
Display Techniques for Multiple Feature-Sets

in State Charts
Rorik Henrikson
University of Toronto

rorik@dgp.toronto.edu

ABSTRACT

With different versions of a product having similar UML

diagrams, it is generally easier and more efficient to combine

these similar charts into one UML diagram to depict all of the

differences and similarities in the product models. In this paper

we introduce a set of principles for creating these multiple feature-

set state charts; to design standardized charts that are easy to read

and easy to understand. We discuss the different aspects we

explored, and the user study we performed to further assess the

recommendations.

1. INTRODUCTION
In Product design, it is common to see different product lines

from a company, each version of a product having its own,

features, each product being slightly different from the others.

These features define how this product is unique from similar

products. This feature-set helps designers and engineers create the

needed components for a specific product model. These features

can affect many different job areas – software engineering

included.

In software engineering (SE), the unique features of a product

need to be presented in different UML diagrams. The problem is

that there is no standardization for how to display this individual

information. Consequently everyone demonstrates unique features

in their own way. Since features can be almost anything (i.e.

triggers, actions, properties, states, timings, etc.), any UML

diagram could potentially have the need to demonstrate distinct

features.

Since each UML diagram has its own specifications and rules,

each UML diagram would need to be assessed individually. In

this work we have focused on defining techniques to demonstrate

the distinct differences between feature models in a combined

state chart (see figure 1). We have tried to create a set of

principles that a software engineer can follow when creating a

combined state chart that will help make the different features in a

specific feature-set obvious, easy to identify, and quick to

understand.

In this paper, in section 2, we start by defining what we mean by a

feature-set. We continue in section 3 by exploring existing

situations where multiple levels of information need to be

presented to a reader, and existing attempts at this type of graph

have been performed. We continue in Section 4 by identifying key

priorities and constraints in a graph that will effect user

perception. We also examine the different components of a state

chart, how we might present the different components and how

these aspects can be combined to form a full state chart with the

combined feature-sets. In section 5 we discuss a user survey we

performed testing these different ideas, then wind-down in section

6 and 7, discussing further research opportunities and

observations we made during our study. Finally, we conclude in

section 8 summarizing our suggestions and findings.

2. MULTIPLE FEATURE-SET
Each product that is created by a company has its own unique

factors – these include things such as abilities, features,

properties, design, timings, etc. A list of all these factors,

including the factors that deviate from other products creates a

“feature-set” that identifies a particular product.

Each feature-set would consequently have its own set of UML

diagrams. If one were to, combine all the UML diagram of one

type for a single product line (with all the different versions) one

would end up with a diagram that demonstrates multiple feature-

sets all at the same time. This diagram would potentially be more

informative and easier to read than having to read one-by-one all

of the individual diagrams for each version of a product in a

product line.

Since each type of UML diagram has its own “rules” and

“properties”, each UML diagram type would need to be addressed

individually. For this work we have focused on state-charts.

However, the principles of this work should be easily transferable

to other UML diagram types.

3. RELATED WORK
One main area of inspiration where designers have needed to

compress large amounts of information into layers on a single

document is with maps. Both subway and road maps have been

facing these problems for decades, and have been able to try many

different ideas – we have tried to draw inspiration from some of

their lessons. For example the Tokyo, London and Paris subway

Figure 1. A simplified multiple feature-set state chart for

two washing machine models using index markers

map have complex interactions, as do many of the European

highway and city maps.

We have also examined work where other authors have drawn up

models to try and display multiple feature-set depictions. In

particular we used models from Classen, et. al [1], Heidenreich,

Sánchez, et. al [4] and Rubin and Chechik [5] to compare against

our approaches and which we presented in the user study. We also

analyzed approaches by Kästner et. al. [2], Heidenreich and

Wende, [3] and Czarnecki and Antkiewicz [6] for further ideas.

4. STATE CHARTS
Since each type of UML diagram has unique rules and properties,

each UML diagram needs to be addressed individually to examine

their properties and to determine the best way to combine

elements to show specific features related to the given feature-set

for the specified model. In this work, we have examined state

charts, the connectors between states, the states themselves, and

the information associated with the components of a diagram. We

also examine some general principles of creating full state charts.

