entire development pro-
cess [35, 37]. MDE combines domain specific modeling lan-
guages for modeling (software) systems, and model trans-
formations for, among others, synthesizing them [4]. A Do-
main Specific Language (DSL) is a language designed to
provide a notation tailored toward a problem domain, and is

based on the relevant concepts and features of that domain.
By providing tailored notations, a DSL offers substantial
gains in productivity and even enables end-user program-
ming [29, 49]. Model transformations are used to automati-
cally transform models expressed in these DSLs into differ-
ent models [4], where source code could be considered as a
model too [35]. Performing a model transformation, which
is process of automatic generation of one or more target
models from one or more source models, require a clear un-
derstanding of the abstract syntax and the semantics of both
the source and target [40]. Model transformations could be
used for different reasons and intents, eg. to extract dif-
ferent views from a model (query), add or remove detail
(refinement or abstraction), generate code from model (syn-
thesis) [3].
Model transformations play an important role in MDE since
they automate complex, tedious, error-prone, and recur-
rent software development tasks [7]. They are core mech-
anism of MDE for building software from design to code,
and hence have a significant impact on software develop-
ment process [9]. Since model transformations play a crit-
ical role in this process, their non-functional requirements
and evaluation of them are of great importance. These re-
quirements could be the reason for accepting or rejecting a
tool or language, while deciding about the most suitable one.
Therefore, selecting the most suitable model transformation
language based on non-functional requirements is a critical
and challenging task for software developer [35].
Previous works have addressed the problem of non-functional
requirements in model transformations. Some have pro-
posed a set of non-functional requirements that a transfor-
mation language or tool should satisfy (e.g. [5,35,40]). They
argue that these requirements are of particular interest to
industrial users and are useful to be considered as decision
making criteria. On the other hand, some works have tried
to tackle the problem by defining quality attributes and met-
rics for model transformation artifact itself (e.g. [4, 37, 47]).
They believe that these attributes and metrics could be
used for developing quality assurance techniques for model
transformations. While these two groups of works provide
a proper base for understanding various non-functional re-
quirements of model transformations, there remain many
challenges for decision making, and in particular selection of
most suitable model transformation language given a set of
non-functional requirements.
The goal of this research is to propose a decision making
framework for selecting most suitable model transformation
language (among a set of alternatives) given non-functional



requirements (of which some are conflicting). The proposed
framework is based on Fuzzy-Analytic Hierarchy Process
(AHP) technique, and uses relative degree of importance of
non-functional requirements for the given context in terms
of fuzzy linguistic terms. The output is ranking of model
transformation languages. The proposed framework uses
fuzzy triangular numbers for pairwise comparison of non-
functional requirements, since these requirements are diffi-
cult, if not impossible, to measure in term of precise, crisp
numbers. The results of this research could be used to
choose, for a given context and set of non-functional require-
ments, the language or tool that is best suited for those re-
quirements. Given the lack of studies on decision making of
model transformation languages, we believe that this work
is of interest to people doing research in related areas as well
as industrial users.
The rest of this paper is organized as follows: Section 2 re-
views the related works on non-functional requirements of
model transformations and proposes a comprehensive list
of them. Section 3 performs a pairwise comparison of two
model transformation languages with regarding to non-functional
requirements of Section 2. Section 4 describes the steps of
proposed approach. Section 5 illustrates applicability of the
approach for three different cases. The paper ends at Section
6 with some concluding remarks.

2. RELATED WORKS
In this section we review the previous works with a focus on
non-functional requirements of model transformation. The
goal in this section is to build a comprehensive list of those
requirements by reviewing previous published works.
Amstel et al. (2008) proposed a set of eight quality at-
tribute for model transformation (in ASF+SDF term rewrit-
ing system) and a set of metrics for assessing them. Quality
attributes were understandability, modifiability, reusability,
reuse, modularity, completeness, consistency, and concise-
ness. Metrics also were presented within four categories: size
(e.g. number of functions), function (e.g. number of equa-
tions and conditions per function), module (e.g. number of
library modules), and consistency (e.g. number of variables
per type). They discussed relationships between metrics and
quality attributes. It should be mentioned that some of the
quality attributes they presented were adopted from pre-
vious studies which proposed them for assessing quality of
software designs [47]. Similar metrics have been proposed
by Vignaga (2009) to assess quality of ATL model trans-
formations [48]. In another work, Amstel (2010) proposed
two definitions for two different views on quality of model
transformations (internal and external) and presented some
examples of quality assessment techniques for model trans-
formations (direct and indirect) [4].
Mens and Gorp (2006) differentiated functional and non-
functional (or quality) requirements of model transformation
languages or tools and proposed usability, usefulness, ver-
bosity, conciseness, scalability, extensibility, interoperability,
acceptability and standardization as main non-functional re-
quirements [35]. Sendall and Kozaczynski (2003) classified
different approaches to model transformations and proposed
a set of desirable characteristics for a model transformation
language, among others easy to understand, precise, unam-
biguous, concise, easy-to-modify, complete, and graphical
representation [40].
Aziz (2011) evaluated quality of four model transformation

technologies (ATL, IBM transformations, Acceleo, and Java
APIs) for model to model and model to text transformation
in a case study in Ericsson AB. His quality model included
usability (understandability, learnability, and operability),
maintainability (analyzability and changeability), function-
ality (suitability and accuracy), and scalability as quality at-
tributes (and their sub characteristics) [5]. Mohagheghi and
Aagedal (2007) presented quality goals in MDE and argued
that the quality of models is affected by quality of modeling
languages, tools, modeling processes, the knowledge and ex-
perience of modelers, and quality assurance techniques ap-
plied. They presented related works on these factors and
mentioned some quality attributes including understandabil-
ity, modifiability, reusability, reuse, extensibility, interoper-
ability [37].
Table 1 presents a list of non-functional requirements of
model transformations mentioned in previous studies. Al-
though these works have contributed significantly and de-
fined the non-functional requirements, however there is a
lack of systematic way of comparing and choosing the trans-
formation language among a set of possible options. This
paper fills the gap by proposing a decision making frame-
work for selecting the most suitable model transformation
language, given non-functional requirements.

