
Taming TSO Memory Consistency with Models

Michael N. Christoff
University of Toronto

27 King's College Circle
Toronto, Ontario, Canada

christoff@cs.toronto.edu

ABSTRACT

From cell phones to desktops, the average number of CPUs found

in new computer systems continues to grow. With this growth

comes the need for multi-threaded shared memory algorithms that

can exploit the many CPUs found in these systems. However, in

systems with TSO memory consistency, there exists an unknown

delay between when a thread executes a 'write' instruction, and

when the value of that write is actually written to shared memory

(where it can be read by other threads). This can make reasoning

about communication between threads difficult, since it can be

complicated to determine when the messages a thread writes will

become visible to other threads. In this paper we describe the TSO

Helper system in which the sequence of reads and writes made by

a multi-threaded algorithm can be visually modeled. TSO Helper

can then transform this model of reads and writes into one that

visually illustrates the points at which each write instruction

executed by a thread is guaranteed to have become visible to other

threads. With this knowledge, a developer can ensure her

algorithm is not making decisions that assume previous writes are

visible to other threads before these writes have actually been

written to shared memory.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Techniques –

computer-aided software engineering (CASE).

General Terms

Algorithms, Design, Reliability, Theory, Verification.

Keywords

TSO, Total Store Order, Modeling, Concurrency, Relaxed

Memory Consistency, Shared Memory Multiprocessing,

Distributed Computing.

1. INTRODUCTION

1.1 Overview
The current trend in computer systems design is to develop

machines with increasingly large numbers of CPUs. In order to

take advantage of this increase in computing power, multi-

threaded algorithms are needed that can make use of all available

CPUs. However—for performance reasons—many modern

systems employ what is called TSO memory consistency. Under

TSO memory consistency, the value of an executed write

instruction is not immediately written to shared memory. Instead,

there is a finite, nondeterministic delay between when the write

instruction is executed, and when the value of the write is actually

written to shared memory. When the value of a write instruction is

actually written to shared memory, we say that the write has been

committed. Until a write is committed, other threads cannot read

the value of the write. Because of the delay between when a write

is executed and when that write is committed, a thread must be

careful about making decisions that assume the values of its

previous writes are visible to other threads, because if it is wrong

it can leave the system in an undefined state. To be certain that the

values of previous writes have been committed (and are hence

visible to other threads), a thread must execute a memory barrier

instruction. A memory barrier instruction guarantees that all write

instructions executed before it are committed by the time the

memory barrier instruction completes. However, memory barriers

are expensive operations that circumvent many system

performance optimizations.

This is where TSO Helper comes in. Using TSO Helper, an

algorithm designer can create a visual model of the read, write,

and memory barrier instructions that her algorithm executes. The

model can also include nodes representing the functions that the

algorithm calls, as well as synchronizations (explained later) in

the algorithm. Given this model, TSO Helper generates a new

model that contains the points at which writes made by the

algorithm are guaranteed to have been committed. With this

knowledge, the designer can ensure her algorithm is not making

decisions that assume previous writes are visible to other threads

before these writes have actually been committed.

1.2 Organization of the rest of the paper
In section 2 we begin by discussing the motivation behind the

need for multi-threaded algorithms. We then delve into the details

of TSO memory consistency. In section 3, we describe two

algorithms that we will use to illustrate the use of TSO Helper. In

section 4, we introduce TSO Helper and—by using it to analyze

the algorithms of section 3—show how it can aid developers in

writing high performance algorithms for systems with TSO

memory consistency. In section 5 we outline the implementation

of TSO Helper. In section 6 we conclude with future directions.

2. BACKGROUND AND MOTIVATION

2.1 The Need for Multi-threaded Algorithms
Up until the mid-2000s, the history of CPU performance had in

large part, been due to ever-increasing CPU clock speeds. Faster

CPU clock frequencies allow a processor to execute more

instructions per second, and hence execute algorithms faster than

older CPUs with slower clock frequencies. This constant increase

in the number of instructions executed per second allowed

programmers the luxury of writing sequential algorithms with the

knowledge that these algorithms would see increased performance

with each new generation of processor. However, due to physical

and practical limitations, CPU clock frequency has remained

stalled at between 3 to 4 GHz for the past 7 years. Despite this,

there remains an expectation that software performance will

continue to improve over time.

