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ABSTRACT 

From cell phones to desktops, the average number of CPUs found 

in new computer systems continues to grow. With this growth 

comes the need for multi-threaded shared memory algorithms that 

can exploit the many CPUs found in these systems. However, in 

systems with TSO memory consistency, there exists an unknown 

delay between when a thread executes a 'write' instruction, and 

when the value of that write is actually written to shared memory 

(where it can be read by other threads). This can make reasoning 

about communication between threads difficult, since it can be 

complicated to determine when the messages a thread writes will 

become visible to other threads. In this paper we describe the TSO 

Helper system in which the sequence of reads and writes made by 

a multi-threaded algorithm can be visually modeled. TSO Helper 

can then transform this model of reads and writes into one that 

visually illustrates the points at which each write instruction 

executed by a thread is guaranteed to have become visible to other 

threads. With this knowledge, a developer can ensure her 

algorithm is not making decisions that assume previous writes are 

visible to other threads before these writes have actually been 

written to shared memory. 

Categories and Subject Descriptors 

D.2.2 [Software Engineering]: Design Tools and Techniques – 

computer-aided software engineering (CASE). 

General Terms 

Algorithms, Design, Reliability, Theory, Verification. 

Keywords 

TSO, Total Store Order, Modeling, Concurrency, Relaxed 

Memory Consistency, Shared Memory Multiprocessing, 

Distributed Computing. 

1. INTRODUCTION 

1.1 Overview 
The current trend in computer systems design is to develop 

machines with increasingly large numbers of CPUs. In order to 

take advantage of this increase in computing power, multi-

threaded algorithms are needed that can make use of all available 

CPUs. However—for performance reasons—many modern 

systems employ what is called TSO memory consistency. Under 

TSO memory consistency, the value of an executed write 

instruction is not immediately written to shared memory. Instead, 

there is  a finite, nondeterministic delay between when the write 

instruction is executed, and when the value of the write is actually 

written to shared memory. When the value of a write instruction is 

actually written to shared memory, we say that the write has been 

committed. Until a write is committed, other threads cannot read 

the value of the write. Because of the delay between when a write 

is executed and when that write is committed, a thread must be 

careful about making decisions that assume the values of its 

previous writes are visible to other threads, because if it is wrong 

it can leave the system in an undefined state. To be certain that the 

values of previous writes have been committed (and are hence 

visible to other threads), a thread must execute a memory barrier 

instruction. A memory barrier instruction guarantees that all write 

instructions executed before it are committed by the time the 

memory barrier instruction completes. However, memory barriers 

are expensive operations that circumvent many system 

performance optimizations. 

This is where TSO Helper comes in. Using TSO Helper, an 

algorithm designer can create a visual model of the read, write, 

and memory barrier instructions that her algorithm executes. The 

model can also include nodes representing the functions that the 

algorithm calls, as well as synchronizations (explained later) in 

the algorithm. Given this model, TSO Helper generates a new 

model that contains the points at which writes made by the 

algorithm are guaranteed to have been committed. With this 

knowledge, the designer can ensure her algorithm is not making 

decisions that assume previous writes are visible to other threads 

before these writes have actually been committed. 

1.2 Organization of the rest of the paper 
In section 2 we begin by discussing the motivation behind the 

need for multi-threaded algorithms. We then delve into the details 

of TSO memory consistency. In section 3, we describe two 

algorithms that we will use to illustrate the use of TSO Helper. In 

section 4, we introduce TSO Helper and—by using it to analyze 

the algorithms of section 3—show how it can aid developers in 

writing high performance algorithms for systems with TSO 

memory consistency. In section 5 we outline the implementation 

of TSO Helper. In section 6 we conclude with future directions. 

2. BACKGROUND AND MOTIVATION 

2.1 The Need for Multi-threaded Algorithms 
Up until the mid-2000s, the history of CPU performance had in 

large part, been due to ever-increasing CPU clock speeds. Faster 

CPU clock frequencies allow a processor to execute more 

instructions per second, and hence execute algorithms faster than 

older CPUs with slower clock frequencies. This constant increase 

in the number of instructions executed per second allowed 

programmers the luxury of writing sequential algorithms with the 

knowledge that these algorithms would see increased performance 

with each new generation of processor. However, due to physical 

and practical limitations, CPU clock frequency has remained 

stalled at between 3 to 4 GHz for the past 7 years. Despite this, 



there remains an expectation that software performance will 

continue to improve over time. 

