
Integrating i* and process models with stock-flow models

Mahsa Hasani Sadi

Department of Computer Science

University of Toronto

mhsadi@cs.toronto.edu

ABSTRACT

While enterprise modeling and conceptualization frameworks
mostly provide static views of enterprise architectures, they
rarely address the dynamics of enterprise; i.e. the behavior of
enterprise over time. This issue has led to insufficient
perception of how the statics of enterprise is related to its
behavior over time, and how static arrangements should be
reconfigured to result into the desired behavior over time. To
address this problem, herein, I propose a methodology for
integrating i* models and process models (as representatives
of static view of enterprise architecture) with stock-flow
models (one model for addressing the behavior of enterprise
over time). The proposed methodology provides one technique
for developing a dynamic model of enterprise based on its
static models and offers guidelines for how the static views of
enterprise architecture should be reconfigured to change the
behavior of enterprise over time.

General Terms
Modeling & Design

Keywords
Enterprise architecture, i* models, process models, stock-flow
models, dynamic models, static models.

1. Introduction
For managers and decision makers in organizations, there exists
one thorny problem: They do not know how to move from the as-
is architecture to the to-be architecture. This issue roots into two
main problems:

1. They do not know how to conceptualize the as-is and to-be
architecture. This consequently results into the lack of a clear
perception of defining a transformation process for moving
from as-is to the to-be architecture.

2. Many frameworks for the conceptualization of as-is, and to-
be enterprise architectures deal with the static complexities;
i.e. static structural and behavioral complexities. This is
while there are a few rigid frameworks for the
conceptualization of dynamic complexities of the
architecture. Moreover, the conceptualization models which
deal with the dynamic view of the enterprise (such as state-
charts and sequence diagrams in UML), provide a low-level
abstraction of the enterprise. Hence, they are not suitable for
modeling high-level abstraction levels with which managers
and decision makers deal. However, movement from the as-
is to the to-be architecture not only deals with statics, but to

a large extent is related to the dynamic conceptualization of
the as-is and to-be architecture.

The lack of such conceptualization frameworks limits the
understanding and addressing the issues of change by decision
makers in the context of enterprise. This demands two categories
of research efforts be conducted:

 Investigation of existing conceptual frameworks which deal
with the dynamic complexities of systems, and integrating
them with enterprise modeling approaches

 Development of conceptual frameworks which
accommodates the dynamism and notion of change in
enterprise as first-class concepts.

The investigation of the above two research problems, not only
enables the conceptualization of dynamism and change in the
context of enterprise, but also provides a framework for
discussing its behavioral properties such as adaptiveness and
evolution.

Herein, as a first step towards addressing the above issues, I
investigate the integration of System Dynamics conceptual
framework [1], with two static models of enterprise, namely i*
models [2] and process models. i* models elicit the interactions
between the elements of a domain under study. Process models
elicit process and product flows of enterprise. System dynamics
models and more specifically stock-flow models capture the
dynamic behavior of enterprise over time. The outcomes of this
integration are as follows:

 Proposition of one methodology for integrating the
static view (statics) of enterprise with its dynamic view
(dynamics). In the proposed methodology, the dynamic view
of enterprise conceptualized in terms of stock-flow models
are developed from i* models and process models. The
integration of i* models as one representative of the
interaction between the elements of enterprise with stock-
flow diagrams addresses the question that how a change or
rearrangement in interactions affect the overall dynamic
behavior of enterprise over time.

 The above outcome provides guideline for how the
reconfiguration of the as-is architecture based on its dynamic
behavior.

The rest of the paper is structured as follows. In Section 2, the
main ideas of system dynamics and the requirement for
integrating it with enterprise architecture modeling are briefly
reviewed. In section 3, the proposed methodology for integrating
two static models of enterprise (i* models and process models),
and one dynamic model of enterprise (stock-flow model) is
delineated. Section 4 discusses the shortcomings of research

conducted herein and how it can be furthered. Section 5
ultimately concludes the paper.