As a response to this 'frequency barrier', the computer industry has

seen a dramatic shift away from single CPU systems to the point

where, today, consumer systems with 2 or more independent

CPUs are now the norm rather than the exception. However, since

the clock speeds of individual CPUs in these multi-CPU systems

are also subject to the frequency barrier, continued increases in

application performance requires that software developers code

parallel and distributed algorithms that spread work across all

available processors.

2.2 Sequential and TSO Memory Consistency
A system's memory consistency model determines the order in

which the read and write instructions executed by a thread are

committed to memory. The two main memory consistency models

that exist today are sequential consistency (SC herein), and TSO

(total store order) consistency.

TSO is of interest, since it is the native memory model of all

modern x86 and x64 compatible CPUs (both from Intel and

AMD).

2.2.1 Sequential Consistency
This is the simpler of the two consistency models. Under

sequential consistency, when a write is executed, the processor

waits until it is committed to memory before executing the

following instruction. This makes proving the correctness of

algorithms in a system with an SC memory model somewhat

simpler than for algorithms running in a TSO system. This is due

to the fact that one can be certain that the value of each write

instruction an algorithm executes is visible to all other threads

immediately after the instruction is executed.

2.2.2 TSO Consistency
Under TSO consistency, the value of write instructions are not

immediately committed to memory. Instead, they are stored in a

per-thread FIFO queue called the thread's write buffer. At some

unknown, but finite time after the write is buffered, the CPU will

dequeue each write in the buffer and commit it to memory. All

writes are dequeued in the same order they were enqueued (i.e.:

they are dequeued in FIFO order).

2.2.3 Why TSO?
The reason for buffering writes is to increase system performance.

A thread cannot make forward progress if the read instruction it is

currently executing is delayed, since the next step the thread needs

to take may depend on the value returned from the read (we will

ignore the possibility of speculative branching in this paper). For

example: consider the statement if(x < 0) doThis(); else

doThat();. Without being able to read the current value of x from

main memory, the thread cannot know whether to execute

doThis() or doThat(); However, a thread can make forward

progress if its writes are buffered since its branching logic does

not depend on the values it writes (except in one special case

which we discuss below). Buffering writes can increase

performance by allowing a thread to continue processing while

cache lines are loaded from main memory, and by increasing

system bus utilization. However, the technical details regarding

why TSO increases system performance are outside the scope of

this paper. Suffice it to say, write buffering helps multiprocessor

systems run faster.

2.2.4 Write Buffer Bypassing
If a thread writes to a variable in shared memory, say x, and then

subsequently reads from x before its write to x is committed, then

the value of x returned to it is the value of the last write to x in its

write buffer, not the value of x in main memory. This is referred

to as write buffer bypassing, since main memory is bypassed in

favour of a returning a value for the read from the write buffer.

2.2.5 TSO Operational Model
To make the last few sections more concrete, we provide here an

operational model for TSO.

Figure 1. TSO operational model using a memory switch.

The model is composed of a set of threads Ci, a single switch, and

memory, as depicted in figure 1. Assume that each thread presents

memory operations to the switch one at a time in its program

order (e.g.: in the order that its operations appear in its source

code).

The Switch is Fair. The switch may select processes by any

method that does not starve a process with either a waiting

operation, or a non-empty write buffer.

Write. When a thread p executes a write operation of the form a =

u, where a is the location of a variable in main memory and u is a

value, the tuple (a,u) is immediately enqueued in p's write buffer

without p needing to wait to be selected by the switch.

Memory Barrier. If a thread p executes a memory barrier

instruction, it cannot execute any subsequent instructions until

its write buffer is empty. Once p is selected, the switch may

dequeue and commit one or more buffered writes in p's write

buffer before servicing another thread. Depending on the number

of writes in p's write buffer, p may need to be selected multiple

times before all of its buffered writes are dequeued and committed

by the switch.