As a response to this 'frequency barrier', the computer industry has 

seen a dramatic shift away from single CPU systems to the point 

where, today, consumer systems with 2 or more independent 

CPUs are now the norm rather than the exception. However, since 

the clock speeds of individual CPUs in these multi-CPU systems 

are also subject to the frequency barrier, continued increases in 

application performance requires that software developers code 

parallel and distributed algorithms that spread work across all 

available processors. 

2.2 Sequential and TSO Memory Consistency 
A system's memory consistency model determines the order in 

which the read and write instructions executed by a thread are 

committed to memory. The two main memory consistency models 

that exist today are sequential consistency (SC herein), and TSO 

(total store order) consistency. 

TSO is of interest, since it is the native memory model of all 

modern x86 and x64 compatible CPUs (both from Intel and 

AMD). 

2.2.1 Sequential Consistency 
This is the simpler of the two consistency models. Under 

sequential consistency, when a write is executed, the processor 

waits until it is committed to memory before executing the 

following instruction. This makes proving the correctness of 

algorithms in a system with an SC memory model somewhat 

simpler than for algorithms running in a TSO system. This is due 

to the fact that one can be certain that the value of each write 

instruction an algorithm executes is visible to all other threads 

immediately after the instruction is executed. 

2.2.2 TSO Consistency 
Under TSO consistency, the value of write instructions are not 

immediately committed to memory. Instead, they are stored in a 

per-thread FIFO queue called the thread's write buffer. At some 

unknown, but finite time after the write is buffered, the CPU will 

dequeue each write in the buffer and commit it to memory. All 

writes are dequeued in the same order they were enqueued (i.e.: 

they are dequeued in FIFO order).  

2.2.3 Why TSO? 
The reason for buffering writes is to increase system performance. 

A thread cannot make forward progress if the read instruction it is 

currently executing is delayed, since the next step the thread needs 

to take may depend on the value returned from the read (we will 

ignore the possibility of speculative branching in this paper). For 

example: consider the statement if(x < 0) doThis(); else 

doThat();. Without being able to read the current value of x from 

main memory, the thread cannot know whether to execute 

doThis() or doThat(); However, a thread can make forward 

progress if its writes are buffered since its branching logic does 

not depend on the values it writes (except in one special case 

which we discuss below). Buffering writes can increase 

performance by allowing a thread to continue processing while 

cache lines are loaded from main memory, and by increasing 

system bus utilization. However, the technical details regarding 

why TSO increases system performance are outside the scope of 

this paper. Suffice it to say, write buffering helps multiprocessor 

systems run faster. 

2.2.4 Write Buffer Bypassing 
If a thread writes to a variable in shared memory, say x, and then  

subsequently reads from x before its write to x is committed, then 

the value of x returned to it is the value of the last write to x in its 

write buffer, not the value of x in main memory. This is referred 

to as write buffer bypassing, since main memory is bypassed in 

favour of a returning a value for the read from the write buffer. 

2.2.5 TSO Operational Model 
To make the last few sections more concrete, we provide here an 

operational model for TSO. 

 

 
Figure 1. TSO operational model using a memory switch. 

 

The model is composed of a set of threads Ci, a single switch, and 

memory, as depicted in figure 1. Assume that each thread presents 

memory operations to the switch one at a time in its program 

order (e.g.: in the order that its operations appear in its source 

code). 

The Switch is Fair. The switch may select processes by any 

method that does not starve a process with either a waiting 

operation, or a non-empty write buffer. 

Write. When a thread p executes a write operation of the form a = 

u, where a is the location of a variable in main memory and u is a 

value, the tuple (a,u) is immediately enqueued in p's write buffer 

without p needing to wait to be selected by the switch. 

Memory Barrier. If a thread p executes a memory barrier 

instruction, it cannot execute any subsequent instructions until 

its write buffer is empty. Once p is selected, the switch may 

dequeue and commit one or more buffered writes in p's write 

buffer before servicing another thread. Depending on the number 

of writes in p's write buffer, p may need to be selected multiple 

times before all of its buffered writes are dequeued and committed 

by the switch. 

