
Is Our Merging Right?
Towards More Reliable Merging Decision

Ahmed Shah Mashiyat
Department of Computer Science

University of Toronto, Canada
mashiyat@cs.toronto.edu

ABSTRACT
In the distributed and collaborative development environ-
ment, where a optimistic version controlling is used, soft-
ware developer inevitably have to manually resolve the con-
flict while merging. There are a number of tools (Git, SVN,
CVS, AMOR, IBM Jazz, etc.) that support automatic merg-
ing for two non-conflicting segment of two versions of a pro-
gram or a model. However, these tools have very little to
offer for resolving the conflict of the programs or the models,
and the conflict resolution is largely dependent on the man-
ual intervention. Often, a developer may not have sufficient
knowledge about the conflicting blocks that he is merging,
and then he makes guesses based on his experience and some
knowledge on the problem domain. These illiterate guesses,
if wrong, may cause unnecessary reworks: identify the merg-
ing problem, consult with team-mates to resolve the conflict
correctly, redeploy, re-regression, testing, etc. The conse-
quence is more catastrophic if the merging is wrong and
that is not identified before deployment. In this project,
we explore the state of the art conflict resolution tools for
model versioning and identify a problem, outline a model of
provenance information semantic, and propose a framework
to potentially help the developer to take better merging de-
cisions.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: [Distribution, Maintenance,
and Enhancement—Version Control]; K.6.3 [Management
of Computing and Information Systems]: [Software
Management—software selection]

General Terms
Management, Design

Keywords
Version Control, Model Management, Conflict Resolusion,
Interface Design

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

1. INTRODUCTION
Software development is a collaborative effort. Software

models are the most important citizen of model driven soft-
ware engineering. Albeit the fact that same models can
be developed concurrently among several developers (repre-
sent modelers as well), tool support for version controlling of
software models is limited. There are some promising tools
for model versioning such as AMOR, IBM Jazz, EMF store.
However, when it comes to the problem of conflict resolution
between two merging blocks, the tools depend on the devel-
opers knowledge of the problem domain and that particular
code block. Figure 1 shows a typical conflict resolution ac-
tivity while merging software models.

Figure 1: A sample merging process [15]

The model versioning tools, mentioned above, provides
different merging options when there is a potential conflict.
They work well when the conflicted block has minor changes,
but ultimately the developer has to take the final decision.
However, in practice the conflicting blocks contain a series
of modifications and the tool support in these cases are very
limited. Again, it comes down to the developers to merge
the models and take the final decision. To this end, we
want to empower the developers with better information so
that they can take better decision while merging conflicting
blocks. We proposed to leverage the software development
provenance information as a guide to merge during conflict
resolution.

In large software development life cycle, a developer who

is performing a merging tasks often asks: who made these
changes?, why and when this changes has been done?, or
how the code/model evolved to this point? These are among
the most frequently reported question asked about software
history [9]. Code versioning tools like CVS’ “annotate” (or
“blame”) or Eclipse’s “show annotations” answer the ques-
tions related to who and when. Tools such as Hipikat and
Deep Intellisense tries to answer the questions related to
why. The rationale is often found using the artifacts (e.g.,
bugs, e-mails, or documents) that appear relevant to a piece
of code [1]. The model versioning tools (AMOR, IBM Jazz,
and EMF Store) did not attempt to answer the questions
related to why and how. To answer such questions, software
model provenance should be tracked at each point of its life
cycle. Based on the project life span, team size, project
size, etc. the volume of the accumulated data is much larger
then the original model or code itself and may be considered
a small “Big Data” Problem. To make the data useful to the
developer, its very important that the analysis or question
result is conceivable by the developers. We want leverage
some visualization techniques to facilitate this cognitive ex-
ercise and measure their effectiveness. Again, extracting the
provenance information from an existing system is very dif-
ficult problem [14]. To this end, we outlined a framework
for model versioning so that we can harvest the provenance
information during the model life cycle, and can be easily
extracted when needed. To summarize, our contributions
through this project are as follows:

• Investigate and analyse the state of the art model ver-
sioning tools and identify a need which is not fulfilled
by the current model/code versioning tools.

• Outline a model of provenance semantic for Model ver-
sioning.

• Propose a framework which can potentially fulfil the
need.

The report is structured as follows. In Section 2, we dis-
cuss a motivating example, that we will use in this report.
In Section 3, we discuss three state of the art model version-
ing tools. In Section 4, we discuss an underlying semantics
of model versioning provenance. The architectural aspects
of the proposed framework, implementation and evaluation
are described in Section 5. In Section 6, we report on some
related work. Finally, in Section 7, we discuss the current
status of the project, directions for the future, and conclu-
sion.