2. System Dynamics and Enterprise
Architecture Modeling
System Dynamics (SD) [1] is a methodology for understanding
the behavior of complex systems over time. It provides
fundamental contributions to framing, understanding, and
discussing complex issues and problems. System dynamics is
centered around modeling and simulating complex systems
through systemic representation of the system in terms of stock-
flow models. Stock-flow models capture the behavior of systems
in terms of concepts of stocks, flows, information feedbacks, and
valves (demonstrated in Figure 1). Stocks conceptualize the
notion of accumulation in the system; inflows and outflows are
the material and information entering into and out of stocks;
valves regulate the amount of inflows and outflows according to
the variables of information feedbacks with which they are
corresponded. For example, bank balance is a stock. The inflow
into this stock is deposit interest, and its outflow is withdrawal.
The valves are the control decisions which regulate the rate of
inflows and outflows into bank balance. One information
feedback which controls the inflow rate is the variable of net
income, and one information feedback which regulates the
outflow rate is expenditure.

SD methods provide “essential insight into situations of dynamic
complexity,” especially when experimenting the real systems is
impossible or not feasible. SD provides significant insights into
the behavior of the system over time, but does not provide any
implication on how the system elements should be reconfigured to
yield a desired behavior. SD, in other words, captures the “what”
of the dynamic behavior and does not address “how” the behavior
of the system can be modified. On the other hand, enterprise
architecture models depict how an enterprise functions. Enterprise
modeling techniques provide a static image of a state of a system.
Therefore, to link the “What” of dynamic behavior to the “how”
of modifying it, it is required to integrate the dynamic and static
models of enterprise. Correspondingly, in the following section, I
delineate one methodology to address this issue. To model the
static view of enterprise, I have chosen i* models, and process
models. The proposed methodology provides one technique for
the integration of static models of enterprise with its dynamic
models. It also addresses how the behavior of enterprise over time
can be modified via reconfiguring its statics.

Figure 1: The main concepts of stock-flow models in modeling the
dynamics of the system

3. Integrating Static Modeling with Dynamic
Modeling in Enterprise Architectures
To illustrate the steps of the proposed methodology, I first
describe an imaginary supply chain (extracted from a real case
study of system dynamics) with three front-end suppliers named
producer A, producer B, producer C, and one final producer
named producer D, in section 3.1. Then, I delineate the steps of
the proposed methodology for integrating i* models and process
models as representative of static models with stock-flow models
as representative of dynamic models of enterprise architecture in
section 3.2.

3.1 Case Study
The static configuration of the supply chain is as follows:

 Producers A and B provides products of W and X for
producer C.

 Producer C processes the products of W, and X and then
produces product Y.

 Product Y is fed into the producer D, which releases the final
product of Z.

 Producer D sets order for the required number of product Y
from producer C.

 Producer C receives the orders of producer D and
subsequently sets order for the required number of products of
X, and W from producer A, and producer B.

 The decision about setting the order for product Y is taken
based on its production time, and production cost; i. e. the
number of orders increases as the production time and cost of
product Y is decreased.

 The whole supply chain has two common goals: Increasing
the number of orders, and increasing the number of produced
products.

 There exist a trade-off between production time, and
production cost within producer C; i.e. as the production time
decreases the production cost increases and vice versa. This
case also holds for all the four producers.

 Each producer tries to maximize its cash level, which relates
to production cost.

o Based on the above point, it can be concluded that each
of the four producers has one individual goal:
increasing their profit (cash level) which is in relation
with price, cost, production time, and number of
orders.

The initial setting of the as-is architecture is as follows (the
performance of the current configuration of the architecture):

 For producer A, it takes one month and costs five thousand
dollars to produce product W.

 For producer B, it takes two months and costs sixty thousand
dollars to produce product X.

 For producer C, it takes 3 months and costs seventy five
thousand dollars to produce product Y.

 In addition to the production cost for producer C, there exist
operation cost for the processing of product W, and product
X which is equal to five thousands.