Read. Assume p executes a read operation from memory location 

a. If p's write buffer contains any buffered write of the form (a,u), 

then p takes the value u of the most recently buffered write (a,u) 

as the value of a. It can do this without having to wait to be 

selected by the switch. (Note: This is write buffer bypassing as 

described in section 2.2.4) 

Otherwise, one of two things may occur: 

1. If p's write buffer is non-empty, the switch may dequeue a 

write (a,u) from the buffer, and commit the operation a=u 

to shared memory. 

reads reads 

writes writes writes 



2. If there are no tuples of the form (a,u) in p's write buffer, the 

switch returns the value of variable a from memory. 

We note that the switch may—at any time—dequeue a write from 

p's write buffer. It is not restricted to doing so only when p 

executes a read operation or a memory barrier instruction. 

2.2.6 SC from TSO 
It is possible to simulate an SC memory model in a TSO system, 

simply by placing a memory barrier operation after each write in 

an algorithm's source code. This is what most high-level 

programming languages do in order to provide programmers the 

semantics of an SC system when running on Intel or AMD based 

machines. However, this imposes a performance hit on programs 

that could be reduced if unnecessary memory barriers can be 

detected and removed. TSO Helper can help a developer 

determine places where memory barriers may be unnecessary. 

2.2.7 The Peculiarity of TSO 
In the code of listing 1, we show an example of the non-intuitive 

behaviour that can occur in TSO systems. The listing consists of 

two short programs executed by two separate threads. 

Variables x and y are shared amongst threads t1 and t2, while 

variables a and b are used only by thread t1 and thread t2, 

respectively. 

 

x = y = 0 // the values of x and y in main memory 

t1 t2 

1. x = 1 
2. a = y 

3. y = 1 
4. b = x 

Listing 1. An example of write buffer bypassing. 

 

Surprisingly, there exists an execution of these two programs after 

which a = 0, b = 0 while x = 1 and y = 1. We illustrate how this 

occurs in listing 2, where WB1 is thread t1's write buffer, and 

WB2 is t2's. The column 'Main Memory' contains the values of x, 

y, a, and b in main memory. Variables whose value do not change 

in a step are left blank. 

 

 Main Memory  

 t1 WB1 x y a b t2 WB2 

1  [ ] 0 0 ? ?  [ ] 

2 x = 1 [(x,1)]      [ ] 

3  [(x,1)]     y = 1 [(y,1)] 

4 a = y [(x,1)(a,0)]      [(y,1)] 

5  [(x,1)(a,0)]     b = x [(y,1),(b,0)] 

6  [(a,0)] 1      

7  [ ]   0    

8    1    [(b,0)] 

9      0  [ ] 

10   1 1 0 0   

Listing 2. Writes to x and y are buffered 

 

In steps 2-4, thread t1 has its writes to x and a buffered, while 

thread t2 has it writes to y and b buffered. Then in steps 6 and 7, 

thread t1's write buffer is flushed. Note how the order that writes 

are dequeued and committed is the same order in which they 

entered. Similarly, in steps 8 and 9, thread t1's write buffer is 

emptied and committed in FIFO order. This execution results in x 

= 1, y = 1, while a = 0 and b = 0. This result is not possible for 

these programs if run in an SC system. 

3. Motivating Examples 
To help ground the preceding material and introduce TSO Helper, 

we provide the following concrete examples as an illustrative aid. 

 

Shared variables: 
    X_WANTS_TO_UPDATE = false 
    Y_WANTS_TO_UPDATE = false 
    acct = 0 
 
Local variables: 
    x_temp = 0   // local to thread x 
    y_temp = 0   // local to thread y 

thread X : 

1. X_OTHER_BANKING_WORK(); 
2. X_WANTS_TO_UPDATE = true 
3. await(¬Y_WANTS_TO_UPDATE) 
4. x_temp = acct + 1 
5. acct = x_temp 
6. X_WANTS_TO_UPDATE = false 
7. goto 1 

thread Y : 

8.  Y_OTHER_BANKING_WORK(); 
9.  Y_WANTS_TO_UPDATE = true 
10. await(¬X_WANTS_TO_UPDATE) 
11. y_temp = acct + 1 
12. acct = y_temp 
13. Y_WANTS_TO_UPDATE = false 
14. goto 8 

Listing 3. Simple two thread mutual exclusion algorithm. 

Note that this algorithm is not deadlock-free. 

 

Listing 3 is code for a simple 2-thread distributed mutual 

exclusion algorithm, however, it is only correct under SC, not 

TSO. A mutual exclusion algorithm is one that serializes access to 

a shared variable.  We will note that this algorithm is not 

deadlock-free under SC or TSO. However, deadlocks and 

deadlock-freedom are outside the scope of this paper so we shall 

ignore this fact. 