2. MOTIVATING EXAMPLE
Optimistic version control systems allow developers to

work in parallel with an increased possibility of conflict dur-
ing code merging. Three types of conflicts are identified in
[10]: syntactic, structural, and semantic. To better explain
the problem and our approach we have used a simple UML
ER diagram as an example with syntactic and structural
conflict. Lets assume developer Bob was asked to update
their company’s transport system model. He started with
adding drivers, vehicle and checked-in the model. Molly was
asked to refine the classes that are available in the model.
While Molly was refining the model, the company decided
to outsource its transportation system and asked Rob to re-
flect that in the model. Rob made the changes quickly and

checked-in the model. Molly did not know about this re-
quirement and when she wanted to check-in there is merge
conflict notification and she was not sure what to do. Figure
2 depicts the scenario.

Figure 2: A motivating example (imaginary)

Molly will not be able to check-in the code unless she
resolved the conflict between V2 and V ′

1 . The state of the
art model version control systems can detect the conflicts
but their suggestion does not encompass the resolution. To
resolve the conflict its important to know why and how the
model came to this point in their life cycle.

3. MODEL VERSIONING TOOLS AND
MERGE SUPPORT

In [2], Brosch did an comprehensive study on various model
version control systems and categorize them. She described
the overall version control systems in four categories (shown
in Figure 3). One dimension of the categorization is based
on text or graph based artifact representation. The other
dimension is based on how differences are identified and
merged in order to create a consolidated version. A ver-
sioned element might be a line in a flat text file, a node in a
graph, or whatsoever constitutes the representation used for
merging [2]. We looked at the following tools more closely.

AMOR [4] [2] is an adaptable model versioning system.
AMOR 1 can detect conflicts in Ecore based models, re-
sulting from both atomic and composite changes. It has

1http://www.modelversioning.org/

Figure 3: Version control systems categorization
based on [2]

a recommender system for immediate conflict resolution by
providing a resolution pattern, which can be automatically
executed. It also has a mechanism that can defer a con-
flict resolution and store a modeler’s annotation about the
conflict in the model. Overall, AMOR project has three re-
search goals: precise conflict detection, intelligent conflict
resolution, and adaptable versioning framework.

EMFStore is an eclipse based model repository for EMF
model instances. EMF Store 2 allows to checkout a copy of
a model instance from the repository. Then it tracks change
on the model instances on the clients and provides an API
to send the changes to the repository. The API allows up-
dating the model instances according to changes of other
clients via the repository. With this operation-based ap-
proach, it is possible to efficiently and precisely detect com-
posite changes. However, composite operations like refac-
torings are only detectable if they are explicitly available
within the modeling editor [2]. EMF Store supports interac-
tive model merging to resolve conflicts if two clients changes
the same data in a model instance. It supplies interactive
user interfaces to support model merging. EMF store has
extension points to incorporate new conflict detection and
merging algorithms.

IBM Rational Software Architect (RSA), which is
based on IBM Jazz 3, is a UML modeling environment built
upon the Eclipse Modeling Framework. It provides two-
way and three-way merge functionality for UML models.
RSA considers syntax and semantics of both EMF and UML
model while merging. The differences between two conflict-
ing models are shown either in a tree-editor, or directly in the
diagram. Conflict resolution is manually done by the mod-
eler, by either rejecting or accepting changes. Furthermore,
the RSA offers a model validation facility which checks the
conformance of the merged version to the UML metamodel
[2].

There are a whole array for model versioning tool with
different functionalities. A more rigorous categorization and
analysis can be found in [3].