Based on the above case study, I limit the scope of study, by
studying the common goals of the supply chain, which is
increasing the number of orders and increasing the number of
products. These two goals can be studied by the monitoring of the
profit (cash level) of producer C. Cash level is an indicator of the
desired behavior of the whole system; i.e. its increase shows the
balanced increase between the production and order in the whole
supply chain in presence of the trade-off between time and cost of
production.

Accordingly, the dynamic configuration of the supply chain is as
follows:

 The desired behavior of the system is to reach the cash-level
of producer C from 0 to 2100 over a two-year period.

 The parameters which are related to the decision of producer
C for setting order for producer A and B are: The desired
storage of W and X in C, time to adjust storage W and X in
C, total storage of W, and X in C, and the orders set
previously for W and X in C.

 The parameters related to the decision of producer D for
setting order for Y are: C’s production cost, C’s production
duration, and the storage of Y in D.

Conceptualize the statics of enterprise architecture

Develop interaction model
i* strategic

dependency
diagram

Develop process model
UML activity

diagram

Conceptualize the dynamics of enterprise
architecture

Develop dynamic model
Stock-flow

diagram

Model the behavior of enterprise over time

Simulate stock-flow model

[Reconfiguration Required]

[No reconfiguration recquired]

Figure 2: The steps of the proposed methodology for integrating static
modeling and dynamic modeling in enterprise architectures

3.2 The Proposed Methodology
Figure 2 illustrates an overall view of the proposed methodology.
The process consists of three main steps. In the first step, the
statics of as-is architecture is conceptualized through developing
interaction model and process models. In the second step, the

dynamics of the enterprise is modeled based on the static models
developed in the first step. In the third step, the dynamic model of
the enterprise is simulated to observe the behavior of the
enterprise over the time. Finally, based on the behavior a decision
is made: If the statics of the enterprise requires reconfiguration to
improve its dynamic behavior, steps one to three are repeated
until the desired behavior is achieved.

In the rest of this section, I delineate each step of the proposed
methodology.

1. Step1: In this step, I explain the application of i* framework
to conceptualize the as-is architecture of the case study:

 The producers are mapped on the concept of actors and their
interaction is mapped on the Strategic-Dependency (SD)
relationship between them. As it is depicted in Figure 3, two
types of strategic-dependencies exist between actors: goal
dependency, and resource dependency. For example, actor C
is dependent on producer A for the goal “W produced” to be
achieved. On the other hand, actor A is dependent on actor C
for the resource dependency of “Order for W” which is
issued by C.

Figure 3: The conceptualization of the as-is architecture in terms of
strategic-dependencies

Why is i* appropriate?
 This form of conceptualization is important from the

perspective of a value network in which a group of actors are
in interaction and cooperation with each other to achieve a
common goal. In other words, because the property of
interest is the behavior of the whole system over time, which
can be defined as a common goal which is achieved by the
interaction of different actors in the system over time, i*
serves an appropriate conceptualization framework. More
specifically, to reason about global properties of interest (the
overall performance of the architecture) in terms of cost or
time in the case under study, the different type of interaction
between the elements of a system and the part they have in
the global property is required to be elicited. This is
necessary for the reconfiguration of as-is architecture.

 i* abstracts away the complexity of systems statics by
focusing on the different interactions between the elements
of the system which are directly related to and affect the
behavior of the system.

[Remark1] It should be noted that the interaction between actors
in i* also include non-functional and task dependencies.
However, for the purpose of integration of i* with stock-flow

models, goal dependencies, resource dependencies, and non-
functional dependencies are of interest. This is because that in the
stock-flow models, the stocks are representative of quantitative
and measurable features of the system. In i* models, goal-
dependencies and resource dependencies can be directly related to
quantifiable measures via various goal break-down and indicators
assignment techniques [3]. Moreover, soft-goal dependencies can
also be indirectly turned into quantifiable measures via methods
such as AHP [2].