3. COMPARISION OF TWO LANGUAGES
In this section, we compare two famous model transfor-
mation languages with regarding to non-functional require-
ments described in previous section. In particular, we are
interested to see how each language affects non-functional
requirements. The first language is ATLAS Transforma-
tion Language (ATL) [27] and the second one is Attributed
Graph Grammar (AGG) [44]. Here the comparison is done
by reviewing the previous related papers, and comparing
capability of the language to satisfy the non-functional re-
quirements. The result of this comparison will be part of
decision making mechanism proposed in this paper.
ATL includes mix on imperative and declarative constructs.
Although the mix make the language powerful and compact,
but it is non- intuitive from understandability point of view
and hence it negatively affect understandability of the lan-
guage [5].Göknil et al. (2008) stated that ATL reduces mod-
ifiability of model transformations because it implements the
source pattern in multiple rules and helpers (i.e. due to the
decomposition in multiple constructs). All rules and helpers
should be updated even for a minor constraint change in
source pattern definition [22].
ATL is textual [5] and supports modularity and allows pack-
aging rules into modules. A module can import another
module to access its content [14,23]. ATL is capable of man-
aging complex models because of its imperative language
constructs and use of helper functions [41].
According to [46], ATL supports Higher-Order Transforma-
tions (HOT), whcih are model transformations that analyze,
produce or manipulate other model transformations. More-
over, it is compliant to relevant standards such as UML,
MOF (Meta Object Facility), and XML. An example of
MOF to UML transformation is given in [24]. Also, [25]
shows how to bridge XML, Grafcet, Petri net, and PNML
by using ATL.
Randak et al (2011) extended ATL for natively support-
ing UML profiles in transformations. They provided an ex-
tended ATL syntax comprising keywords for handling UML



Non-functional Definition Author(s)
Requirement

Understandability (UN) The amount of effort required to understand a model transformation. [3–5,37,40,47]
Modifiability (MF) The extent to which a model transformation can be adapted to provide [4, 5, 37,40,43,47]

different or additional functionality.
Reusability (RY) The extent to which (a part of) a model transformation can be reused [4, 37,40,43,47]

by other model transformations (as-is reuse).
Reuse (RE) The extent to which a model transformation reuses parts of other model [5, 37,40,47]

transformations. It is considered as a quality attribute since it is good
practice to reuse tested units.

Modularity (MD) The extent to which a model transformation is systematically structured [4, 47]
(every model in a model transformation has its own purpose).

Conciseness (CS) The extent to which a model transformation does not include superfluous [35,47,47]
information.

Verbosity (VB) The transformation to introduce extra syntactic sugar for frequently used [35]
syntactic constructs.

Performance Ability of language or tool to cope with large and complex transformations [5, 35,43]
and Scalability (PS) or transformation of large and complex software models without sacrificing

performance.
Extensibility (EX) The ease with which the tool can be extended with new functionality. [35,37]
Interoperability (IN) The ease with which the tool can be integrated with other tools used [35,37,43]

within the (model-driven) software engineering process.
Standardization (ST) The transformation tool should be compliant to all relevant standards [35,37]

(e.g. XML, UML, MOF).
Visualization (VS) Whether the transformation technology provides visual specifications of [5, 40]

transformation.

Table 1: Summary of non-functional requirements of model transformations in previous studies

profiles which is reduced by a preprocessor based on a HOT
again to the standard ATL syntax [38]. Moreover, Mens et
al. (2006) argue that the AGG tool is extensible in the sense
that its internal graph transformation engine, which is im-
plemented in Java, can be extended freely to cover a wide
variety of different applications [36].
AGG is better than ATL with regarding to amount of code
or models that a programmer or modeler needs to specify in
order to make an executable solution [23]. Usability of both
languages to support model transformation is also shown by
various authors (e.g. [23,36]).
Languages based on the graph transformation paradigm (e.g.
AGG) employ graph patterns and it is not clear how OCL-
based queries are translated to graph patterns and vice versa.
On the other hand, there is not any major obstacle for trans-
lating from ATL to QVT Operational Mappings and from
Operational Mappings to imperative ATL [28]. Moreover,
interoperability of ATL and QVT is discussed and shown
in [26,30].
Graph transformations are sometimes accused of generat-
ing inefficient programs or having inefficient algorithms [36].
AGG provides graphical languages to define model-to-model
transformations. Graph transformations are defined upon
metamodel elements and visualized with a generic layout,
called abstract syntax, where nodes are visualized as rect-
angles and edges as directed arrows [23]. AGG shows sim-
ulation runs in the visual editor panel of the host graph,
where not only the start graph can be drawn but also rule
application effects are shown at runtime (based on the ab-
stract visual syntax). Various graph layouting options are
offered for tuning the visualization, makes it appealing and
understandable [8]. It should be noted that abstract syntax
is less familiar to developers working with a given modeling

language than the concrete syntax [14,23].
There are two standards for graph transformation languages:
GXL which is an exchange format for graphs and GTXL
which is an exchange format for graph transformations. Both
standards are supported by AGG. Moreover, AGG supports
XML [36] and could be used for refactoring of UML mod-
els [20]. Reuse mechanisms such as inheritance between rules
(e.g. rule inheritance, derivation, extension, and specializa-
tion) is not supported in AGG [14,36].
Figure 2 summarizes the comparison between ATL and AGG
by visualizing the non-functional requirements and contribu-
tion links of the languages. In this figure, through contri-
bution link types of −,−−,+ and ++ [13], the qualitative
effect of alternative languages are propagated to the non-
functional goals. We use qualitative contribution links since
non-functional requirements are intangible and the effects of
languages on them are difficult, if not impossible, to mea-
sure. This model can aid software engineer/modeler to see
the alternative languages and the criteria of decision mak-
ing; However, it is not enough for decision making since it
lacks a systematic way of choosing an specific alternative.
The next section of this paper proposes a decision making
mechanism which uses this model and aids decision maker
to rank the model transformation languages with regarding
to non-functional requirements and select the most suitable
one.