4. PROVENANCE SEMANTICS FOR
MODEL VERSIONING

2http://www.eclipse.org/proposals/emf-store/
3https://jazz.net/

Figure 4: Provenance semantics for model version-
ing

Provenance information describes the origins and the his-
tory of data in its life cycle. Such information (also called
lineage) is important to many data management tasks [8].
As Model Driven Engineering (MDE) approach is not yet
used by mass population, the need for an industrial strength
model version control system is yet to visible. However, its
also pertinent to say that the wide acceptance of MDE is also
depended on these tool support to hit the mass adoption. To
this end, this is a high time to develop a version controlling
system with a good underlying foundation, so that future
needs can be fulfilled. With that in mind, we urge to store
model provenance information in a fine granular level, be-
cause at this point, we are not sure exactly when and in
what future purpose this information can be used. Since
provenance information grow over time, an under lying se-
mantic for model version provenance would help to track
and analyzes the information better in future. We adopted
Bunge’s ontology [5] as the same way Ram et al. adopted
in [14]. Bunge’s theory sees the history as a sequence of
events that occurred to a thing in its lifespan. Based on this
theory, we define model provenance as consisting of various
events (what) that happen to that model over its lifespan
(from creation to destruction) and then include how (the ac-
tions performed for the event), who (persons responsible for
the event), when (the date and time for that event), where
(location of the event), which (means of the event) and why
(rationale behind the event) associated with each event. Fig-
ure 4 shows semantics of provenance for a model versioning
domain. Figure 4(A) shows the providence information that
we are interested in and want to harvest for future. Figure
4(B) shows an event graph for model life cycle from creation,
modification, and destruction. A model evolve as a result
of a series of actions performed upon it. These provenance
information can be stored in any physically data store such
as a relational or noSQL database, XML, or RDF.

5. PROPOSED FRAMEWORK

In a large scale software development environment, hav-
ing multiple teams working in different stream (branching)
is very common. Often, these teams modify some shared
code to fulfil their needs. However, in the integration phase
(merging) these changes frequently result in merge conflict
requiring to understood the code. In a recent study [12] it
has been reported that fixing these merge conflicts are very
tedious and poses a crucial bottleneck for developers pro-
ductivity. The merge conflict has to be done manually and
there is not much tool support for exploring the rationale for
different code snippet. Exploring appropriate information
while conflict resolution is an obvious need [18]. Although,
there are some work done for exploring code history [1], we
have not found any framework that support the informa-
tion needs while merging two model developed in parallel.
Historically, MDE approach is used for large scale software
development and parallel model development may not be
very uncommon. (At this point, I don’t have any proof for
this statement, but it is a general guess). In this section,
we will outline a framework that will make use of the prove-
nance semantics described in previous section and will be
able to answer developers question while conflict resolution.

5.1 Architecture
Figure 5 shows the architecture of proposed model ver-

sion control system with the capability of exploring model
provenance information. We assume that the system can be
plug-able to any EMF based model management or model
designing tools such as MMTF [16]. In the proposed frame-
work, we have used a decentralized version control system
(DVCS) as opposed to a centralized version control system
(CVCS). Although CVCSs such SVN, CSV, and Subversion
are the most commonly-used version control system, DVCS
such as git, mercurial, bzr, and bitkeeper have emerged ad-
dressing some of the limitations of current CVCS to better
support decentralized workflows. For this reason many open
source and closed source projects are proposing to move, or
have already moved their source code repositories to a DVCS
[6]. In our proposed approach, based on the principal of
DVCS, each developer have their own local repository and
they can add/commit to this repository any time they want.
There is a central repository which is maintained by a des-
ignated integrator. When a developer pushes his changes to
the main repository, the integrator get a copy of the change
and merge into the main branch. Is this the time when
conflicts are visible and need extensive human intervention.
In the proposed framework, the integrator is provided the
provenance information when he is resolving any conflicts.
The following section describe the summarization and visu-
alization of the provenance information for conflicting model
elements.

5.2 Prototype Implementation
To demonstrate the possible effectiveness, we have imple-

mented an ad-hoc system to summarize and visualize the
provenance information. Although our proposed framework
outlined a version control system that will harvest infor-
mation over the life cycle of software development, in our
ad-hoc implementation we have used EMF store as an ver-
sion control system on top of MMTF. We have used MEAD
summarizer to get a small spinet of related information from
a large document. We are trying to use Mylan as a source of
documented tasks. After a developer made a change in the

Figure 5: Architecture of the proposed version con-
trol system

model and commit to the repository, we query, based on the
commit message, the project documents and tasks to get
some relevant information. Often, developer mention the
task IDs in their commit, in that case we can directly query
to those tasks and get some related information. Developer
have a tendency of not providing enough information during
their commits. For this reason, we are querying the tasks
or requirement documents to provide more rationale for the
changes made. We have employed similar technique for vi-
sualization as found in [1] with some additional information
(only mock up done).