[Remark2] Having depicted the case study in Figure 3, this
question raises that why the interactions related to the provision
of products are mapped onto goal-dependencies, while the
interaction related to the order settings are mapped onto resource
dependencies. This is mainly due to the following reason:

 The product provision dependencies are course-grained
interactions. Hence, they should be concretized into fine-
grained details of processes and work-products between
them to be integrated with stock-flow models. However,
order setting interactions capture the informational
interactions between the actors which can be directly related
to stock and flow models. Although the goal dependencies
and the resource dependencies are of different level of
granularities, they show two important aspects of
interactions between actors which should be captured in one
model.

Although i* models depict the abstract interaction between
different elements of the system, it lacks the detail to be directly
integrated with stock and flow models. Stock flow models provide
a process-oriented view of the system (the inflow, stock, outflow
view). Hence, process models are appropriate model to connect i*
models with stock and flow diagrams. In this paper, I use activity
diagrams for the purpose of integration.

2. Step 2: In this step, each SD dependency identified in the
previous step, is concretized into activities and the artifacts
which are transferred between them. Based on the

architecture which is depicted in Figure 3, the following
steps should be taken:

a. The goals should be concretized into actions versus goal
decomposition method, which leads directly to the
identification of the corresponded activities.

b. The artifacts (work-products), which are communicated
between each activity identified in the above step, are also
elicited. The work products of importance are those
influencing the measurement of the goal achievement.
Correspondingly, I refer to these work-products as material
flows; i.e. the materials that are communicated between the
activities and their quantities are of importance. According
to the case study, the goal dependency of “W Produced”
between A, and C, is refined further into the activity of
“Produce and deliver W” and the material flow of “Product
W”. The process model related to the goal dependencies of
Figure 3 is depicted in Figure4.

c. The resource dependencies are directly concretized into
work-products. Moreover, the processes or activities for
which the resources are input or output are also elicited. As
depicted in Figure 3, the “Order for Y” work-product has
been elicited with the two processes, which produced and
consume this information. This mapping leads to the
identification of information flows in the process model.

Why process models?

Process models capture a static model of the information flows
and material flows in the as-is architecture. As it is conveyed
from the concept of flows, they are required for the development
of a dynamic view of the system. Moreover, the process-oriented
view of the activity diagrams identifies the direction of material
and information flows which are required for the development of
stock-and flow models.

Figure 4: The identification of material flows in the as-is architecture

Set order for Y

Order for Y

Set order for X

Order for X

Producer D Producer C

Set order for
W

Order for
W

Figure 5: The identification of information flows in the as-is architecture

What do the two process models of Figure 2 and Figure 3
depict?

They depict the two parallel work-flows which are in run in the
communication in parallel with each other. The work-flow of
material provision (Figure 4) is initiated by producer A and B,
and then continued by producer C, and D. However, the work-
flow of information provision (Figure 5), is initiated by producer
D, and then continued by producer C, B and A, respectively. The
two process models together show the interconnected of the
interactions depicted in Figure 5. While producer C produces
product Y, at the same time, it may receive the orders for Y from
producer D.

[Remark3] One issue which is raised in the conceptualization of
the as-is architecture, is the level of abstraction and concretization
of the activity diagrams developed. As it is depicted in Figure 4,
and Figure 5, I have concretized the interaction diagram of Figure
1, just by connecting the activity of “Produce and deliver W” to
the goal “W produced”. This process itself consists of many sub-
processes, product flows and information flows, which are
abstracted away. The purpose of the development of the models
of as-is architecture is to conceptualize the overall statics and
dynamics of the as-is architecture. Hence, at this step, this level of
details suffices. In subsequent steps, in which decisions should be
made about the reconfiguration of the as-is architecture, there
may be a need to develop more concretized versions of process
models.