4. PROPOSED APPROACH
4.1 The Fuzzy Set theory
Fuzzy set theory proposed by Zadeh in [50] to deal with
vagueness of human thought and was oriented to the ratio-
nality of uncertainty due to imprecision or vagueness. It
resembles human reasoning in its use of approximate infor-



Figure 1: Alternatives, goals and contribution links

mation and uncertainty to generate decisions. It is applied in
a variety of ways and in many disciplines such as artificial in-
telligence, computer science, medicine, control engineering,
decision theory, expert systems, logic, management science,
operations research, pattern recognition, and robotics [51].
A Fuzzy set is a collection of objects with unsharp bound-
aries in which the transition from membership to nonmem-
bership in a subset of a reference set is gradual rather than
abrupt [34]. A fuzzy number is a special fuzzy set M =
{(x, µM (x)), x ∈ R}, where the value of x lies on the real
line R i.e. −∞ < x < +∞ and µM (x) is a continuous map-
ping from R to the close interval [0, 1]. A triangular fuzzy
number M denoted as a triplet (l,m, u) where l ≤ m ≤ u,
has the following triangular-type membership function:

µM (x) =


x−l
m−l

l ≤ x ≤ m
u−x
u−m

m ≤ x ≤ u
0 otherwise

where l and u stand for the lower and upper value of the
support for M , and m for the modal value.
Consider two fuzzy triangular numbers M1 = (l1,m1, u1)
and M2 = (l2,m2, u2). Main fuzzy operations are illustrated
here:
Fuzzy number addition ⊕:

M1 ⊕M2 =(l1,m1, u1)⊕ (l2,m2, u2) =

(l1 + l2,m1 +m2, u1 + u2).

Fuzzy number subtraction 	:

M1 	M2 =(l1,m1, u1)	 (l2,m2, u2) =

(l1 − l2,m1 −m2, u1 − u2).

Fuzzy number multiplication �:

M1 �M2 =(l1,m1, u1)� (l2,m2, u2) =

(l1 × l2,m1 ×m2, u1 × u2).

Fuzzy number division �:

M1 �M2 =(l1,m1, u1)� (l2,m2, u2) =

(l1/l2,m1/m2, u1/u2).

Fuzzy number reciprocal:

(M)−1 = (l,m, u)−1 ≈ (1/u, 1/m, 1/l).

In this paper addition, multiplication and reciprocal opera-
tions are used.

4.2 Fuzzy-AHP
Analytic Hierarchy Process (AHP), one of the Multi-Criteria
Decision-Making (MCDM) methods proposed in [39], is aimed
at facilitating decision making in problems which involve
multiple criteria. It enables domain experts to structure
a complex decision making problem in the form of hierar-
chy, where alternatives and factors are identified and evalu-
ated with respect to other related factors [18]. It provides a
way to rank the alternatives of a decision making problem
through a four step process: development of problem hier-
archy, development of judgment matrices by pairwise com-
parisons, calculation of local priorities based on judgment
matrices, and finally calculation of global priorities. AHP
has been applied in a huge variety of application fields, e.g.
software development [19,31], project management [2], med-
ical and health care decision making [33], marketing [16],
and supplier selection [10]. According to [42] there is a vast
literature on the applications of AHP with more than 1300
papers and 100 doctoral dissertations.
Although AHP is popular and simple, it is often criticized for
its inability to adequately handle the uncertainty and fuzzi-
ness of decision maker’s perception. In traditional AHP, hu-
man’s judgments are represented as exact values [21]. How-
ever, many practical evaluation and decision making con-
texts are too complex to be understood and measured quan-
titatively. In other words, linguistic assessment of human
feelings and judgments are vague and it is not reasonable to
represent it in terms of precise numbers [11]. For instance,
non-functional requirements in software engineering are in-
tangible concepts and difficult, if not impossible, to evaluate.

Fuzzy-AHP combines the traditional AHP with the fuzzy
set theory. In this paper, Chang’s fuzzy-AHP approach [12]
is applied to evaluate mode transformation languages given
a set of non-functional requirements. In this approach, tri-

Intensity of importance Membership function
Extremely more importance (EMI) (7,9,9)
Very strong importance (VSI) (5,7,9)
Strong importance (SI) (3,5,7)
Moderate importance (MI) (1,3,5)
Equal importance (EI) (1,1,3)

Table 2: Definition and membership function of
fuzzy scale.



Figure 2: The membership function of linguistic
variables. See Table 2 for abbreviations.

angular fuzzy numbers are used for a pairwise comparison
scale of non-functional requirements. Table 2 shows how
linguistic scales are converted into fuzzy scales and Figure 2
shows the membership function of linguistic variables.
Then by using extent analysis and the principle of the com-
parison of fuzzy numbers the weight vectors and finally the
global priorities of languages are calculated.