4.1 Priorities and Considerations
In looking at methods for displaying information in a compressed

format, there were a few priorities that we wanted to maintain.

The first goal was to have the information being portrayed by

these diagrams as obvious and intuitive as possible. Secondly, the

different parts of the diagram, which feature-set is being

displayed, what components belong to which feature-set, and the

states associated with a given set should all be easy to identify.

Third, the overall result should be that these graphs are quick and

easy to understand.

We also wanted to create a system that would be scalable and be

approached similarly for a diagram with two feature-set models,

or one with 30 feature-set models. The obvious constraint when

combining 30 feature-set models is that there is a significant

amount of information to relay to the reader. To maintain

readability, this means that the graphs need to be kept as free from

clutter as possible. This also creates a challenge to ensure that

any information and the markers used to indicate this information

are kept in an appropriate proximity to the object to which they

refer.

4.2 Connectors
Examining maps, there are many different ways to label different

paths. Colour is definitely a key factor, however, cannot be used

as a sole indicator due to colour blindness and grey-scale printing.

Also roads and subway lines usually have names or numbers

associated with them. To identify this information on a map, there

are many different methods used to attach numbers and possibly

symbols to the appropriate path.

For UML state charts, numbers are not overly useful for labeling

connectors due to the fact that numbers have other meaning,

however, symbols (such as circles, squares, crosses, triangles,

etc.) can easily be used to associate a specific model with a path.

These paths can represent a connection between two states that is

individual to one feature-set, belonging to several feature-sets, or

part of all feature-sets.

4.2.1 Single Connector Paths
Single connector paths are the easiest to show as they can be

represented by a single colour and a single symbol. The question

becomes, what is the best way to associate and display this symbol

on the path? We have explored seven different methods of

displaying this information (see figure 2), from which we queried

the opinion of the users in our user study to help select the best

representation. The results of the survey are further discussed in

section 5.

4.2.2 Multiple Connector Paths
Multiple connector paths are used when a subset of several

features-sets connect two states. In this case, it is important to

differentiate between different paths. For consistency, one should

include the appropriate symbols associated with the features-sets

in the same method that one shows the symbol for a single

feature-set connector. However, in the case of multiple features-

sets, one would need to show all the symbols for the current path.

One of the decisions with multiple connector paths is choosing

the colour for the arrow. Again, it is important for a state chart to

be scalable; therefore a solution that works for two objects must

also work for 30 objects. The obvious solution is simply drawing

several arrows one above the other to create a stripped band with

the appropriate colours. This quickly becomes unmanageable after

about 5 models have been combined in one connector – but even

after 3 models, the graph starts to get cluttered and unclear. Upon

examination of this problem, it quickly became apparent that it is

possible to stripe the arrow in the colours for that path (see figure

3). This provides two visual cues. First, the line being striped

indicates that this is not a single item, but rather there are multiple

arrows “intertwined” on this path. Second, it allows the

appropriate colours to be associated with the connector. Even if

this is printed in grey scale, the stripping is an indicator to look

for the symbols. Like with the single connectors, we asked in our

user study which arrow people preferred, so as to help find the

optimal representation. This is discussed further in section 5.

4.2.3 All Paths
There is a special case scenario with these types of connectors –

the case when all feature-sets share the same path. In this case,

adding the symbols and all the colours to a connector is

unnecessary, and simply adds visual noise and clutter. In this

Figure 4. Combined arrow used for all paths

Figure 3. Possible multi connector arrows

Figure 2. Possible single connector arrows

situation, it is possible to combine the paths into a single black

arrow (see figure 4). For this arrow, on the one side (coming from

the initial state), we see many paths starting out and joining

together mimicking what might be seen as the “tail” of an arrow.

These paths then combine into a single line forming an arrow

which continues the rest of the distance to the second state. These

initial colour paths serve two purposes. First, if you’re visually

following a colour, it more intuitively leads your eye along the

path, as the colour still exists to get you started. Secondly,

regardless of colour, it makes the arrow look distinct from the

single and multiple case arrows. This means that the reader does

not need to spend time processing what they are seeing. They

know that all the paths are covered by this case.