3. Step 3: In this step, the properties of interests which affect
the behavior of the enterprise over the time are identified in
i* models and process models. As stated in the description of
case study, I study the cash-level property of producer C
over time. For this purpose, two properties of production
time and cost should be elicited in interaction diagrams and
process models. This will help in modeling the overall
performance of the as-is architecture. As illustrated in Figure
4, time and cost properties has been attached to the goal
dependencies of interaction diagrams, and subsequently
propagated to the processes which realize the goal
dependencies in Figure 5. For example, the interaction
between producer A and producer C in order to produce
product W, takes a duration of 1 months and costs 5000 $.
Based on the interaction diagram and the process model the
overall performance of the architecture can be reasoned
about. Based on the critical path identification, the overall

time it takes for the product Y be ready and fed into producer
Z is 5 months:

Overall time performance = Max {Time for W be produced,
Time for X be produced} + Time for Y be produced = 5
months

; and the overall cost performance of product Y is 145000$.

Overall cost performance = Cost of W be produced + Cost
of X be produced + Cost of Y be produced + Operation cost
of C = 145000$

Why step 3 is required?

To evaluate the as-is architecture and decide about the to-be
architecture, decision criteria are needed. In order to decide about
the reconfiguration of the as-is architecture specified in terms of
interactions between actors, the value and performance of each
interaction (dependency) is required. Accordingly, the criteria of
interest, which define the value of each interaction, are identified
and elicited in this step. This serves as a basis to decide where the
as-is architecture can be intervened to be reconfigured.

Why both interaction diagrams and process models are
annotated?

Although the identification of the overall performance, and the
specification of the value of the interactions between actors can
be done sufficiently on interaction diagrams, however, to decide
about the reconfiguration, the details of the interactions which
lead to the overall performance of the as-is architecture are
required to be traced. This requires the identification of the
properties of the processes and activities, which affect the
performance of the interactions. Accordingly process models
(activity diagrams) are developed. [Due to the simplicity of the
case under study, no specific information is added to the
interaction diagram in Figure 6B].

Why moving to step 4?

Based on the performance criteria, the as-is architecture can be
reconfigured. For example, the duration of the interactions or the
costs can be reduced. This raises this question that why moving
to step 4 or connecting the statics (static view) of the as-is
architecture to its dynamics (dynamic view) is required. This is
due the fact that the following questions are raised:

o Why do we want to increase the overall performance of
the as-is architecture by reducing the overall time or
cost of interactions?

o Why do we want to reduce the production time of
product A, or its production cost?

To reason about the answer to these questions, having the static
view of the architecture is not enough. We therefore require
more information about the as-is architecture. One particular
way, in which we can reason about these questions is to link the
statics of the as-is architecture to its dynamics. The dynamic

view of the as-is architecture deals with the behavior of the
system over the time. This is while many regulations which are
performed in the system, are based on its dynamic performance.
Hence, if the statics of the as-is architecture are linked and
connected to its dynamics, the influence of the static
configuration on the overall behavior of the system during the
time can be evaluated and judged about. This also provides
insight about how to reason about the reconfiguration of the as-is
architecture to form the to-be architecture. Accordingly, in step
4, I explain how, the stock-flow model of the as-is architecture is
constructed based on interaction model and process model.

Figure 6: Identification of the static properties of interest which influence the dynamic behavior of the as-is architecture on A) interaction model B)
process model

4. Step 4: To develop stock-flow models, the following steps
are taken. [The basis for the development of stock-flow
models is the process models developed based on interaction
model.]

o Each actor becomes a separate sector in stock flow
model.

o The material flows and information flows identified as
work-products in the process models are mapped on the
accumulation (stocks) in the stock-flow models. For this
purpose:

 The information flows identified in the process
models are mapped onto stocks and assigned to
the sector of the recipient actor. For example, as
demonstrated in Figure 5, the information flow of
“Order for W” is set by Producer C, and received
by producer A. Hence, a stock named “Order for
W from C” is assigned to sector “Producer A”, in
the stock-flow model depicted in Figure 7.