In this contrived example, threads X and Y perform deposit 

updates on a single bank account, where the current value of the 

account is stored in the shared variable acct. We imagine that X 

and Y monitor two different ATM machines, and when an 

account owner deposits some money, either X or Y (depending on 

which ATM is used) will update the account. We also imagine 

that these ATMs only allow one dollar to be deposited at a time. If 

the account has two owners (for example, consider a married 

couple that jointly own the account), then we must ensure that 

their deposits are made one at a time. Otherwise, we can have the 

following situation: 

 

acct = 0 

thread X 
(account owner 1): 

thread Y 
(account owner 2): 

1. x_temp = acct  

2 y_temp = acct 

3. acct = x_temp + 1  

4. acct = y_temp + 1 

Listing 4. An interleaving where two $1 deposits to acct 

result in acct having an with incorrect value of $1. 



This ordering of X's and Y's instructions is called an interleaving. 

In this particular interleaving, we see that X and Y both read and 

increment the same account value, and then store the result back 

into acct. This results in the final value of acct being 1, rather than 

the correct value of 2. 

To avoid this problem, we must ensure that only one thread has 

access to the shared variable acct at given point in time. In other 

words, we must ensure that access to the variable acct is mutually 

exclusive; i.e.: if thread X has access to acct, then thread Y does 

not, and vice. versa. 

To ensure mutually exclusive access to acct, thread X first flags its 

intention to write to acct by setting X_WANTS_TO_UPDATE to 

true. It then checks to see if Y has flagged its intention to update 

acct. If Y has not flagged its intent to enter the account, then X 

updates it, and—after doing so—resets 

X_WANTS_TO_UPDATE to false. However, if Y has set 

Y_WANTS_TO_UPDATE to true (indicating Y wants to, or is 

already in the process of updating the account), then X waits until 

Y_WANTS_TO_UPDATE becomes false. Once 

Y_WANTS_TO_UPDATE becomes false, X performs its update.  

The situation described above is symmetric for Y. 

 

            Shared variables 

            X[1],...,X[n] = DONE 
            SOMEONE_IS_WAITING = false 

            client thread i ∈ { 1,...,n} : 

            1.  OTHER_WORK(i); 
            2.  X[i] = WAITING 
            3.  SOMEONE_IS_WAITING = true 
            4.  await(X[i] == YOUR_TURN) 
            5.  processSharedVariables(i); 
            6.  X[i] = DONE 
            7.  goto 1 

 

            administrator thread : 

            8.  await(SOMEONE_IS_WAITING == true) 
            9.  SOMEONE_IS_WAITING = false 
            10. for(i in 1...n) : 
            11.       if(X[i] == WAITING) : 
            12.             X[i] = YOUR_TURN 
            13.             await(X[i] == DONE) 
            14. goto 7 

 

Listing 5. A simple centralized mutual exclusion algorithm. 

 

Listing 5 is a centralized mutual exclusion algorithm. We describe 

the entire algorithm only for completeness, as we will only focus 

on the 'client' code of the algorithm in our examples. 

The algorithm is composed of a set of n > 1 'client' threads, and a 

single dedicated daemon thread called the 'administrator' that 

grants clients exclusive access to a set of shared variables (not 

shown here) that are processed in the function 

processSharedVariables(). Threads communicate with the 

administrator via elements in the n-element array X, and via the 

shared variable SOMEONE_IS_WAITING. 

The algorithm works as follows. The administrator continuously 

reads the variable SOMEONE_IS_WAITING, waiting for it to 

become equal to true (line 8). When a client i needs to process the 

shared variables, it exits the OTHER_WORK() function (line 1). 

It then sets X[i] to WAITING (line 2), and, finally, sets 

SOMEONE_IS_WAITING to true (line 3). When the 

administrator sees SOMEONE_IS_WAITING is true, it resets 

SOMEONE_IS_WAITING to false (line 9), and then iterates 

through X (lines 10-13), looking for elements X[j] in X that are 

equal to WAITING (e.g.: it looks for a client that is waiting for 

access to the shared variables). Once the administrator finds such 

an element, X[i] for example, it grants thread i access to the 

shared variables by setting X[i] to the value YOUR_TURN (line 

12), and then waits for X[i] to become equal to DONE (which 

indicates that thread i is done processing the shared variables). 