Read. Assume p executes a read operation from memory location

a. If p's write buffer contains any buffered write of the form (a,u),

then p takes the value u of the most recently buffered write (a,u)

as the value of a. It can do this without having to wait to be

selected by the switch. (Note: This is write buffer bypassing as

described in section 2.2.4)

Otherwise, one of two things may occur:

1. If p's write buffer is non-empty, the switch may dequeue a

write (a,u) from the buffer, and commit the operation a=u

to shared memory.

reads reads

writes writes writes

2. If there are no tuples of the form (a,u) in p's write buffer, the

switch returns the value of variable a from memory.

We note that the switch may—at any time—dequeue a write from

p's write buffer. It is not restricted to doing so only when p

executes a read operation or a memory barrier instruction.

2.2.6 SC from TSO
It is possible to simulate an SC memory model in a TSO system,

simply by placing a memory barrier operation after each write in

an algorithm's source code. This is what most high-level

programming languages do in order to provide programmers the

semantics of an SC system when running on Intel or AMD based

machines. However, this imposes a performance hit on programs

that could be reduced if unnecessary memory barriers can be

detected and removed. TSO Helper can help a developer

determine places where memory barriers may be unnecessary.

2.2.7 The Peculiarity of TSO
In the code of listing 1, we show an example of the non-intuitive

behaviour that can occur in TSO systems. The listing consists of

two short programs executed by two separate threads.

Variables x and y are shared amongst threads t1 and t2, while

variables a and b are used only by thread t1 and thread t2,

respectively.

x = y = 0 // the values of x and y in main memory

t1 t2

1. x = 1
2. a = y

3. y = 1
4. b = x

Listing 1. An example of write buffer bypassing.

Surprisingly, there exists an execution of these two programs after

which a = 0, b = 0 while x = 1 and y = 1. We illustrate how this

occurs in listing 2, where WB1 is thread t1's write buffer, and

WB2 is t2's. The column 'Main Memory' contains the values of x,

y, a, and b in main memory. Variables whose value do not change

in a step are left blank.

 Main Memory

 t1 WB1 x y a b t2 WB2

1 [] 0 0 ? ? []

2 x = 1 [(x,1)] []

3 [(x,1)] y = 1 [(y,1)]

4 a = y [(x,1)(a,0)] [(y,1)]

5 [(x,1)(a,0)] b = x [(y,1),(b,0)]

6 [(a,0)] 1

7 [] 0

8 1 [(b,0)]

9 0 []

10 1 1 0 0

Listing 2. Writes to x and y are buffered

In steps 2-4, thread t1 has its writes to x and a buffered, while

thread t2 has it writes to y and b buffered. Then in steps 6 and 7,

thread t1's write buffer is flushed. Note how the order that writes

are dequeued and committed is the same order in which they

entered. Similarly, in steps 8 and 9, thread t1's write buffer is

emptied and committed in FIFO order. This execution results in x

= 1, y = 1, while a = 0 and b = 0. This result is not possible for

these programs if run in an SC system.

3. Motivating Examples
To help ground the preceding material and introduce TSO Helper,

we provide the following concrete examples as an illustrative aid.

Shared variables:
 X_WANTS_TO_UPDATE = false
 Y_WANTS_TO_UPDATE = false
 acct = 0

Local variables:
 x_temp = 0 // local to thread x
 y_temp = 0 // local to thread y

thread X :

1. X_OTHER_BANKING_WORK();
2. X_WANTS_TO_UPDATE = true
3. await(¬Y_WANTS_TO_UPDATE)
4. x_temp = acct + 1
5. acct = x_temp
6. X_WANTS_TO_UPDATE = false
7. goto 1

thread Y :

8. Y_OTHER_BANKING_WORK();
9. Y_WANTS_TO_UPDATE = true
10. await(¬X_WANTS_TO_UPDATE)
11. y_temp = acct + 1
12. acct = y_temp
13. Y_WANTS_TO_UPDATE = false
14. goto 8

Listing 3. Simple two thread mutual exclusion algorithm.

Note that this algorithm is not deadlock-free.

Listing 3 is code for a simple 2-thread distributed mutual

exclusion algorithm, however, it is only correct under SC, not

TSO. A mutual exclusion algorithm is one that serializes access to

a shared variable. We will note that this algorithm is not

deadlock-free under SC or TSO. However, deadlocks and

deadlock-freedom are outside the scope of this paper so we shall

ignore this fact.