 The material flows identified in the process
models are mapped onto stocks assigned to the
sector of the recipient actor. For example, the
material flow of “Product W”, in Figure 4, is
mapped onto a stock named “C’s inventory of
W”, and assigned to the sector “Producer C” in
Figure 7.

o The flow directions for material flows and information
flows in the process models are mapped onto the
inflows and outflows of stocks through following two
steps:

 As stated earlier, the two workflows of Figure 4
and Figure 5 are in run parallel with each other.
Although this parallelism does not influence the
statics of the as-is architecture (therefore it is not
shown in the process models), however, it
influences the dynamic behavior of as-is
architecture. Therefore, in the development of
the stock-flow models this point should be
considered. For this purpose, each stock related

to an information flow is paired with its relevant
stock related to a material flow. For example, the
stock of “Order for W from C” is paired with
“C’s inventory of W”. Pairing is done via and out
flow, and an inflow; i.e. the stock “Order for W

from C” has an outflow which is the inflow of
the stock “C’s inventory of W”. Based on this
step, the outflow of an information stocks, and
the inflow of the material stocks are identified.

Producer A

Order for W
From C

W production and
delivery rate

Produce and deliver
W

Production duration

Producer C

C’s Inventory of W

W order rate
Total Inventory of W

Time to adjust W
inventory

Desired inventory of
W

Production starts

C’s consumption
rate of W

Set order for W

W consumption for
each Y

Producer D

D’s Inventory of YY production and
delivery rate

Order for Y from C

C’s production
duration

C’s production cost

Production starts
rate

Producer A

Order for X
From C

X production and
delivery rate

Produce and deliver X

Production duration

Desired inventory of X

Total Inventory of X
X order

rate

Time to adjust X
inventory

Set order for X

C’s Inventory of X

C’s consumption
rate of X

X consumption for
each Y

Produce and deliver Y

Produce and deliver Z

Figure 7: Stock flow model of the supply chain developed from the process model

 The inflow of an information stock and the
outflow of material stocks are connected to
exogenous variables; they are not related to any
other stocks. This is due to the fact that the
stocks which are connected to the input of the
information stocks and the output of the material
stocks do not belong to the space of process
models (space of design of the as-is architecture),
but rather they belong to the space of interaction
models (space of decision making and
regulation). Hence, they are connected to
exogenous stocks (out-side model stocks), and
not endogenous stocks (in-side model stocks).

o The processes in the process models are corresponded
to rates (valve) in the stock-flow models. For this
purpose the following steps are taken:

 In each pair of information and material stock, a
valve is considered, and the process related to the
material flow is mapped on it. For example, in
Figure 7, between the “Order for W from C”, and
“C’s inventory of W”, a valve is considered
which is the map of “Produce and deliver”
process in Figure 2.

 For each outflow from a material stock, and
inflow to an information stock, a valve is
considered, which is the mapping of the
processes in the relevant information and

material process models. For example, in Figure
7, the valve related to the input flow of “Order
for W from C” is the process “Set order for W”,
and the valve related to the output flow from
“C’s inventory of W” is “Consume W”.

o In the previous steps, I explained the construction of the
portion of stock-flow models which are related and are
mapping of the statics of the as-is architecture.
However, dynamic view of the as-is architecture has
more information than the statics view. This
information is captured in stock-flow models by the
element of information feedback. Information
feedbacks which are connected to the valves identify
the variables which influence the regulation of the
inflows and outflows in the architecture. In order
words, to regulate the rate of input and output to each
stocks, a decision is made based on information
feedbacks. These information feedbacks come from
three sources:

 relevant stock related to the valves (rates),

 other valves in the stock-flow models,

 auxiliary variables which are neither stocks nor
variables.

According to the dynamic configuration of supply chain
explained in the case study, the information feedbacks
related to each valve are identified in Figure 5. For
example, the variables, which influence the regulation
of order rate for W in sector C are desired inventory of
W in C, time to adjust W inventory in C, and total
inventory of W in C. Moreover, the variable total
inventory of W in C is influenced by the previous
orders set for W from C.