Since client i has been reading X[i] in a loop (line 3), it will 

eventually see X[i] == YOUR_TURN and execute 

processSharedVariables(i). When it is done, it sets X[i] to DONE 

and continues with its other work. After the administrator sees 

X[i] has been changed to DONE, it continues iterating through 

the array X looking for any other threads that want access to the 

shared variables. 

4. TSO HELPER 
To describe and illustrate TSO Helper, we will first use it to 

analyze the algorithm of listing 3.  

4.1 Creating the Read/Write graph 
The first step in using TSO Helper is to convert the algorithm one 

wishes analyzed into what we refer to as a read/write graph. To 

illustrate what a read/write is, we will now create one from the 

code for thread X in listing 3. To conserve space, we have 

renamed some of the functions and variables: 

X_OTHER_BANKING_WORK() is now X_OTHR_WRK() and  

X_WANTS_TO_UPDATE is now X_UPDT. 

 

               

Figure 2. Read/Write graph for thread X of listing 3  

 

4.1.1 First Attempt 
For our first attempt, we have removed the call to the 

X_OTHR_WRK() function in line 1, for simplicity. 

1. X_OTHR_ WRK() 

 

2. X_ UPDT = true 

 

 

3. await(¬Y_ UPDT) 

 

 

 

4. x_temp = acct + 1 

5. acct = x_temp 

 

 

6. X_ UPDT = false 

 

7. goto 1 



For the read/write graph, we begin by creating a Write node to 

model the write in line 2, and set its id value to 2. id's are arbitrary 

values, but must be unique in a read/write graph. We select the 2 

for its id since the code associated with it appears on line 2. We 

also set this node's uid to 2. uids must also be unique within a 

read/write graph. Importantly, we set the bottom boolean attribute 

of the node to true. This tells TSO Helper that this node is the 

start node of the algorithm. Only one node in the read/write graph 

may be designated a start node. 

Note that Read and Write nodes have a var attribute. This 

attribute is meant to hold information about the variable being 

written or read from, however its purpose is purely to make the 

read/write graph more readable for the developer, and is not 

materially used by TSO Helper. 

To represent the busy-loop in line 3, we create a single Read 

node. For lines 4 and 5, we use a function node to represent the 

two lines. For the write in line 6, we use another Write node. 

Finally, we attach each of the nodes together with Transition 

links. Note that we have not added a Transition between the Read 

with id 3 and itself, even though this read is part of a busy-loop 

(line 3). This is because TSO Helper does not allow back-edges in 

the read/write graph, except to the start state. To represent a loop, 

users must simply manually expand 1 or more iterations of it. 

However, this simplification does not affect the correctness of the 

analysis TSO Helper makes. 

4.1.2 The Function Node 
While Read nodes, Write nodes, and Transitions are relatively 

self-explanatory, function nodes require marginally more 

explanation. A function node is used to represent a block of code 

to help simplify a read/write graph. The first step TSO Helper 

performs when it processes a read/write graph is to convert 

function nodes into plain Read and Writes nodes. 

 

Figure 3. Function node converted to a Read followed by a 

Write node 

 

In figure 3 we see a function node for the function myFunc() 

converted into a Read node R:myFunc() and a write node 

W:myFunc().  The Read node represents all read operations that 

may occur in myFunc(), while the node W:myFunc() represents 

all the writes that may occur. 

4.1.3 Second Attempt 
To further simplify this example, we will replace the function 

node with more descriptively named Read and Write nodes (see 

figure 4). So instead of the function node, we have instead a Read 

node followed by a Write node whose var attributes are set to 

accept. We do not need to worry about the x_temp variable of 

lines 4 and 5 since it is local to thread X (i.e.: it is not shared with 

thread Y). 

             

Figure 4. Second Version of Read/Write graph for thread X of 

listing 3  

 

4.2  Running The Analysis 
Read/Write graphs are designed using the TSO Helper Designer, 

which uses the GMF framework.  

 

 

Figure 5. The TSO Helper Designer palette 

 

Once a read/write graph is designed, it is stored as an XMI file 

with the extension tso. To process a read/write graph, the 

developer selects the input graph, and selects a name for the 

output graph using the TSO Helper Control Panel (figure 6). 

Once the input and output file names have been set, the developer 

clicks the Run button to start the transformation. 

