
Michael N. Christoff

Presented by Michael N. Christoff
December 19, 2012

1

1. High Level Motivation and Overview

2. (Some) Details of TSO Consistency

3. A look at TSO Helper via an Example

4. Topics not covered

5. Future Directions

2

1. High Level Motivation and
Overview

3

4

http://www.gotw.ca/publications/concurrency-ddj.htm

Transistor Count
Clock Speed
Single Core Performance

Sequential algorithms will
no longer see the same
speedups with new
processor generations

5

Intel Xeon Phi 50 Core Microprocessor

 Need multi-threaded algorithms that take advantage of
all available CPU cores

 In non-trivial multi-thread algorithms (versus
‘embarrassingly’ parallel algorithms), communication
between threads is required

 Threads communicate by writing and reading
messages to and from shared system memory

6

At the hardware level, the ordering of reads and writes in a
program’s source code is not always the order that these reads

and writes will be executed

Memory Consistency Model
◦ Defines ‘how much’ the original order of reads/writes in the source

code can be re-ordered

 Sequential Consistency—This is the model we learned in school
◦ Reads always return values from the shared memory
◦ A write operation is always committed to main memory before the next

instruction is executed

E.g.: When I write a value, I know everyone can see it!

7

 TSO Memory Consistency is the native memory
consistency model of all modern x86 and x64 CPUs
(both Intel and AMD CPUs)

 In a system with TSO Memory Consistency, Read
operations executed by a CPU core are not
immediately applied to main memory

E.g.: When I write a value, I’m not sure if everyone can
see it!

8

2. (Some) Details of TSO
Consistency

9

 Under TSO, write operations executed by threads ARE NOT immediately
committed to memory

 When a thread executes x=v, the CPU takes the target variable x and value v, and
puts it into a per-thread FIFO queue called a write buffer

 If you execute a WRITE, followed by a READ, the READ may grab a value from
shared memory BEFORE the write is executed!

10

Hardware Thread

CPU

Thread Code

1. a=1
2. b=2
3. c=3
4. d=4

Write Buffer

(c=3)  (b=2)  (a=1)

Shared Memory

a = 0
b = 0
c = 0
d = 0

TIME

 At some later point in time, the buffered writes are committed to memory
in the same order that they entered the write buffer

 It is ONLY after a write is committed that other processes can see the new
value of the variable that was written to!

11

Hardware Thread

CPU

Thread Code

1. a=1
2. b=2
3. c=3
4. d=4

Write Buffer

w(d,4)  w(c,3)

Shared Memory

a=1
b=2
c=0
d=0

TIME

12

13

This person has made a decision to
cross the road based on the

incorrect assumption that the
change he made to the state of the

stop light is visible to all others

14

TSO Helper shows you the places in the execution of your
code where you can be guaranteed that your writes are

visible to others.

TSO Helper lets you know
when its safe to make a decision
about whether to cross the road!

Thanks TSO Helper!

3. A look at TSO Helper via an
Example

15

16

A Banking Application

• X and Y are ATMs that perform deposit updates on a single bank account
• The current value of the account is stored in the shared variable acct

• If it is a joint account, we must ensure only one account owner can
 deposit their money into the account at a time

ATM X :
1. X_OTHER_BANKING_WORK();
2. X_UPDATE = true
3. await(¬Y__UPDATE)

4. x_temp = acct + 1
5. acct = x_temp

6. X_UPDATE = false
7. goto 1

 ATM Y :
 8. Y_OTHER_BANKING_WORK();
 9. Y_UPDATE = true
 10. await(¬X_UPDATE)

 11. y_temp = acct + 1
 12. acct = y_temp

 13. Y_UPDATE = false
 14. goto 8

17

ATM X

I will notify Y that I want to
update the account:

WRITE: X_UPDATE = true $1

What if the write w(X_UPDATE,true) is buffered and not committed??

18

ATM X

Let me make sure Y isn't
updating it before I proceed:

READ: Y_UPDATE == false $1

What if Y has set Y_UPDATE to true, but its
write has not yet been committed??

19

ATM X

I’m good to go!

$1

20

ATM X

x_temp = acct + 1

$1

ATM Y

I will notify X that I want to
update the account:

WRITE: Y_UPDATE = true

$1

$1

21

ATM X

 ...
 zzzZZZ
 ...

ATM Y

Let me make sure that X isn’t
updating before I proceed:

READ: X_UPDATE == true

$1

$1

22

ATM X

 ...
 zzzZZZ
 ...
 zzzZZZZZZ

ATM Y

I’ll wait until X is done...

READ: await(¬X_UPDATE)

$1

$1

23

ATM X

acct = x_temp + 1
...DONE!

WRITE: X_UPDATE = false

ATM Y

READ: await(¬X_UPDATE)

$1

$1

24

ATM X

ATM Y

READ: X_UPDATE == false

Now I can update the account!

$1

$1

 The Banking Algorithm works under SC where writes
are immediately committed to shared memory

 It will not (always) work under TSO if writes are
buffered

Can TSO Helper Help Us Detect this Issue?

25

26

ATM X :
1. X_OTHER_BANKING_WORK();
2. X_UPDATE = true
3. await(¬Y__UPDATE)

4. x_temp = acct + 1
5. acct = x_temp

6. X_UPDATE = false
7. goto 1

27

ATM X :
1. X_OTHER_BANKING_WORK();
2. X_UPDATE = true
3. await(¬Y__UPDATE)

4. x_temp = acct + 1
5. acct = x_temp

6. X_UPDATE = false
7. goto 1

28

 After exploring three iterations of the algorithm, TSO
Helper concludes (at least within 3 iterations) that their is
NO point in the algorithm at which any write can be
guaranteed to have been committed.

But this should be obvious!

 From inspection of the algorithm, it is clear that—given an

infinite sized write buffer—that the write buffer could
theoretically fill up forever.

What if we add a Memory Barrier?

 29

30

 A memory barrier instruction

dequeues and commits all
buffered writes

 It can be a very expensive
instruction

 Now we are ensured that X’s
write, X_UPDATE = true, is
visible to Y when X makes its
next read.

31

ATM X :

2. X_UPDATE = true
3. BARRIER()

3. await(¬Y__UPDATE)

4. x_temp = acct + 1
5. acct = x_temp

6. X_UPDATE = false
7. goto 2

Dark outlined boxes represent guaranteed commits

4. Topics not covered

32

 How TSO Helper works!
◦ The key ‘TSO Helper’ lemma

 How TSO Helper can use knowledge about inter-
process synchronization to better infer where writes
must have been committed

 TSO Helper’s ability to filter displayed commits by the
iteration they were generated in

33

5. Future Directions

34

 Algorithms to better layout transformed graphs

 Use of MMTF to connect ‘Read/Write’ graphs for
different processes

 Case Study: Is TSO Helper practical and useful?

35

 Thanks!

36