Let X = {x1, x2, . . . , xn} be an object set, and U =
{u1, u2,. . . , um} be a goal set. According to concept of ex-
tent analysis [15] each object is taken and extent analysis for
each objective Uj is performed, respectively. Therefore the
m extent analysis values for each object are obtained with
the following signs:

M1
gi ,M

2
gi , . . . ,M

m
gi , i = 1, 2, . . . , n.

where all the M j
gi(j = 1, 2, . . . ,m) are triangular fuzzy num-

bers. The computational procedure of fuzzy-AHP are as fol-
lows:
Step 1: In this step, the decision problem is modeled as
a hierarchy including the decision goal, the alternatives for
reaching it, and the criteria for evaluating the alternatives.
Step 2: Then, the fuzzy comparison matrix is constructed.
First, relative importance/strength of each pair of elements
in the same hierarchy is judged based on linguistic terms
(via pair-wise comparison). Then, by converting the linguis-
tic terms to triangular fuzzy numbers, the fuzzy comparison
matrix is constructed:

M =


M1

g1 M2
g1 · · · Mm

g1

M1
g2 M2

g2 · · · Mm
g2

...
...

. . .
...

M1
gn M2

g2 · · · Mm
gn


where all the M j

gi(i = 1, 2, . . . , n and j = 1, 2, . . . ,m) are

fuzzy triangular numbers and M j
gi = (1, 1, 1) iff i = j.

Step 3: In this step, for each object the value of fuzzy
synthetic extent is calculated:

Si =
m∑

j=1

M j
gi �

[
n∑

i=1

m∑
j=1

M j
gi

]−1

(1)

where the value of
∑m

j=1M
j
gi and

∑n
i=1

∑m
j=1M

j
gi can be

found by performing the fuzzy addition operation. More-
over, � is fuzzy multiplication operator (See Section 4.1 for
further explanation).
Step 4: Then, the fuzzy synthetic extents are compared.The

degree of possibility of Si ≥ Sj is calculated by the following
equation:

V (Si ≥ Sj) = hgt(Sj ∩ Si)

=


1 if mi ≥ mj

0 if lj ≥ ui
lj−ui

(mi−ui)−(mj−lj)
otherwise

(2)

where Si = (li,mi, ui) and Sj = (lj ,mj , uj) are fuzzy trian-
gular numbers calculated in Step 3. To compare Si and Sj ,
we need both values of V (Si ≥ Sj) and V (Sj ≥ Si).
Step 5: In this step, for each object the minimum degree
of possibilities (calculated in previous step) is calculated.
According to [12], the degree possibility for a convex fuzzy
number to be greater than k convex fuzzy numbers can be
defined as:

V (S ≥ S1, S2, . . . , Sn) =V [(S ≥ S1) and (S ≥ S2)

and . . . and (S ≥ Sn)] =

min V (S ≥ Si), i = 1, 2, . . . , n.
(3)

Using this equation, the weight (or priority) vector is defined
as w′i = Min V (Si ≥ Sk) for k = 1, 2, . . . , n and k 6= i.
Therefore:

W ′ = (w′1, w
′
2, . . . , w

′
n)T

Step 6: In the last step, the normalized weight vector W =
(w1, w2, . . . , wn)T is calculated as follows:

wi =
w′i∑n
i=1 w

′
i

(4)

This weight vector is a non-fuzzy (crisp) value.
In the next section of the paper, we show the application of
fuzzy-AHP method fro selecting model transformation lan-
guages.

5. APPLICATION
In this section, we describe three scenarios of model trans-
formations and then apply the proposed decision making
mechanism to select the proper model transformation lan-
guage for each case.
Case 1. In this case, the goal is to choose a language for
defining a model transformation between two widely recog-
nized standards for business process modeling: the Business
Process Modeling Notation (BPMN) and Business Process
Execution Language (BPEL). BPMN is a standard for busi-
ness process modeling that provides a graphical notation
for the purposes of business analysis. The target users of
this notation are usually business analysts. BPEL is a stan-
dard executable language for specifying actions within busi-
ness processes with web services. Transformations between
these standards are complex because of inherent differences
between them: BPMN process models are graph-oriented
(with only minor topological restrictions), while BPEL pro-
cess definitions are block-structured. The transformation
has been used as a case study in [17]. In this case, since
we are dealing with business analyst, we assume that under-
standability, conciseness, modularity, and visualization are
more important than other non-functional requirements.
Case 2. In this case, the transformation generates a rela-
tional database model as output by receiving a class schema



U
N

M
F

R
Y

R
E

M
D

C
S

V
B

P
S

E
X

IN
S
T

V
S

O
v
e
r
a
l
W

e
ig
h
t

U
N

(1
,1
,1
)

(3
,5
,7
)

(5
,7
,9
)

(3
,5
,7
)

(1
,1
,3
)

(1
,1
,3
)

(5
,7
,9
)

(1
,1
,3
)

(5
,7
,9
)

(5
,7
,9
)

(1
,3
,5
)

(1
,3
,5
)

0
.1
5

M
F

(0
.1
4
,0
.2
0
,0
.3
3
)

(1
,1
,1
)

(3
,5
,7
)

(1
,3
,5
)

(0
.2
0
,0
.3
3
,1
)

(0
.2
0
,0
.3
3
,1
)

(3
,5
,7
)

(0
.2
0
,0
.3
3
,1
)

(3
,5
,7
)

(3
,5
,7
)

(1
,1
,3
)

(1
,1
,3
)

0
.1
1

R
Y

(0
.1
1
,0
.1
4
,0
.2
0
)

(0
.1
4
,0
.2
0
,0
.3
3
)

(1
,1
,1
)

(0
.2
0
,0
.3
3
,1
)

(0
.1
4
,0
.2
0
,0
.3
3
)

(0
.2
0
,0
.3
3
,1
)

(1
,1
,3
)

(0
.1
1
,0
.1
4
,0
.2
0
)

(1
,1
,3
)