In this contrived example, threads X and Y perform deposit

updates on a single bank account, where the current value of the

account is stored in the shared variable acct. We imagine that X

and Y monitor two different ATM machines, and when an

account owner deposits some money, either X or Y (depending on

which ATM is used) will update the account. We also imagine

that these ATMs only allow one dollar to be deposited at a time. If

the account has two owners (for example, consider a married

couple that jointly own the account), then we must ensure that

their deposits are made one at a time. Otherwise, we can have the

following situation:

acct = 0

thread X
(account owner 1):

thread Y
(account owner 2):

1. x_temp = acct

2 y_temp = acct

3. acct = x_temp + 1

4. acct = y_temp + 1

Listing 4. An interleaving where two $1 deposits to acct

result in acct having an with incorrect value of $1.

This ordering of X's and Y's instructions is called an interleaving.

In this particular interleaving, we see that X and Y both read and

increment the same account value, and then store the result back

into acct. This results in the final value of acct being 1, rather than

the correct value of 2.

To avoid this problem, we must ensure that only one thread has

access to the shared variable acct at given point in time. In other

words, we must ensure that access to the variable acct is mutually

exclusive; i.e.: if thread X has access to acct, then thread Y does

not, and vice. versa.

To ensure mutually exclusive access to acct, thread X first flags its

intention to write to acct by setting X_WANTS_TO_UPDATE to

true. It then checks to see if Y has flagged its intention to update

acct. If Y has not flagged its intent to enter the account, then X

updates it, and—after doing so—resets

X_WANTS_TO_UPDATE to false. However, if Y has set

Y_WANTS_TO_UPDATE to true (indicating Y wants to, or is

already in the process of updating the account), then X waits until

Y_WANTS_TO_UPDATE becomes false. Once

Y_WANTS_TO_UPDATE becomes false, X performs its update.

The situation described above is symmetric for Y.

 Shared variables

 X[1],...,X[n] = DONE
 SOMEONE_IS_WAITING = false

 client thread i ∈ { 1,...,n} :

 1. OTHER_WORK(i);
 2. X[i] = WAITING
 3. SOMEONE_IS_WAITING = true
 4. await(X[i] == YOUR_TURN)
 5. processSharedVariables(i);
 6. X[i] = DONE
 7. goto 1

 administrator thread :

 8. await(SOMEONE_IS_WAITING == true)
 9. SOMEONE_IS_WAITING = false
 10. for(i in 1...n) :
 11. if(X[i] == WAITING) :
 12. X[i] = YOUR_TURN
 13. await(X[i] == DONE)
 14. goto 7

Listing 5. A simple centralized mutual exclusion algorithm.

Listing 5 is a centralized mutual exclusion algorithm. We describe

the entire algorithm only for completeness, as we will only focus

on the 'client' code of the algorithm in our examples.

The algorithm is composed of a set of n > 1 'client' threads, and a

single dedicated daemon thread called the 'administrator' that

grants clients exclusive access to a set of shared variables (not

shown here) that are processed in the function

processSharedVariables(). Threads communicate with the

administrator via elements in the n-element array X, and via the

shared variable SOMEONE_IS_WAITING.

The algorithm works as follows. The administrator continuously

reads the variable SOMEONE_IS_WAITING, waiting for it to

become equal to true (line 8). When a client i needs to process the

shared variables, it exits the OTHER_WORK() function (line 1).

It then sets X[i] to WAITING (line 2), and, finally, sets

SOMEONE_IS_WAITING to true (line 3). When the

administrator sees SOMEONE_IS_WAITING is true, it resets

SOMEONE_IS_WAITING to false (line 9), and then iterates

through X (lines 10-13), looking for elements X[j] in X that are

equal to WAITING (e.g.: it looks for a client that is waiting for

access to the shared variables). Once the administrator finds such

an element, X[i] for example, it grants thread i access to the

shared variables by setting X[i] to the value YOUR_TURN (line

12), and then waits for X[i] to become equal to DONE (which

indicates that thread i is done processing the shared variables).