[Remark4] As it is conveyed from step 4, the information
feedbacks elicited in Figure 7 are developed based on the
dynamic configuration of the supply chain and are derived from
neither the interaction model of the supply chain nor its process
models.

o In the development of stock-flow models, the last step is
to model the cash-level of producer C which is an
indicator of the overall behavior of the system over
time and is related to the information feedbacks
elicited in the stock-flow model. Similar to the
previous step, the information feedbacks influencing
the cash level are neither derived from the interaction
models nor from the process models, and are identified
externally (depicted in Figure 6).

5. Step 5: Stock-flow models are supported by simulation tools
which enables the simulation and prediction of complex
systems over time. The open-source tool developed for this
purpose is Stella [1]. Correspondingly, in this step, the
stock-flow model of the enterprise (Figure 7), and cash-level
(Figure 8) are simulated in Stella. The result of this
simulation for the property of interest (cash-level) is depicted
in Figure 9. As it is depicted, with the current static
configuration, the cash level reaches to 850K$ over two
years which is far from the desired behavior.

[Remark5] For the simulation of stock-flow models, the
information feedback variables require quantitative values. In this
report, I have set the variables to predefined values, which remain
the same for all the simulations. Since the information feedbacks
are not derived from the static models, hence setting them to a
predefined value and considering the invariable during
simulations is equivalent to having a fixed policy for controlling
the dynamic behavior of system.

Producer A

Producer B

Producer C

Producer D

Cash inflow rate

Income from Y

Y’s Price

Cash outflow rate Cash

Y’s production and delivery rate

Total production costs

Production cost
For each Y

Cost of X

Cost of Y C’s consumption rate of W

C’s consumption rate of X

Price per X

Price per Y

Figure 8: Stock flow model of cash level (indicator of the behavior of
the system)

The simulation provides insight into how the static
configuration of enterprise contributes to the behavior of
enterprise over time. Accordingly, when there is a problem
in the simulated behavior, it raises this questions: If the
dynamic policy of the system does not change, how the
statics should be reconfigured to keep up with the desired
dynamic behavior.

0

200

400

600

800

1,000

0 5 10 15 20 25

C
o

st
 (

$
)

Time (Month)

Cash Level

Figure 9: The dynamic behavior of enterprise architecture over a
two-year period

Producer
A

Producer
C

Produce
r
B

W
Produced

X

Produced

D D

D

D

Producer
D

Y
ProducedD D

Order for
Y

DD

Order for
W D

D

Order fo
r

X

D

D

Duration: 1 Cost:5000

Duratio
n: 2 Cost:6

0000

Duratio
n: 3

Cost:75000

Producer
A

Producer
C

Produce
r
B

W
Produced

X

Produced

D D

D

D

Producer
D

Y
Produced

D D

Order for
Y

DD

Order for
W D

D

Order fo
r

X

D

D

Duration: 1 Cost:5000

Duratio
n: 2

Cost:6
0000

Duratio
n: 2

Cost:70000

Producer
E

Y
 V

e
rifie

d

D

D

O
rd

er
 f

o
r

Y
D

D

D
ur

at
io

n:
 1

/2

Co
st

:1
50

00

Reshaping Boundaries

Provide
r

Builder

Verifier

Seller

Parts be
provided

D

D

D

Order for

parts
D D

D

Order for Testing

Product be
verified

D

D

D

D

Interaction diagram of the organization

Interaction diagram of producer c

Product b
e

sold

D

D

Order fo
r

Sellin
g

D

D

D

D

Duration: 1/4 Duratio
n: 1

/4

Duration: 3/2

Provide
r

Builder

Verifier

Seller

Parts be
provided

D

D

D

Order for

parts
D D

D

D

D

Duration: 1/4
Duratio

n: 1
/4

P
ro

d
u

ct b
e

verified

D

D

O
rd

er fo
r

V
erificatio

n

Product be

sold

Duratio
n: 1

/2

A

B

C

D

D

D

D
D

Order for

Selling D

D

Figure 10: The steps required for reconfiguring the as-is interaction diagram to the to-be