(1
,1
,3
)

(0
.1
4
,0
.2
0
,0
.3
3
)

(0
.1
1
,0
.1
4
,0
.2
0
)

0

R
E

(0
.1
4
,0
.2
0
,0
.3
3
)

(0
.2
0
,0
.3
3
,1
.0
0
)

(1
,3
,5
)

(1
,1
,1
)

(0
.1
4
,0
.2
0
,0
.3
3
)

(0
.1
4
,0
.2
0
,0
.3
3
)

(1
,3
,5
)

(0
.1
4
,0
.2
0
,0
.3
3
)

(1
,3
,5
)

(1
,3
,5
)

(0
.2
0
,0
.3
3
,1
)

(0
.2
0
,0
.3
3
,1
)

0
.0
5

M
D

(0
.3
3
,1
,1
)

(1
,3
,5
)

(3
,5
,7
)

(3
,5
,7
)

(1
,1
,1
)

(1
,1
,3
)

(5
,7
,
9
)

(1
,1
,3
)

(5
,7
,9
)

(5
,7
,9
)

(1
,3
,5
)

(1
,3
,5
)

0
.1
5

C
S

(0
.3
3
,1
,1
)

(1
,3
,5
)

(1
,3
,5
)

(3
,5
,7
)

(0
.3
3
,1
,1
)

(1
,1
,1
)

(5
,7
,9
)

(1
,1
,3
)

(5
,7
,9
)

(5
,7
,9
)

(1
,3
,5
)

(1
,3
,5
)

0
.1
4

V
B

(0
.1
1
,0
.1
4
,0
.2
0
)

(0
.1
4
,0
.2
0
,0
.3
3
)

(0
.3
3
,1
,1
)

(0
.2
0
,0
.3
3
,1
)

(0
.1
1
,0
.1
4
,0
.2
0
)

(0
.1
1
,0
.1
4
,0
.2
0
)

(1
,1
,1
)

(0
.1
1
,0
.1
4
,0
.2
0
)

(1
,1
,
3
)

(1
,1
,3
)

(0
.1
4
,0
.2
0
,0
.3
3
)

(0
.1
4
,0
.2
0
,0
.3
3
)

0

P
S

(0
.3
3
,1
,1
)

(1
,3
,5
)

(5
,7
,9
)

(3
,5
,7
)

(0
.3
3
,1
,1
)

(0
.3
3
,1
,1
)

(5
,7
,9
)

(1
,1
,1
)

(5
,7
,9
)

(5
,7
,9
)

(1
,3
,5
)

(1
,3
,5
)

0
.1
5

E
X

(0
.1
1
,0
.1
4
,0
.2
0
)

(0
.1
4
,0
.2
0
,0
.3
3
)

(0
.3
3
,1
,1
)

(0
.2
0
,0
.3
3
,1
)

(0
.1
1
,0
.1
4
,0
.2
0
)

(0
.1
1
,0
.1
4
,0
.2
0
)

(0
.3
3
,1
,1
)

(0
.1
1
,0
.1
4
,0
.2
0
)

(1
,1
,1
)

(1
,1
,3
)

(0
.1
4
,0
.2
0
,0
.3
3
)

(0
.1
4
,0
.2
0
,0
.3
3
)

0

IN
(0
.1
1
,0
.1
4
,0
.2
0
)

(0
.1
4
,0
.2
0
,0
.3
3
)

(0
.3
3
,1
,1
)

(0
.2
0
,0
.3
3
,1
)

(0
.1
1
,0
.1
4
,0
.2
0
)

(0
.1
1
,0
.1
4
,0
.2
0
)

(0
.3
3
,1
,1
)

(0
.1
1
,0
.1
4
,0
.2
0
)

(0
.3
3
,1
,1
)

(1
,1
,1
)

(0
.1
4
,0
.2
0
,0
.3
3
)

(0
.1
4
,0
.2
0
,0
.3
3
)

0

S
T

(0
.2
0
,0
.3
3
,1
)

(0
.3
3
,1
,1
)

(3
,5
,7
)

(1
,3
,5
)

(0
.2
0
,0
.3
3
,1
)

(0
.2
0
,0
.3
3
,1
)

(3
,5
,7
)

(0
.2
0
,0
.3
3
,1
)

(3
,5
,7
)

(3
,5
,7
)

(1
,1
,1
)

(1
,1
,3
)

0
.1
0

V
S

(0
.2
0
,0
.3
3
,1
)

(0
.3
3
,1
,1
)

(5
,7
,9
)

(1
,3
,5
)

(0
.2
0
,0
.3
3
,1
)

(0
.2
0
,0
.3
3
,1
)

(3
,5
,7
)

(0
.2
,0
.3
3
,1
)

(3
,5
,7
)

(3
,5
,7
)

(0
.3
3
,1
,1
)

(1
,1
,1
)

0
.1
1

T
a
b
le

3
:

F
u
z
z
y

tria
n
g
u
la

r
n
u
m

b
e
rs

re
p
re

se
n
tin

g
p
a
irw

ise
c
o
m

p
a
riso

n
o
f

im
p

o
rta

n
c
e

o
f

n
o
n
-fu

n
c
tio

n
a
l

re
q
u
ire

m
e
n
ts

fo
r
C
a
se

1
.

S
e
e

T
a
b
le

1
fo

r
a
b
b
re

v
ia

tio
n
s.

M
o
re

o
v
e
r,

se
e

T
a
b
le

2
fo

r
lin

g
u
istic

te
rm

s
e
q
u
iv

a
le

n
t

to
th

e
se

n
u
m

b
e
rs.