Since client i has been reading X[i] in a loop (line 3), it will

eventually see X[i] == YOUR_TURN and execute

processSharedVariables(i). When it is done, it sets X[i] to DONE

and continues with its other work. After the administrator sees

X[i] has been changed to DONE, it continues iterating through

the array X looking for any other threads that want access to the

shared variables.

4. TSO HELPER
To describe and illustrate TSO Helper, we will first use it to

analyze the algorithm of listing 3.

4.1 Creating the Read/Write graph
The first step in using TSO Helper is to convert the algorithm one

wishes analyzed into what we refer to as a read/write graph. To

illustrate what a read/write is, we will now create one from the

code for thread X in listing 3. To conserve space, we have

renamed some of the functions and variables:

X_OTHER_BANKING_WORK() is now X_OTHR_WRK() and

X_WANTS_TO_UPDATE is now X_UPDT.

Figure 2. Read/Write graph for thread X of listing 3

4.1.1 First Attempt
For our first attempt, we have removed the call to the

X_OTHR_WRK() function in line 1, for simplicity.

1. X_OTHR_ WRK()

2. X_ UPDT = true

3. await(¬Y_ UPDT)

4. x_temp = acct + 1

5. acct = x_temp

6. X_ UPDT = false

7. goto 1

For the read/write graph, we begin by creating a Write node to

model the write in line 2, and set its id value to 2. id's are arbitrary

values, but must be unique in a read/write graph. We select the 2

for its id since the code associated with it appears on line 2. We

also set this node's uid to 2. uids must also be unique within a

read/write graph. Importantly, we set the bottom boolean attribute

of the node to true. This tells TSO Helper that this node is the

start node of the algorithm. Only one node in the read/write graph

may be designated a start node.

Note that Read and Write nodes have a var attribute. This

attribute is meant to hold information about the variable being

written or read from, however its purpose is purely to make the

read/write graph more readable for the developer, and is not

materially used by TSO Helper.

To represent the busy-loop in line 3, we create a single Read

node. For lines 4 and 5, we use a function node to represent the

two lines. For the write in line 6, we use another Write node.

Finally, we attach each of the nodes together with Transition

links. Note that we have not added a Transition between the Read

with id 3 and itself, even though this read is part of a busy-loop

(line 3). This is because TSO Helper does not allow back-edges in

the read/write graph, except to the start state. To represent a loop,

users must simply manually expand 1 or more iterations of it.

However, this simplification does not affect the correctness of the

analysis TSO Helper makes.

4.1.2 The Function Node
While Read nodes, Write nodes, and Transitions are relatively

self-explanatory, function nodes require marginally more

explanation. A function node is used to represent a block of code

to help simplify a read/write graph. The first step TSO Helper

performs when it processes a read/write graph is to convert

function nodes into plain Read and Writes nodes.

Figure 3. Function node converted to a Read followed by a

Write node

In figure 3 we see a function node for the function myFunc()

converted into a Read node R:myFunc() and a write node

W:myFunc(). The Read node represents all read operations that

may occur in myFunc(), while the node W:myFunc() represents

all the writes that may occur.

4.1.3 Second Attempt
To further simplify this example, we will replace the function

node with more descriptively named Read and Write nodes (see

figure 4). So instead of the function node, we have instead a Read

node followed by a Write node whose var attributes are set to

accept. We do not need to worry about the x_temp variable of

lines 4 and 5 since it is local to thread X (i.e.: it is not shared with

thread Y).

Figure 4. Second Version of Read/Write graph for thread X of

listing 3

4.2 Running The Analysis
Read/Write graphs are designed using the TSO Helper Designer,

which uses the GMF framework.

Figure 5. The TSO Helper Designer palette

Once a read/write graph is designed, it is stored as an XMI file

with the extension tso. To process a read/write graph, the

developer selects the input graph, and selects a name for the

output graph using the TSO Helper Control Panel (figure 6).

Once the input and output file names have been set, the developer

clicks the Run button to start the transformation.

4.3 A First Result
In this case, our transformation fails. In other words, TSO Helper

concludes that there is no place in any execution of the algorithm

where any write can be guaranteed to have been committed.