4.3 A First Result 
In this case, our transformation fails. In other words, TSO Helper 

concludes that there is no place in any execution of the algorithm 

where any write can be guaranteed to have been committed. 

However, this should be clear, since at no point in the algorithm 

1. X_OTHR_ WRK() 

 

2. X_ UPDT = true 

 

 

3. await(¬Y_ UPDT) 

 

 

 

4. x_temp = acct + 1 

5. acct = x_temp 

 

 

6. X_ UPDT = false 

 

7. goto 1 



are any writes forced to commit. Put another way, if we consider 

the algorithm being executed in the 'switch' model of section 

2.2.5, there is no way for us to predict when the switch may 

decide to dequeue any buffered write operation. So while we 

know the switch will eventually dequeue all buffered writes (since 

the switch is fair),  we cannot—for any write—deduce any single 

point where the switch is guaranteed to have dequeued and 

committed any write. 

This result means we will be unable to prove that the algorithm 

satisfies mutual exclusion. If we cannot make any assumptions 

about when our write in line 2 (X_UPDT = true) becomes visible 

to Y, we cannot update the account (lines 4-5), even if we have 

read that Y_UPDT is false in line 3. 

 

 

Figure 6. TSO Helper Control Panel. The enclosed section 

(surrounded by red dots) is where parameters for the full 

transformation are set. 

 

4.4 Revising the Algorithm  
A simple solution is to add memory barrier instructions after 

every write we make. Recall that—after a memory barrier 

instruction completes—we are guaranteed all our buffered writes 

have been committed. However, perhaps we can get away with 

fewer memory barrier instructions. As a first attempt at a revised 

algorithm, we will insert a memory barrier after the write in line 2 

(figure 7). We will then process the new model and see if this 

change is enough to allow the algorithm to satisfy mutual 

exclusion. 

 

Figure 7. A Memory Barrier node is inserted after the write 

X_UPDT = true  

4.5 Second Result 
This time TSO Helper is able to successfully determine points in 

the execution of the algorithm where each write is guaranteed to 

have been committed. The output, called a commit graph, is 

shown in figure 8. 

 

 

Figure 8. Write nodes with thick dark edges represent places 

where writes have been guaranteed to have been committed. 

 

Recall that the write of line was given was represented by a Write 

node with id 2. In row 1 of the output graph (figure 8), we see that 

the Write node with id 2 is followed by a Commit node. A 

Commit node looks like a Read node but with darker edges. This 

particular Commit node has a wId (write id) attribute of 2. This 

means that this Commit node represents the commission of a write 

represented by a Write node with id 2. In our model, the Write 

node with id 2 is the write X_UPDT = true of line 2 of the 

algorithm. The way row 1 is to be interpreted is: After the 

execution of the memory barrier in iteration 1 of the algorithm, we 

are guaranteed that the write of line 2 (from iteration 1) has been 

committed. 

In row 2 of the output graph, we see nodes representing the read 

of Y_UPDT (await(¬Y_UPDATE)), and the read of acct (x_temp 

= acct) of iteration 1. This is followed by the node representing 

the write to acct (acct = x_temp + 1) and the write to X_UPDT 

(X_UPDT = false) of iteration 1. The third Write node in row 2 

represents the write X_UPDT = true of the next iteration of the 

algorithm. 

Row 3 is composed three Commit nodes followed by the next 

execution of the memory barrier. The three Commit nodes—in 

order—represent the commission of writes acct = x_temp + 1 and 

X_UPDT = false, of iteration 1. The third Commit node 

represents the commission of the write X_UPDT = true of the 

next iteration. This behaviour is exactly what we expect: The first 

write (X_UPDT = true) is committed due to the barrier in the first 

iteration. The remaining writes of iteration 1, plus, the next write 

X_UPDT = true from the second iteration are committed due to 

the barrier in the next iteration. This pattern then repeats as is 

illustrated by the loop in the commit diagram. 



4.6 Synchronization 
To illustrate the concept of synchronization and how TSO Helper 

makes use of it, we will examine the algorithm of listing 5. It may 

be prudent to review the description of this algorithm now. 

To understand synchronization, let us take first examine lines 2 

and 4 of listing 5. In line 2, client i sets X[i] to WAITING. It does 

this so that when the admin thread scans the array X, it will see 

that X[i] == WAITING and know that client i wishes to obtain 

exclusive access to the shared variables. Then, in line 4, client i 

enters a tight loop where it reads X[i] and waits for the admin 

thread to change its value from WAITING to YOUR_TURN. 