T
h
e

la
st

c
o
lu

m
n

a
re

o
v
e
ra

ll
w

e
ig

h
t

(im
p

o
rta

n
c
e
)

sc
o
re

s
o
f

n
o
n
-fu

n
c
tio

n
a
l

re
q
u
ire

m
e
n
ts

re
su

lte
d

fro
m

c
a
lc

u
la

tio
n
s

e
x
p
la

in
e
d

in
S
e
c
tio

n
5
.



model as input. Such a transformation needs to realize three
main mappings: package-to-schema, class-to-table, and at-
tribute to-column. This transformation is implemented by
various authors in different languages, e.g. ATL [1], QVT
Relations [14], AGG [45], and Tefkat [32]. In this case we
assume that all the non-functional requirements are of same
level of importance.
Case 3. In the last case, adopted from [6], decision maker is
going to decide a transformation language in a large indus-
trial context. The intent of model transformation is auto-
matic code generation from models. In this case, using stan-
dardized and non-proprietary modeling languages is of great
importance. Moreover, the projects in this context are large,
development efforts are multi-site and collaborative and the
models are huge. Hence, we assume that performance and
scalability, interoperability, standardization and reusability
are more important than other non-functional requirements.
In all of the above cases the question is how to select most
suitable model transformation language among a set of al-
ternatives, i.e. given a specific context, the intention of
transformation, and a set of criteria, which language is the
best choose? In following, we show applicability of proposed
framework for these cases. In this project, the assumption
is that there are only two alternatives: ATL and AGG. It
should be mentioned that the proposed method can handle
more number of alternatives, however, for the purpose of
this paper we assume there are only two of them.
Figure 2 is used as hierarchy of the decision problem. To
solve the problem for Case 1, first the fuzzy comparison ma-
trix of the non-functional requirements is constructed. To
do that, we performed a pairwise comparison of the different
non-functional requirements using triangular fuzzy numbers,
which is shown in Table 3. In this project, these values
are defined by author based on the context and the non-
functional requirements that are important in that specific
case. However, in future versions of this work, we can use
opinions of a set of domain experts. Then, the value of
fuzzy synthetic extent with respect to each non-functional
requirement is calculated by using Eq. 1. We have:

SUN =(32.00, 48.00, 70.00)� (184.90, 300.88, 448.67)−1 '
(0.07, 0.16, 0.37),

SMF =(16.74, 27.20, 43.33)� (184.90, 300.88, 448.67)−1 '
(0.03, 0.09, 0.23),

SRY =(5.16, 5.70, 13.60)� (184.90, 300.88, 448.67)−1 '
(0.01, 0.01, 0.07),

...

SV S =(17.47, 29.33, 42.00)� (184.90, 300.88, 448.67)−1 '
(0.03, 0.09, 0.22).

Now, by using Eq. 2, we have:

V (SUN ≥ SMF ) = 1 (because 0.16 ≥ 0.09)

V (SUN ≥ SRY ) = 1 (because 0.16 ≥ 0.01)

...

V (SUN ≥ SV S) = 1 (because 0.16 ≥ 0.09)

V (SMF ≥ SUN ) =
0.07− 0.23

(0.09− 0.23)− (0.16− 0.07)
= 0.7

...

V (SMF ≥ SV S) =
0.03− 0.23

(0.09− 0.23)− (0.09− 0.03)
= 0.96

...

V (SV S ≥ SSD) = 1 (because 0.097 ≥ 0.091)

Then, by using Eq. 3 we obtain:

w′UN = Min(1, 1, . . . , 1) = 1

w′MF = Min(0.7, 1, . . . , 0.96) = 0.7

w′RY = Min(0.02, 0.34, . . . , 0.31) = 0.02

...

w′V S = Min(0.72, 1, . . . , 0.31) = 0.72

Then, using Eq. 4, the normalized weight vector of non-
functional requirements for Case 1 is obtained. The last
column in Table 3 shows the weights.
After that, by applying the same procedure for the alterna-
tives (which are in the other layer of the problem hierarchy,
see Figure 2), the relative strength of each language with
regarding to each non-functional requirement is calculated.
For example, Table 4 shows the pairwise comparison of lan-
guages with regarding to understandability and standard-
ization. The values in this table are defined based on the
literature and explanations in Section 3. The calculations of
weights of languages with respect to each of non-functional
requirements will not be given in this paper since they are
similar to calculations above.
Finally, the overall priority weight of each language is cal-

ATL AGG Weight

UN
ATL (1,1,1) (0.14,0.20.0.33) 0
AGG (3,5,7) (1,1,1) 1

SD
ATL (1,1,1) (1,3,5) 0.75
AGG (0.20,0.33,1) (1,1,1) 0.25

Table 4: Pairwise comparison of languages, in terms
of fuzzy triangular numbers, with regarding to un-
derstandability and standardization (for Case 1).

culated by multiplying its local weights with non-functional
requirements weights:

ATL = (0× 0.15) + (0× 0.11) + · · ·+ (0.75× 0.10)

+ (0× 0.11) = 0.45

AGG = (1× 0.15) + (1× 0.11) + · · ·+ (0.25× 0.10)

+ (1× 0.11) = 0.55

Table 5 summarizes the final results of fuzzy-AHP scores for
each of the cases. This table indicates that for the first case,



AGG language is more suitable. Also, for the second and
third cases, the ATL language has a better rank.
It should be noted that because of the space limitation, the

Languages Score

Case 1
ATL 0.45
AGG 0.55

Case 2
ATL 0.59
AGG 0.41

Case 3
ATL 0.67
AGG 0.33

Table 5: Results of Fuzzy-AHP for all cases

step by step computations and fuzzy comparison matrices
of all the cases are not shown in this paper. In this research,
the fuzzy-AHP method was implemented in Excel and the
codes are submitted with this paper.