However, this should be clear, since at no point in the algorithm

1. X_OTHR_ WRK()

2. X_ UPDT = true

3. await(¬Y_ UPDT)

4. x_temp = acct + 1

5. acct = x_temp

6. X_ UPDT = false

7. goto 1

are any writes forced to commit. Put another way, if we consider

the algorithm being executed in the 'switch' model of section

2.2.5, there is no way for us to predict when the switch may

decide to dequeue any buffered write operation. So while we

know the switch will eventually dequeue all buffered writes (since

the switch is fair), we cannot—for any write—deduce any single

point where the switch is guaranteed to have dequeued and

committed any write.

This result means we will be unable to prove that the algorithm

satisfies mutual exclusion. If we cannot make any assumptions

about when our write in line 2 (X_UPDT = true) becomes visible

to Y, we cannot update the account (lines 4-5), even if we have

read that Y_UPDT is false in line 3.

Figure 6. TSO Helper Control Panel. The enclosed section

(surrounded by red dots) is where parameters for the full

transformation are set.

4.4 Revising the Algorithm
A simple solution is to add memory barrier instructions after

every write we make. Recall that—after a memory barrier

instruction completes—we are guaranteed all our buffered writes

have been committed. However, perhaps we can get away with

fewer memory barrier instructions. As a first attempt at a revised

algorithm, we will insert a memory barrier after the write in line 2

(figure 7). We will then process the new model and see if this

change is enough to allow the algorithm to satisfy mutual

exclusion.

Figure 7. A Memory Barrier node is inserted after the write

X_UPDT = true

4.5 Second Result
This time TSO Helper is able to successfully determine points in

the execution of the algorithm where each write is guaranteed to

have been committed. The output, called a commit graph, is

shown in figure 8.

Figure 8. Write nodes with thick dark edges represent places

where writes have been guaranteed to have been committed.

Recall that the write of line was given was represented by a Write

node with id 2. In row 1 of the output graph (figure 8), we see that

the Write node with id 2 is followed by a Commit node. A

Commit node looks like a Read node but with darker edges. This

particular Commit node has a wId (write id) attribute of 2. This

means that this Commit node represents the commission of a write

represented by a Write node with id 2. In our model, the Write

node with id 2 is the write X_UPDT = true of line 2 of the

algorithm. The way row 1 is to be interpreted is: After the

execution of the memory barrier in iteration 1 of the algorithm, we

are guaranteed that the write of line 2 (from iteration 1) has been

committed.

In row 2 of the output graph, we see nodes representing the read

of Y_UPDT (await(¬Y_UPDATE)), and the read of acct (x_temp

= acct) of iteration 1. This is followed by the node representing

the write to acct (acct = x_temp + 1) and the write to X_UPDT

(X_UPDT = false) of iteration 1. The third Write node in row 2

represents the write X_UPDT = true of the next iteration of the

algorithm.

Row 3 is composed three Commit nodes followed by the next

execution of the memory barrier. The three Commit nodes—in

order—represent the commission of writes acct = x_temp + 1 and

X_UPDT = false, of iteration 1. The third Commit node

represents the commission of the write X_UPDT = true of the

next iteration. This behaviour is exactly what we expect: The first

write (X_UPDT = true) is committed due to the barrier in the first

iteration. The remaining writes of iteration 1, plus, the next write

X_UPDT = true from the second iteration are committed due to

the barrier in the next iteration. This pattern then repeats as is

illustrated by the loop in the commit diagram.

4.6 Synchronization
To illustrate the concept of synchronization and how TSO Helper

makes use of it, we will examine the algorithm of listing 5. It may

be prudent to review the description of this algorithm now.

To understand synchronization, let us take first examine lines 2

and 4 of listing 5. In line 2, client i sets X[i] to WAITING. It does

this so that when the admin thread scans the array X, it will see

that X[i] == WAITING and know that client i wishes to obtain

exclusive access to the shared variables. Then, in line 4, client i

enters a tight loop where it reads X[i] and waits for the admin

thread to change its value from WAITING to YOUR_TURN.