5.2.1 Summarization
For a merge job, it’s highly unproductive to try to find

out the rationale behind some developed part of a model.
In current manual system, the integrator have to browse
through all the commit messages, opens any related require-
ment documents and reads/skims through it to find a ratio-
nale behind some part of a model development. To make
this process faster and efficient we have used a summarizer
to provide a quick overview of a task or requirement. There
are a number of text summarization tools available, such
as Open Text Summarizer (multiple contributor), MEAD
(University of Michigan), SweSum (kth, sweden), FociSum
(CS, Columbia), SUMMARIST(ISI, Southern California),
etc. Among those we choose the MEAD 4 because of its wide
range of support. It has multiple summarization algorithms
implemented such as position-based, centroid-based, largest
common subsequence, and keywords. We are interested on
the query-based summaries, where we will pass some com-
mit message keywords and based on that the summarizer
will provide us a concise task summary. Here we have not
actually implemented any traceability technique, our sum-
marization and task linking is very ad-hoc. Tracking back
to the requirement document from a model element could
potentially be a good project as there is a lot of work done
in traceability [7, 11].

4http://www.summarization.com/mead/

5.2.2 Visualization
Our approach to resolve conflict is to educate the integra-

tor with more related information, therefore, we are aiming
to potentially explore a large amount of historical informa-
tion. The representation visuals have a deep impact (both
on productivity and correctness) on how the integrator con-
ceive provenance information. In Figure 6, we have outlined
a visual representation for a conflict resolution scenario given
in section 2.

Figure 6: Mock-up user interface for the system

5.3 Evaluation
We have not conducted any scientific evaluation of our

proposed method yet. However, from our experience on
merging, we think that this approach could be very useful for
the integrator performing conflict resolution. However, we
have some outline how we will evaluate the approach. There
are three key metric that we want to measure: How fast the
merging is done, Precision, and Recall. We plan to conduct
an on-line survey with the following possible experiments.

• provide a set of conflicting models with some possible
options (Generated from AMOR) along with option of
“none of them” and the correct one (if correct one is
not present in AMOR’s suggestions).

• provide the same set of models with the same set of
options along with some provenance information.

• Measure the time required, Precision, and Recall.

This will provide us a comparative study of Precision, and
Recall with AMOR. However, it is very subjective to mea-
sure the productivity improvement because that will require
some developer actually try to merge two models, try to find
out the rationale behind their choices manually, and mea-
sure the time. Again, the same merging task can be given to
another set of developers (how do we know they have same
efficiency for merging? same experience? same education?)
with provenance information and measure the time required.

6. RELATED WORK
we have not found any work that approach the conflict res-

olution by exploring historical information of model repos-
itory as a visual aiding tool. However, exploration of soft-

ware provenance and traceability information between dif-
ferent phase of software development life cycle has a long
research background [7]. The closet work that is done sim-
ilar to this work is by Bradley et al. [1] for code history
information. Their purpose of history exploration is more
broader and can be used in conflict resolution to some ex-
tent. The intention of their work is to find who, when, and
why some piece of code was developed. They want to an-
swer the question like “Why a piece of code is implemented
in this way.”, our focus is also on ”how the implementation
has evolve to this point.” They focus on mainly visualiza-
tion, but did not explore the semantic of history of code.
Brosch et al. [2, 4] worked extensively on the conflict reso-
lution of model versioning and included those techniques in
AMOR. They provided conflict resolution pattern options
to the integrator to facilitate the merging process. They
did not attempt to explore provenance information, their
conflict detection and resolution techniques are automatic
and state of the art. EMF store uses EMF compare to de-
tect model conflict and provide a suggestion for resolution,
it works well for small conflicts but does not scale well for
a series of conflicts. Sillito et al. [12, 18] argues for the
provenance information need in branching and merging and
how they effect the developers. Although they don’t provide
any conflict resolution techniques, their surveys are a strong
evidence of provenance information need while merging.

7. FUTURE WORK
Our implementations are in bits and pieces and our first

tasks would be integrate them together to get a holistic view
where we stands. We have outlined a evaluation plan, now
we have to conduct an extensive evaluation on the approach
and get some comprehensive metric how useful is it. The
work done in [17] is very interesting and we would like to
explore any possibility of incorporating this work into our.

8. CONCLUSION
Recent works done by many groups show that provenance

information is a useful part of code version merging. We
think model merging is no exception of that. By having a
well defined infrastructure for harvesting provenance infor-
mation during the life cycle of any model development, we
can potentially answer different questions about the model.
This can be an useful tool in the software life cycle espe-
cially in maintenance (aka. evolution) phase which possesses
about 60 percent of total cost. Model versioning is getting
more and more popularity in industry; having tools sup-
port will defiantly make MDE approaches attractive to its
adopters. Although, we have not managed to finished the
tools, we have made some progress on defining and finding
the requirement for a useful tool for model merging.