There are two important points to note here. First: Immediately 

before client i sets the X[i] to WAITING, the value of X[i] in 

shared memory is equal to DONE. Second, the admin thread will 

only set X[i] to YOUR_TURN if  it sees that X[i] is equal to 

WAITING. Therefore, if client i sees X[i] change from WAITING 

to YOUR_TURN, then its write in line 2 (X[i] = WAITING) must 

have been committed, since otherwise, the admin thread would 

not have seen X[i] == WAITING (i.e.: it would still see X[i] == 

DONE), and would not have changed X[i] to YOUR_TURN. 

Therefore, we can infer that X[i]'s write in line 2 has been 

committed when it exits the loop at line 4. In addition to this, we 

can also infer that all writes made prior to the write at line 2 have 

also been committed due to the fact that buffered writes are 

dequeued in FIFO order. 

When termination of a read-loop on a variable v allows us to infer 

that a previous write to v has been committed, we say that the 

read-loop and the previous write form a synchronization. So in 

our example, the write in line 2 to X[i], and the read-loop of X[i] 

in line 4, together form a synchronization. 

4.6.1 Modeling Synchronization 
To model the fact that the write of line 2, and the read-loop of line 

4 form a synchronization, we use dashed-blue connector to link 

them together (see figure 9).  

 

 

Figure 9. The write of line 2 and the reads of line 4 form a 

synchronization. This is modeled by the blue dashed 

Synchronization connector that links the nodes that represent 

them. 

 

In figure 10, we see the commit graph that is generated from the 

read/write graph of figure 9. Note that TSO Helper is able to 

calculate guaranteed commit locations without there being any 

memory barriers in the input model. 

4.7 Branching 
None of the algorithms modeled thus far contain any branching. 

Branching in an algorithm occurs based on the results of read 

operations on variables. For this reason, branches in a read/write 

graph are modeled by having multiple outgoing transitions on 

Read nodes. 

To illustrate this, we use the completely contrived read/write 

model of figure 11 as our example.  

 

 

Figure 10. Output graph for listing 5. Commit points for all 

writes are guaranteed without any memory barriers in the 

code. 

 

 

Figure 11. A simple example of a read/write graph with 

branching. 

 

The output of this example is shown in figure 12.  

  

 

Figure 12. The output graph of the model of figure 11. 



5. IMPLEMENTATION 
In this section, we outline how TSO Helper analyzes and 

transforms read/write graphs to produce the output 'commit 

graphs' of the type we examined in section 4. We also explain the 

criteria under which TSO Helper determines that no commit graph 

exists. 

5.1 The Ecore Model 
The Ecore model for read/write and commit graphs can be seen in 

figure 13. All nodes inherit from the interface Operation with 

attributes id, uid, (both EInts), and isStart (an EBoolean). The 

Transition class is used is used to model connections between 

Operations that represent the order Operation nodes are executed 

in the read/write graph. Transition objects take objects of type 

Operation for the source and target of their connection. The Synch 

class models connections between Write and Read nodes to model 

synchronizations, and takes an object of type Write as its source, 

and type Read as its target. All classes are contained by the 

TSOReadWriteSynch class. 

 

 

Figure 13. The Ecore model read/write and commit graphs. 

 

5.2 The Transformation Algorithm 
Stage 1. In the first step of the transformation, the input graph T1 

is transformed into a graph T2 that is identical to T1 except with 

each Function node in T1 replaced with a Read and Write node 

(see section 4.1.2). 

Stage 2. Graph T2 is then 'unrolled' n times (where n is a user-

specified value) to produce a directed acyclic graph T3 rooted at a 

copy of T2's start node. Figure 14 shows a picture of the result of 

unrolling the read/write graph of figure 12 two times. Since each 

node in T2 may appear multiple times in T3 (once for each 

possible execution it may occur in), the uid attribute is used to 

differentiate different instances of the same node from T2 in T3. 

However, note that the id of each instance of a node from T2 in 

T3 remains unchanged. Hence—ids are not unique in T3 (as 

they were in T1 and T2), but uids remain unique in all graphs. 

For example, in figures 14 and 15, all red nodes have the id 5, but 

they all have unique uids.  