6. CONCLUSION AND FUTURE WORKS
Model transformation is primary activity in MDE. Various
languages and tools have been proposed, coming from dif-
ferent approaches and programming paradigms. This pa-
per proposed a decision making framework which helps soft-
ware engineer/developer to decide what model transforma-
tion language is the right choice, given the context and non-
functional requirements. This approach is implemented and
its application is shown in this paper for three different sce-
narios. One of the main advantages of the proposed ap-
proach is the relative ease with which it handles multiple,
sometimes conflicting, non-functional requirements. More-
over, the proposed approach introduces concepts of fuzzy set
theory for measuring and evaluating of alternatives. This
allows decision-maker(s) to have freedom of estimation re-
garding the non-functional requirements. The proposed ap-
proach could be extended to consider a broader set of alter-
native languages. This basically need to answer how well,
relatively, the new added languages do with regarding to
each requirement. In this paper we did it based on literature
and only for two languages, but the future works can easily
extend it to new languages. Besides, future works can do a
more broad implementation involving a set of domain expert
to compare degree of importance of non-functional require-
ments for each context. Finally, performing a sensitivity
analysis to the approach and also a comparative study of
this approach with other MCDM techniques could be other
interesting venues.

Acknowledgement. I would like to thank Rick Salay for
the weekly meetings that we had and also his useful com-
ments.

7. REFERENCES
[1] Atl transformations.

http://www.eclipse.org/m2m/atl/atlTransformations.

[2] K. M.-S. Al-Harbi. Application of the ahp in project
management. International Journal of Project
Management, 19(1):19 – 27, 2001.

[3] M. Amrani, J. Dingel, L. Lambers, L. LÂt’ucio,
R. Salay, G. Selim, E. Syriani, and M. Wimmer.
Towards a model transformation intent catalog. 1st
Workshop on the Analysis of Model Transformations
(AMT), 2012.

[4] M. F. v. Amstel. The right tool for the right job:
Assessing model transformation quality. In Proceedings
of the 2010 IEEE 34th Annual Computer Software and
Applications Conference Workshops, COMPSACW
’10, pages 69–74, Washington, DC, USA, 2010. IEEE
Computer Society.

[5] K. M. A. Aziz. Evaluating Model Transformation
Technologies: An exploratory case study. Bachelor of
Science in software engineering and management,
Chalmers University of Technology, Goteborg,
Sweden, 2011.

[6] P. Baker, S. Loh, and F. Weil. Model-driven
engineering in a large industrial context-motorola case
study. In L. Briand and C. Williams, editors, Model
Driven Engineering Languages and Systems, volume
3713 of Lecture Notes in Computer Science, pages
476–491. Springer Berlin Heidelberg, 2005.

[7] B. Baudry, S. Ghosh, F. Fleurey, R. France,
Y. Le Traon, and J.-M. Mottu. Barriers to systematic
model transformation testing. Commun. ACM,
53(6):139–143, June 2010.

[8] E. Biermann, C. Ermel, L. Lambers, U. Prange,
O. Runge, and G. Taentzer. Introduction to agg and
emf tiger by modeling a conference scheduling system.
Int. J. Softw. Tools Technol. Transf., 12(3-4):245–261,
July 2010.

[9] E. Brottier, F. Fleurey, J. Steel, B. Baudry, and
Y. Le Traon. Metamodel-based test generation for
model transformations: an algorithm and a tool. In
Software Reliability Engineering, 2006. ISSRE ’06.
17th International Symposium on, pages 85 –94, nov.
2006.

[10] G. Bruno, E. Esposito, A. Genovese, and R. Passaro.
Ahp-based approaches for supplier evaluation:
Problems and perspectives. Journal of Purchasing and
Supply Management, (0):–, 2012.

[11] F. T. Chan and N. Kumar. Global supplier
development considering risk factors using fuzzy
extended ahp-based approach. Omega, 35(4):417 –
431, 2007.

[12] D.-Y. Chang. Applications of the extent analysis
method on fuzzy ahp. European Journal of
Operational Research, 95(3):649 – 655, 1996.

[13] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos.
Non-Functional Requirements in Software
Engineering. 2000.

[14] K. Czarnecki and S. Helsen. Feature-based survey of
model transformation approaches. IBM Syst. J.,
45(3):621–645, July 2006.

[15] C. D.-Y. Extent analysis and synthetic decision,
optimization techniques and applications. World
Scientific, 1:352, 1992.

[16] M. Davies. Adaptive ahp: a review of marketing
applications with extensions. European Journal of
Marketing, 35:872 – 894, 2001.

[17] M. Dumas. Case study: Bpmn to bpel model
transformation.
http://is.ieis.tue.nl/staff/pvgorp/events/grabats2009
/cases/grabats2009synthesis.pdf, 2009.

[18] R. F. Dyer and E. H. Forman. Group decision support
with the analytic hierarchy process. Decision Support
Systems, 8(2):99 – 124, 1992.



[19] G. R. Finnie, G. E. Wittig, and D. I. Petkov.
Prioritizing software development productivity factors
using the analytic hierarchy process. Journal of
Systems and Software, 22(2):129 – 139, 1993.

[20] A. Folli and T. Mens. Refactoring of UML models
using AGG. ECEASST, 8, 2007.

[21] G˙Strategic analysis of healthcare service quality using
fuzzy ahp methodology. Expert Systems with
Applications, 38(8):9407 – 9424, 2011.

[22] A. Göknil, N. Topaloglu, and K. van den Berg.
Operation composition in model transformations with
complex source patterns, 2008.

[23] R. Gronmo, B. Moller-Pedersen, and G. Olsen.
Comparison of three model transformation languages.
In R. Paige, A. Hartman, and A. Rensink, editors,
Model Driven Architecture - Foundations and
Applications, volume 5562 of Lecture Notes in
Computer Science, pages 2–17. Springer Berlin
Heidelberg, 2009.