There are two important points to note here. First: Immediately

before client i sets the X[i] to WAITING, the value of X[i] in

shared memory is equal to DONE. Second, the admin thread will

only set X[i] to YOUR_TURN if it sees that X[i] is equal to

WAITING. Therefore, if client i sees X[i] change from WAITING

to YOUR_TURN, then its write in line 2 (X[i] = WAITING) must

have been committed, since otherwise, the admin thread would

not have seen X[i] == WAITING (i.e.: it would still see X[i] ==

DONE), and would not have changed X[i] to YOUR_TURN.

Therefore, we can infer that X[i]'s write in line 2 has been

committed when it exits the loop at line 4. In addition to this, we

can also infer that all writes made prior to the write at line 2 have

also been committed due to the fact that buffered writes are

dequeued in FIFO order.

When termination of a read-loop on a variable v allows us to infer

that a previous write to v has been committed, we say that the

read-loop and the previous write form a synchronization. So in

our example, the write in line 2 to X[i], and the read-loop of X[i]

in line 4, together form a synchronization.

4.6.1 Modeling Synchronization
To model the fact that the write of line 2, and the read-loop of line

4 form a synchronization, we use dashed-blue connector to link

them together (see figure 9).

Figure 9. The write of line 2 and the reads of line 4 form a

synchronization. This is modeled by the blue dashed

Synchronization connector that links the nodes that represent

them.

In figure 10, we see the commit graph that is generated from the

read/write graph of figure 9. Note that TSO Helper is able to

calculate guaranteed commit locations without there being any

memory barriers in the input model.

4.7 Branching
None of the algorithms modeled thus far contain any branching.

Branching in an algorithm occurs based on the results of read

operations on variables. For this reason, branches in a read/write

graph are modeled by having multiple outgoing transitions on

Read nodes.

To illustrate this, we use the completely contrived read/write

model of figure 11 as our example.

Figure 10. Output graph for listing 5. Commit points for all

writes are guaranteed without any memory barriers in the

code.

Figure 11. A simple example of a read/write graph with

branching.

The output of this example is shown in figure 12.

Figure 12. The output graph of the model of figure 11.

5. IMPLEMENTATION
In this section, we outline how TSO Helper analyzes and

transforms read/write graphs to produce the output 'commit

graphs' of the type we examined in section 4. We also explain the

criteria under which TSO Helper determines that no commit graph

exists.

5.1 The Ecore Model
The Ecore model for read/write and commit graphs can be seen in

figure 13. All nodes inherit from the interface Operation with

attributes id, uid, (both EInts), and isStart (an EBoolean). The

Transition class is used is used to model connections between

Operations that represent the order Operation nodes are executed

in the read/write graph. Transition objects take objects of type

Operation for the source and target of their connection. The Synch

class models connections between Write and Read nodes to model

synchronizations, and takes an object of type Write as its source,

and type Read as its target. All classes are contained by the

TSOReadWriteSynch class.

Figure 13. The Ecore model read/write and commit graphs.

5.2 The Transformation Algorithm
Stage 1. In the first step of the transformation, the input graph T1

is transformed into a graph T2 that is identical to T1 except with

each Function node in T1 replaced with a Read and Write node

(see section 4.1.2).

Stage 2. Graph T2 is then 'unrolled' n times (where n is a user-

specified value) to produce a directed acyclic graph T3 rooted at a

copy of T2's start node. Figure 14 shows a picture of the result of

unrolling the read/write graph of figure 12 two times. Since each

node in T2 may appear multiple times in T3 (once for each

possible execution it may occur in), the uid attribute is used to

differentiate different instances of the same node from T2 in T3.

However, note that the id of each instance of a node from T2 in

T3 remains unchanged. Hence—ids are not unique in T3 (as

they were in T1 and T2), but uids remain unique in all graphs.

For example, in figures 14 and 15, all red nodes have the id 5, but

they all have unique uids.

Stage 3. Once the unrolled 'execution tree' T3 is built, TSO

Helper begins transforming T3 into the final commit graph.

Beginning at the root node of T3, it performs a recursive DFS

traversal of T3.

For each node x of T3 encountered during the DFS traversal, the

algorithm augments x with the state that the write buffer will be in

immediately after the execution of the operation represented by it.

The write buffer is initially empty. If x is a Read node that is not

part of a synchronization pair, it leaves the buffer in its current

state. If x is a Write node with id y, it enqueues the number y into

the buffer (recall, the buffer is a FIFO queue).