4.2.4 Labeling Paths
Knowing that a given path is associated with a specific feature-set

model is useful and necessary; however, often one needs to

provide information with the specified arrow. This means that

labels of some sort need to be applied to a given arrow. We

explored several different methods to associate text with the given

arrow (a small subset of these options is shown in figure 5).

Interestingly, our user study seemed to show that displaying text

underneath the symbol without any extra lines to create an

association is sufficient while reading a diagram.

4.3 States
In state charts with multiple feature-sets, many states will likely be

shared. There, however, are often states that are unique to a given

feature-set, or shared by only a few feature-sets. At other times a

state may be missing from one model, but present for another.

This “missing node” condition is a special case that we discuss

further below.

4.3.1 Combining Conditions
It is common for one product to have a similar progression of

states to another model with a middle state that is slightly

different. For example, product A may go from state 1 to state 2 to

state 4. Product B may go from state 1 to state 3 to state 4. In this

case, both models are ultimately going form state 1 to 4; however,

one model uses state 2 as an intermediary step while the other

model uses state 3 as the intermediary. The obvious way to show

this on a state chart is for each model to have its own path

creating a pattern that is similar to that of a diamond with each

state being at a vertex (state 1 and 4 at either end, and state 2 and

3 occupying the top and bottom vertex). This gets harder to

manage when there are many feature-sets being displayed each

with a unique middle state, and introduces a significant amount of

clutter to a chart.

We looked to see if it was possible to combine these states into

one graphical representation with the information pertaining to

each individual model being displayed (see figure 6). We have

tried several different approaches some showing promise in our

user study. However, it is apparent that more reviews need to be

done to form any conclusive statement.

4.3.2 “Missing” Conditions
Similar to the above situation, it is possible that a feature-set will

have a state that does not exist in other feature-set models. This

means that, due to necessity, the default way is to have two

separate paths. We wanted to see if it was possible to combine the

paths and still indicate this one “missing” state from the other

models in an intuitive manner.

To do this, we enter the middle/missing state as if it applied to all

the feature models following the specified path. Rather than

having information in this state for every node, we only indicate

the node for the model that actually does have a state at this

location. To leave the state, we use the same arrow we used to

enter. (see figure 7)

Our user survey indicated that this isn’t as intuitive as we hoped

and could potentially cause confusion. Further testing, however,

needs to be done to see if this is the case after a user has learned

the specified technique.

4.3.3 Identifying Nodes
In the same way that we identify the connectors between states, it

is important to be able to identify the states themselves and

associate them with specific feature-sets.

To do this, we approach it in a similar way to how we handled the

connectors. First, the text and bounding shape should be coloured

the colour associated with that specific feature-set. If there is a

mix of several colours, one can simply use black. Second, we

show the symbol for the particular feature-set on the left hand side

of the state box (see the “Barking” state in figure 7). In this way,

we associate both the colour and the symbol of the feature-set to

the state.

4.4 Full Charts
Looking at components individually is useful for evaluation;

however, something that seems like a good idea in isolation may

not work well in context. Therefore, we took several state charts

that had been developed by other authors and reworked them

using the principles that we established in the above steps. This

gave us a good indication of what worked well and what needed

to be further explored. Much of our summarizing was confirmed

by our user study (see section 5 for more details).

Further, there are a few principles that need to be applied to an

overall state chart that are not apparent when working with the

individual components.

Figure 5. A subset of possible labeled arrows

Figure 7. graph indicating a “missing” state

Figure 6. One possible method for combining two states

into one representation

4.4.1 Displaying Extra Information
When combining only a couple of feature-set models, it is usually

easy to fit the information needed on a graph; however, once and

a while there is more information than fits in the space available.

This also is an issue if you are combining many feature-set models

as, even if each model only has one line of information, this can

quickly fill the vacant space.

To accommodate for this, we introduced a simple technique of

marking a location with a smaller black circle (or “index marker”

– see figure 1) with a number in it that is sequential to the order

that it appears in the progression of the state-chart. One can then

create a table off to the side with a section for each feature-set.

Each section can have the feature-set symbol in the header of the

section, with the index markers along the side. The table can then

be populated with the information that is to be shown at the

specified location (See Figure 8). Yet, this is not without cost.