[24] A. group. The mof to uml atl transformation.
Technical report, LINA & INRIA, Nantes, September
2005.

[25] P. Guyard. Atl transformation example: Bridging
grafcet, petri net, pnml and xml. Technical report,
INRIA, August 2005.

[26] F. Jouault and I. Kurtev. On the architectural
alignment of atl and qvt. In Proceedings of the 2006
ACM symposium on Applied computing, SAC ’06,
pages 1188–1195, New York, NY, USA, 2006. ACM.

[27] F. Jouault and I. Kurtev. Transforming models with
atl. In Proceedings of the 2005 international
conference on Satellite Events at the MoDELS,
MoDELS’05, pages 128–138, Berlin, Heidelberg, 2006.
Springer-Verlag.

[28] F. Jouault and I. Kurtev. On the interoperability of
model-to-model transformation languages. Science of
Computer Programming, 68(3):114 – 137, 2007.

[29] T. Kosar, P. E. M. Lopez, P. A. Barrientos, and
M. Mernik. A preliminary study on various
implementation approaches of domain-specific
language. Information and Software Technology,
50(5):390 – 405, 2008.

[30] A. Laarman. Achieving qvto & atl interoperability:
An experience report on the realization of a qvto to
atl computer. In F. Jouault, editor, 1st International
Workshop on Model Transformation with ATL,
MtATL 2009, CEUR Workshop Proceedings, pages
119–133, Aachen, October 2009. Sun SITE Central
Europe.

[31] V. S. Lai, B. K. Wong, and W. Cheung. Group
decision making in a multiple criteria environment: A
case using the ahp in software selection. European
Journal of Operational Research, 137(1):134 – 144,
2002.

[32] M. Lawley, K. Duddy, A. Gerber, and K. Raymond.
Language features for re-use and maintainability of
mda transformations. In In OOPSLA Workshop on
Best Practices for Model-Driven Software
Development, 2004.

[33] M. J. Liberatore and R. L. Nydick. The analytic
hierarchy process in medical and health care decision
making: A literature review. European Journal of

Operational Research, 189(1):194 – 207, 2008.

[34] J. Maiers and Y. Sherif. Applications of fuzzy set
theory. Systems, Man and Cybernetics, IEEE
Transactions on, SMC-15(1):175 –189, jan.-feb. 1985.

[35] T. Mens and P. Van Gorp. A taxonomy of model
transformation. Electronic Notes in Theoretical
Computer Science, 152:125–142, Mar. 2006.

[36] T. Mens, P. Van Gorp, D. Varró, and G. Karsai.
Applying a model transformation taxonomy to graph
transformation technology. Electron. Notes Theor.
Comput. Sci., 152:143–159, Mar. 2006.

[37] P. Mohagheghi and J. Aagedal. Evaluating quality in
model-driven engineering. In Proceedings of the
International Workshop on Modeling in Software
Engineering, MISE ’07, pages 6–, Washington, DC,
USA, 2007. IEEE Computer Society.

[38] A. Randak, S. Mart́ınez, and M. Wimmer. Extending
atl for native uml profle support: An experience
report. CEUR Workshop Proceedings, 2011.

[39] T. L. Saaty. The Analytic Hierarchy Process.
McGraw-Hill, New York, 1980.

[40] S. Sendall and W. Kozaczynski. Model
transformation: the heart and soul of model-driven
software development. Software, IEEE, 20(5):42–45,
sept.-oct. 2003.

[41] M. Stephan and A. Stevenson. A comparative look at
model transformation languages. Software Technology
Laboratory at Queen’s University, 2009.

[42] N. Subramanian and R. Ramanathan. A review of
applications of analytic hierarchy process in
operations management. International Journal of
Production Economics, 138(2):215 – 241, 2012.

[43] E. Syriani and J. Gray. Challenges for addressing
quality factors in model transformation. In Software
Testing, Verification and Validation (ICST), 2012
IEEE Fifth International Conference on, pages 929
–937, april 2012.

[44] G. Taentzer. Agg: A graph transformation
environment for modeling and validation of software.
In J. Pfaltz, M. Nagl, and B. BÃűhlen, editors,
Applications of Graph Transformations with Industrial
Relevance, volume 3062 of Lecture Notes in Computer
Science, pages 446–453. Springer Berlin Heidelberg,
2004.

[45] G. Taentzer, K. Ehrig, E. Guerra, J. D. Lara,
T. Levendovszky, U. Prange, D. Varro, and et al.
Model transformations by graph transformations: A
comparative study. In MODEL
TRANSFORMATIONS IN PRACTICE WORKSHOP
AT MODELS 2005, MONTEGO, page 5, 2005.

[46] M. Tisi, J. Cabot, and F. Jouault. Improving
higher-order transformations support in atl. In
Proceedings of the Third international conference on
Theory and practice of model transformations,
ICMT’10, pages 215–229, Berlin, Heidelberg, 2010.
Springer-Verlag.

[47] M. F. van Amstel, C. F. J. Lange, and M. G. J.
van den Brand. Metrics for Analyzing the Quality of
Model Transformations. 2008.

[48] A. Vignaga. Metrics for measuring atl model
transformations. Technical report, Universidad de
Chile, 2009.



[49] D. S. Wile. Supporting the dsl spectrum. Journal of
Computing and Information Technology, 9(4):263 –
287, 2001.

[50] L. A. Zadeh. Fuzzy sets. Information and Control,

8(3):338âĂŞ353, 1965.

[51] H.-J. Zimmermann. Fuzzy set theory. Wiley
Interdisciplinary Reviews: Computational Statistics,
2:317–332, 2010.