If x is a Barrier, it adds Commit nodes (in the FIFO order they

appear in the buffer) between x and x's parent. It then empties the

buffer. If x is a Read node that is synchronized with a Write node

with id y, the algorithm dequeues the first Write in the write

buffer that has id y, along with all Writes that were enqueued after

it. It then adds one Commit node for each Write it just dequeued

(in the FIFO order they appeared in the buffer) between x and x's

parent.

Figure 14. The result of unrolling the read/write graph of

figure 12 two times.

Figure 15. Picture of an early stage of the construction of a

commit graph, annotated with each node's write buffer state.

Once x's write buffer has been calculated, and any Commits have

been inserted, it then checks to see if any node it has previously

encountered during its traversal of T3 is a match for it.

We say that nodes x and z match if: 1) x.id = z.id, and, 2) x and z

have write buffers with the same sequence of writes. We note that

if x and z have the same id—then by definition—they have the

same type (e.g.: are both Read nodes or both Write nodes, etc...).

Previously-encountered nodes are stored in a hashtable named

'discovered' that is keyed by node id. Each entry in the discovered

hashtable is a list of previously encountered nodes with the same

id.

If the algorithm finds a matching node z, then it points all of x's

incoming transitions to z, and then deletes the subtree rooted at x

from the tree and returns.

If the algorithm cannot find a match for x, it stores x in

discovered, and continues its recursion.

If x is a leaf node, then the algorithm throws an exception. We

justify throwing an exception in this case, because of the lemma

of section 5.3.

5.3 TSO Helper Lemma
In the following lemma, let wb(x) be the contents of the write

buffer at node x. E.g.: wb(x) is an ordered sequence of write node

ids. Let A be an algorithm, and let T be the read/write graph for A

(with Function nodes expanded into Read and Write nodes).

Finally, let T∞ be an infinite unrolling of T.

Lemma. If there exists any infinite path P through T∞, where P

starts at the root of T∞ and contains no pair of distinct nodes x and

z with x.id = z.id and wb(x) = wb(z), then there is an execution of

A in which the write buffer grows without bound.

Proof.

Let P be an infinite path through T∞, starting from the root, that

contains no pair of distinct nodes x and z with x.id = z.id and

wb(x) = wb(z).

For the purpose of obtaining a contradiction, let us assume that

write buffer sizes for nodes in P do not grow without bound. Then

it follows that there must be some maximum write buffer size r

such that, for each node x in P, |wb(x)| ≤ r. Hence, the number of

unique write buffers is M = 1 + k + k2 + ... + k
r
.

Let k be the number ids (NOT uids) used by Write nodes in T∞,

and let q be the total number of ids used in T∞. We note that k ≤ q,

and that q must be finite since T∞ is an unrolling of T, and T

contains a finite number of ids, so T∞ also contains a finite

number of ids (though it contains an infinite number of uids).

Let z be the (qM + 1)
th

 node in path P. Since nodes in P can have

only one of M unique write buffers, and only one of q different

ids, there must be some node x amongst the first qM nodes of P

with both the same id and same write buffer as z. But this

contradicts our initial assumption that that P contains no pair of

distinct nodes x and z with x.id = z.id and wb(x) = wb(z). ⎕

6. FUTURE DIRECTIONS
In the future, we hope to continue developing the visual modeling

interface for the program. In particular, we would like to develop

tools that would better layout generated diagrams. We would also

like to better handle self-loops in read/write graphs. Another goal,

is to use the functionality of MMTF to enable interconnections

between read/write graphs for different threads—we hope that this

may lead to additional information that can be used to infer when

writes are committed.

7. REFERENCES
[1] Daniel J Sorin, Mark D Hill, and David A Wood, "A Primer

on Memory Consistency and Cache Coherence," Synthesis

Lectures on Computer Architecture, no. 16, 2011.

[2] Sewell Peter, Susmit Sarkar, Scott Owens, Nardelli Zappa

Francesco, and Magnus O Myreen, "x86-TSO: A Rigorous

and Usable Programmer's Model for x86 Multiprocessors,"

Communications of the ACM, vol. 53, no. 7, pp. 89-97, July

2010.