Since putting the extra information in a chart means that you are

likely putting the information off to the side, this means that the

user must make an extra step to identify the needed information,

where to find it, and then visually leave their current spot and re-

locate it after the fact. This is something that many people do not

like doing.

4.4.2 Most Likely Path
When building a state chart, one should try to ensure that the

states that are most common to all feature-sets are the easiest to

follow and pick-out. As a result, the most likely path should

contain this information that is most common. A feature-set that

has a unique entity should display this entity off of the main

branch of the state chart.

If there is a tie in how popular a path is (i.e. two feature-sets use

one path, two others use a different path), it would be logical to

split the difference and have one path go up, and the other go

down forcing the user to pay attention to which path they are

following.

4.4.3 Cardinal Directions
When designing state charts, it is always difficult to know where

to place components on the chart. However, for simplifying

readability, the eye is naturally drawn along straight lines.

Therefore, for easy of reading, it would be logical to have the path

that is easiest to follow be the path that is “most common” to all

features-sets.

To accomplish this, since most state charts occupy more than one

line, one should try to stick to the primary cardinal direction, and

then use the next most common angles (i.e. 45°, 135°, etc.) when

more flexibility is needed. The more “right-angled” the chart, the

easier it will be to read and “pick-out” specific features.

5. USER SURVEY
To evaluate our techniques we created an online survey to get

feedback from users. In total we had 9 participants representing a

group of graduate student in Computer Science at a large North

American university. The survey was divided into 3 parts - a part

dealing with connectors, a part to deal with states, and a part to

examine state charts as a whole. We created two versions of the

survey and on the second survey presented the information, in

each part, in a reversed order to help accommodate for a biasing

effect. Unfortunately only 2 participants answered the second

questionnaire. Finally the survey used a within participant model.

Our goal with this initial survey was to get a sense of which

techniques users preferred and which were intuitive.

For evaluating connectors, we presented a few questions

representing the different versions of single feature-set connectors

(see Figure 2), several questions representing the multiple feature-

set connectors (see Figure 3), and some questions representing

both connectors together. Each type was presented both in

isolation and in context. In each case, we asked the users for their

preference based on which representation they found clearest.

The most surprising result from this section was that people

generally did not like the technique were the symbol for a

connector was above the line (see Figure 2, 3rd down on right)

when viewed in isolation. For the in-context questions, we did

show a smaller subset of the available options, however, the

“above” version was one of the more popular techniques for this

scenario. In general, the preferred method for both multiple and

single feature-set connectors is the solid shape embedded in the

connector arrow with a bit of space to either side of it (see Figure

2, second down on right). The next most preferred method was

tied – both the connector with a solid box on the line – a shape

embedded in reverse within it (see Figure 2, 2nd down on left) and

the “above” technique were equally popular.

The next section of the survey asked about the “combined arrow”,

used when all models use the same path (see section 4.2.3).

Encouragingly, most people seemed to intuitively understand this

arrow, and follow the key features of this representation. One

person even correctly identified “four flows of different products

merge” – which is essentially what the arrow is showing.

We followed this by examining different techniques for

associating information with the connectors. For this question,

we only presented a small subset of the possibilities due to the

sheer volume of the number of different cases we would need to

present for all possibilities. As well, these questions were asked

out of context. Based on the discrepancy between in-context and

out-of-context from the initial questions in the survey, this should

Figure 9. Several methods for associating information

with connectors

Figure 8. An example table with index markers

be further examined in a follow-up survey. This question had the

user rate the proposed methods from 1 to 4 based on their

preference for the demonstrated technique. The most popular

technique for associating this information with a single connector

is by surrounding the label and symbol with a dotted line (see

Figure 9B), followed by having no extra symbols – simply having

the text underneath. For multiple feature-set arrows, the most

popular method was to use a brace (see Figure 9D), closely

followed by tie for multiple connector lines, and no extra

markings. The fact that participants seemed to be comfortable

with no extra markings associating the information below a

connector to the connector itself is promising as extra marks will

add clutter to a diagram.

Combining states met with mixed reaction, and we feel that this

area still has room for more improvement. We had users rate 5

different techniques on a scale of 1 – 5 based on how clear they

felt the representation was. The section showed mix results with

the multiple states embedded in a dashed-line being the most

popular (see Figure 6). This question, however, only explored the

case combining two states. A follow-up survey should also pursue

larger scenarios to get a proper representation of the technique.