Stage 3. Once the unrolled 'execution tree' T3 is built, TSO 

Helper begins transforming T3 into the final commit graph. 

Beginning at the root node of T3, it performs a recursive DFS 

traversal of T3. 

For each node x of T3 encountered during the DFS traversal, the 

algorithm augments x with the state that the write buffer will be in 

immediately after the execution of the operation represented by it. 

The write buffer is initially empty. If x is a Read node that is not 

part of a synchronization pair, it leaves the buffer in its current 

state. If x is a Write node with id y, it enqueues the number y into 

the buffer (recall, the buffer is a FIFO queue). 

If x is a Barrier, it adds Commit nodes (in the FIFO order they 

appear in the buffer) between x and x's parent. It then empties the 

buffer. If x is a Read node that is synchronized with a Write node 

with id y, the algorithm dequeues the first Write in the write 

buffer that has id y, along with all Writes that were enqueued after 

it. It then adds one Commit node for each Write it just dequeued  

(in the FIFO order they appeared in the buffer) between x and x's 

parent. 

 

 

Figure 14. The result of unrolling the read/write graph of 

figure 12 two times. 

 

 

Figure 15. Picture of an early stage of the construction of a 

commit graph, annotated with each node's write buffer state. 

 

Once x's write buffer has been calculated, and any Commits have 

been inserted, it then checks to see if any node it has previously 

encountered during its traversal of T3 is a match for it.  



We say that nodes x and z match if: 1) x.id = z.id, and, 2) x and z 

have write buffers with the same sequence of writes. We note that 

if x and z have the same id—then by definition—they have the 

same type (e.g.: are both Read nodes or both Write nodes, etc...). 

Previously-encountered nodes are stored in a hashtable named 

'discovered' that is keyed by node id. Each entry in the discovered 

hashtable is a list of previously encountered nodes with the same 

id. 

If the algorithm finds a matching node z, then it points all of x's 

incoming transitions to z, and then deletes the subtree rooted at x 

from the tree and returns. 

If the algorithm cannot find a match for x, it stores x in 

discovered, and continues its recursion.  

If x is a leaf node, then the algorithm throws an exception. We 

justify throwing an exception in this case, because of the lemma 

of section 5.3. 

5.3 TSO Helper Lemma 
In the following lemma, let wb(x) be the contents of the write 

buffer at node x. E.g.: wb(x) is an ordered sequence of write node 

ids. Let A be an algorithm, and let T be the read/write graph for A 

(with Function nodes expanded into Read and Write nodes). 

Finally, let T∞ be an infinite unrolling of T. 

Lemma. If there exists any infinite path P through T∞, where P 

starts at the root of T∞ and contains no pair of distinct nodes x and 

z with x.id = z.id and wb(x) = wb(z), then there is an execution of 

A in which the write buffer grows without bound. 

Proof. 

Let P be an infinite path through T∞, starting from the root, that 

contains no pair of distinct nodes x and z with x.id = z.id and 

wb(x) = wb(z). 

For the purpose of obtaining a contradiction, let us assume that 

write buffer sizes for nodes in P do not grow without bound. Then 

it follows that there must be some maximum write buffer size r 

such that, for each node x in P, |wb(x)| ≤ r. Hence, the number of 

unique write buffers is M = 1 + k + k2 + ... + k
r
.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let k be the number ids (NOT uids) used by Write nodes in T∞, 

and let q be the total number of ids used in T∞. We note that k ≤ q, 

and that q must be finite since T∞ is an unrolling of T, and T 

contains a finite number of ids, so T∞ also contains a finite 

number of ids (though it contains an infinite number of uids). 

Let z be the (qM + 1)
th

  node in path P. Since nodes in P can have 

only one of M unique write buffers, and only one of q different 

ids, there must be some node x amongst the first qM nodes of P 

with both the same id and same write buffer as z. But this 

contradicts our initial assumption that that P contains no pair of 

distinct nodes x and z with x.id = z.id and wb(x) = wb(z). ⎕  

6. FUTURE DIRECTIONS 
In the future, we hope to continue developing the visual modeling 

interface for the program. In particular, we would like to develop 

tools that would better layout generated diagrams. We would also 

like to better handle self-loops in read/write graphs. Another goal, 

is to use the functionality of MMTF to enable interconnections 

between read/write graphs for different threads—we hope that this 

may lead to additional information that can be used to infer when 

writes are committed. 
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