9. ACKNOWLEDGMENTS
This work is financially supported by Ontario Graduate

Scholarship and NECSIS.

10. REFERENCES
[1] A. W. Bradley and G. C. Murphy. Supporting software

history exploration. In Proceedings of the 8th Working
Conference on Mining Software Repositories, MSR
’11, pages 193–202, New York, NY, USA, 2011. ACM.

[2] P. Brosch. Conflict Resolution in Model Versioning.
PhD thesis, Vienna University of Technology, 2012.

[3] P. Brosch, G. Kappel, P. Langer, M. Seidl,
K. Wieland, and M. Wimmer. An introduction to
model versioning. In Proceedings of the 12th
international conference on Formal Methods for the
Design of Computer, Communication, and Software
Systems: formal methods for model-driven
engineering, SFM’12, pages 336–398, Berlin,
Heidelberg, 2012. Springer-Verlag.

[4] P. Broschy. Improving conflict resolution in model
versioning systems. In Proceedings of the 31st
International Conference on Software Engineering,
ICSE 2009, Canada, pages 355–358. IEEE, 2009.

[5] M. Bunge. Treatise on Basic Philosophy: Ontology I:
The Furniture of the World, volume 3. Reidel Boston,
1977.

[6] B. de Alwis and J. Sillito. Why are software projects
moving from centralized to decentralized version
control systems? In Proceedings of the 2009 ICSE
Workshop on Cooperative and Human Aspects on
Software Engineering, pages 36–39. IEEE Computer
Society, 2009.

[7] O. Gotel, J. Cleland-Huang, J. H. Hayes, A. Zisman,

A. Egyed, P. GrÃijnbacher, and G. Antoniol. The
quest for ubiquity: A roadmap for software and
systems traceability research. In Proceedings of the
20th IEEE International Requirements Engineering
Conference, Chicago, Illinois, USA, 2012.

[8] L. C. James Cheney and W.-C. Tan. Provenance in
databases: Why, how, and where. Foundations and
Trends in Databases, 1:379–474, 2007.

[9] T. D. LaToza and B. A. Myers. Hard-to-answer
questions about code. In Evaluation and Usability of
Programming Languages and Tools, PLATEAU ’10,
pages 8:1–8:6, New York, NY, USA, 2010. ACM.

[10] T. Mens. A state-of-the-art survey on software
merging. IEEE Trans. Softw. Eng., 28(5):449–462,
May 2002.

[11] P. Mukherjee, K. Saller, A. Kovacevic, K. Graffi,
A. Schürr, and R. Steinmetz. Traceability link
evolution with version control. In R. Reussner,
A. Pretschner, and S. Jähnichen, editors, Software
Engineering (Workshops), volume 184 of LNI, pages
151–161. GI, 2011.

[12] S. Phillips, J. Sillito, and R. Walker. Branching and
merging: an investigation into current version control
practices. In Proceedings of the 4th International
Workshop on Cooperative and Human Aspects of
Software Engineering, CHASE ’11, pages 9–15, New
York, NY, USA, 2011. ACM.

[13] S. Rastkar, G. C. Murphy, and A. W. Bradley.
Generating natural language summaries for
crosscutting source code concerns. Software
Maintenance, IEEE International Conference on,
0:103–112, 2011.

[14] J. L. Sudha Ram. A semantic foundation for
provenance management. Journal on Data Semantics,
1:11–17, 2012.

[15] G. Taentzer, C. Ermel, P. Langer, and M. Wimmer. A
fundamental approach to model versioning based on
graph modifications: from theory to implementation.

Software & Systems Modeling, pages 1–34, 2012.

[16] R. Salay, M. Chechik, S. Easterbrook, Z. Diskin,
P. McCormick, S. Nejati, M. Sabetzadeh, and
P. Viriyakattiyaporn. An Eclipse-based tool framework
for software model management. In Proceedings of the
2007 OOPSLA workshop on eclipse technology
eXchange, Eclipse ’07, pages 55–59, New York, NY,
USA, 2007. ACM.

[17] Y. Brun, R. Holmes, D. Ernst, and D. Notkin.
Proactive detection of collaboration conflicts. In
Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of
software engineering, ESEC/FSE ’11, pages 168–178,
New York, NY, USA, 2011. ACM.

[18] S .Phillips, G .Ruhe, and J .Sillito. Information needs
for integration decisions in the release process of
large-scale parallel development. In Proceedings of the
ACM 2012 conference on Computer Supported
Cooperative Work, CSCW ’12, pages 1371–1380, New
York, NY, USA, 2012. ACM.