Based on the reactions and guesses that people had regarding the

“missing state” scenario (see Figure 7), showed that this technique

is not necessarily intuitive. The main concern would be that some

people thought that this representation might mean that the state is

optional versus essential for the specified feature-set. We did not

explain the meaning in the survey as part of the goal of the survey

was to discover what is intuitive. This representation may not

have issues once it has been explained. This would need to be

explored in a follow-up survey.

Finally we took combined feature-set models created by other

authors [1][4][5] and re-created them using some of the

techniques explored (see Appendix A). We presented these

models to the participants and had them rank the different models

and comment on their likes and dislikes of the different forms.

Ultimately these graphs need to be followed-up in a second survey

as, based on some of the comments, it is possible that preferences

from previous questions affected users views of the combined

charts. For example, if someone did not like the dotted-line box

around the symbol and supporting text, they were more likely to

dislike a figure containing this symbolism (see figure G in in

Appendix A). We had one user point out that they found this

image to be “a bit noisy”. Ultimately, these graphs should have

used the techniques that were preferred in part 1 and 2 of the

survey to avoid biasing. It should also be noted that not all graphs

for comparisons shared all the “same” basic features. For

example, one graph, we had the details written on the original, but

used the index markers for the redrawn graph (see figures D and E

in appendix A). One user did not like having to look away for the

information and commented that they preferred the other due to

the fact it did not “make me look away in terror [of losing my

spot]”

Finally it should be noted that due to time constrains we

ultimately tried to cover too many different aspects in too short of

a survey. We also, unfortunately, did not have enough participants

to show any significant difference between the different results,

but the respondents gave us good general feedback on what they

were understanding, what was confusing, and where more work

needs to be done. As well, we did not explore the black and white

aspect of these images, which influenced some of the design

decisions. As has been noted a couple of times, a follow-up

survey should be performed to try and tease out remaining aspects

of the new implementation.

6. FUTURE WORK
The work in this paper represents a good first start. It has

established techniques that seem to work well for single, multiple,

and all connectors.

Some of the initial exploration for combining states has shown

promise, however, due to the mixed reactions to these techniques

in our user study, a follow up study needs to be performed. For

this study we looked at how people reacted to mixed states

without explaining the “rules” or purpose of what was being

introduced. This was done on purpose to try and get a sense of

what was intuitive and what was confusing. Yet, many of the

issues people had would probably be easily solved by a simple

explanation of the ideas behind the design. This would need to be

confirmed with a follow-up survey.

This study also only looked at small state charts, and though the

techniques were designed for large charts as well as small, only

small charts were tested in this work. It would be important to run

a study with both small and large examples to get a full sense of

whether these combined features have the overall desired effect,

and are as simple as the initial research seemed to indicate.

Finally part of this design focused on the fact that colour is not

necessary. At this point, the black and white representation of

these charts has not been tested. This is a factor that should be

brought into consideration for fully evaluating the effectiveness of

these graphs.

7. OBSERVATIONS
While working with the different charts, different suggestions, and

people’s comments, it because quickly apparent that the intended

use for the UML model makes a difference on how people read

and interpreted the diagrams. If the reader’s goal is to read the

information quickly, they are likely more interested in a model

that has as little clutter as possible with as few distractions as

possible. They would likely want information quickly, and not

have to waste more time searching for features than necessary.

However, if a reader’s goal is to quickly identify the differences in

one model or another, they may not care about the extra details

and just want to be able to take in the different paths as quickly as

possible. If a user simply wants to get an overall feel for how the

models relate to one another, they may just be interested in the

differences, in which case they would end up looking for

deviations from a standard path. If the state chart is going to be

used for reference while programming, the reader will likely want

as much information as possible at whatever spot they happen to

be looking. In this case it is probably beneficial to have as much

information crammed into the model as possible.

Whatever the reader’s preference, it is apparent that there are

differences in how an individual reads a state chart and what their

goal is for the graph while using it. To accommodate the different

needs, compromises would need to be chosen that would benefit

as many of the different uses as possible.

As well, with our questionnaire, examining the results of the

combined principles did not render as much information as might

have been hoped. Many of the full charts needed to be redraw to

demonstrate the user’s preferences from the first part of the

survey. As it was, many of the problems with the combined

questions seemed to reflected the respondents opinion of the

individual parts queried at the beginning of the survey. This

could be either due to the fact that these representations do not

work well, or it could be a biased based on the layout of the

survey. A follow-up survey would help differentiate this

difference.

8. CONCLUSION
In this initial research we have shown promising techniques for

combining multiple feature-sets, the connectors, and the states

that belong to them in a combined multiple feature-set state chart.

We have shown that a symbol associated with a colour works well

for identifying a specific feature-set and recognized that this will

help regardless of if the chart is shown in black and white or

colour. We have isolated a few methods for displaying single as

well as multiple feature-set connectors. We have shown that

multiple features-set arrows can be a striped coloured version that

is otherwise similar to the single feature-set case. We have

introduced a “combining” arrow that simplifies a model even

further by representing a situation where all feature-sets share a

similar path, which helps reduce clutter.

We have introduced the concept of combining unique states in a

state-chart, and combining situations where a state chart has an

extra state not present in another feature-set. We have explored

several different ways of presenting this information; however,

have concluded that more research needs to be done to help

clarify the best way to approaching this problem.

Finally we introduced some fundamental rules for laying out state

charts to help the user quickly understand what they are

observing. We introduced the concepts of keeping the paths to

cardinal directions when possible, keeping the most likely path as

straight as possible, and introduced “index markers” when there is

too much information to display in the available space.

Through a user study, we have explored the new principles

introduced, and obtained feedback on what people find easy to

follow, what they find confusing, and what needs further study.

Though further work still needs to be done, the work presented

demonstrates a promising start in standardizing and presenting

multiple feature-set UML diagram state charts in a compressed

and easy to understand method.

9. ACKNOWLEDGMENT
I’d like to thank Julia Rubin for the initial idea and motivation

behind this work, and for supplying me with references and

comments to further understand this problem.

10. REFERENCES
[1] Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens,

Axel Legay, Jean-François Raskin: Model checking lots of

systems: efficient verification of temporal properties in

software product lines. In Proceedings of ICSE’10: 335-344,

2010

[2] Christian Kästner, Salvador Trujillo, and Sven Apel.

Visualizing Software Product Line Variabilities in Source

Code. In Proc. SPLC Workshop on Visualization in Software

Product Line Engineering. 2008.

[3] Florian Heidenreich and Christian Wende. Bridging the Gap

Between Features and Models. In Proceedings

HeidenreichWende-AOPLE07. 2007.

[4] Florian Heidenreich, Pablo Sánchez, João Santos, Steffen

Zschaler, Mauricio Alférez, João Araújo, Lidia Fuentes, Uirá

Kulesza, Ana Moreira, and Awais Rashid. 2010. Relating

feature models to other models of a software product line: a

comparative study of featuremapper and VML. In

Transactions on aspect-oriented software development VII,

Shmuel Katz and Mira Mezini (Eds.). Springer-Verlag,

Berlin, Heidelberg 69-114.

[5] Julia Rubin, Marsha Chechik. Quality of Merge-Refactorings

for Product Lines. Unpublished.

[6] Krzysztof Czarnecki and Michał Antkiewicz. 2005. Mapping

features to models: a template approach based on

superimposed variants. In Proceedings of the 4th

international conference on Generative Programming and

Component Engineering (GPCE'05), Robert Glück and

Michael Lowry (Eds.). Springer-Verlag, Berlin, Heidelberg,

422-437. DOI=10.1007/11561347_28

http://dx.doi.org/10.1007/11561347_28.

Appendix A

UML State Chart – Partial Rescue Plan - Model A

A. Original Rescue Plan by Heidenreich et. al.

B. One version of the reformatted rescue plan

C. A second version of the reformatted rescue plan

UML State Chart – Washing Machine - Model B

D. The original washing machine model by Rubin and Chechik

E. The reformatted washing machine model

UML State Chart – Vending Machine – Model C

F. The original vending machine model by Classen, et. al.

G. The reformatted version of the vending machine