6. Step 6: As it is observed from Figure 9, the current
behavior of the system over time does not meet the desired
behavior. Hence, the as-is architecture is required to be
reconfigured. For this purpose, step 1 to step 5 should be
repeated until a configuration of the as-is architecture is
found which meets the desired behavior of the system. Since
the cash-level is corresponded to two static criteria of time
and cost in the static configuration of as-is architecture, the
interaction model should be reconfigured to improve both or
either of these criteria.

The overall steps of the reconfiguration of the as-is
interaction in the case under study is depicted in Figure 10.
To improve the performance of the as-is architecture, the
criterion of time has been chosen. As it is conveyed from
Figure 10-A, the main time-consuming interaction in the as-
is architecture is the goal dependency of “Y produced”
which takes three months. Therefore, the realization of this
dependency should be reconfigured. For this purpose, the
interactions taking place inside the actor of producer C has
been elicited and depicted in Figure 8-B. For the goal-
dependency of “Y Produced” be realized by producer C, four
actors of Provider, Builder, Verifier, and Seller interact with
each other inside producer C. The production time of 3
months results from the time performance of the interactions

between these actors. Hence, the interactions between these
actors should be reconfigured. As depicted in Figure 10-B,
the most time-consuming interaction is the interaction
between Builder and Verifier for verifying the products
which takes 3/2 months. To resolve this issue two possible
decision can be made:

a) Continuing with the elicitation of the interaction model
taking place inside the Verifier and further examining
the realization of its configuration to improve the time
performance.

b) Reconfiguring the interactions of the current level of
abstraction to improve time performance.

As depicted in Figure 10-C, the second decision has been made;
i.e. instead of verifying the products inside Producer C, this
interaction and its relevant actor has been excluded from the
interaction model of producer C, and has become an independent
actor similar to producer A, and producer B. (In other words it has
become outsourced). Via outsourcing the time required for
verifying product Y reduces to ½ months. Since this solution
seems feasible. Therefore, this configuration is considered as a
candidate solution. Subsequently step 2 to 5 of the proposed
methodology are performed; i.e. the relevant process models and
stock-flow models are altered and developed, and finally the

behavior of the new configuration is simulated (Figure 11). The
simulation of the behavior is depicted in Figure 9. Since with the
candidate solution of reconfiguration the overall behavior of the
system reaches to its satisfactory level (the cash level reaches to
2100 over two years), the as-is architecture is reconfigured to the
candidate solution which is the to-be architecture (shown in figure
10-D). Otherwise, steps 1 to 5 would have been repeated.

As it is observed in the process of reconfiguring the interaction
models from Figure 10-A to Figure 10-D, the boundaries of
responsibility of producer C has evolved. In Figure 10-A and B,
the interactions taking place within the boundaries of producer C
are more, while the interactions of producer C with other actors
are less in comparison with their counterparts in Figure 10-C and
8-D.

Figure 11: The dynamic behavior of enterprise architecture with the

candidate reconfiguration solution

4. Discussion
In this section, I discuss the limitations and shortcomings of the
research reported herein which require further investigation and
research.

 In this report, I developed a methodology for the integration
of i* strategic-dependency models, process models, and
stock-flow models based on a cases study representing the
statics and dynamics of a supply chain. Supply chains are the
most common examples for the application and analysis of
stock-flow models. Therefore, the developed case study
covers the main issues raised related the stock-flow models.
However, other cases are required to be developed to
examine the validity of the proposed methodologies.

 In the proposed methodology, i* models and process models
are chosen for modeling the statics, and stock-flow models
are chosen for modeling the dynamics of the enterprise. This
raises the questions about the appropriate selection of static
models, which are most suitable for integrating with the
dynamic aspects. Although, throughout this report, the
selection of i* models and process models are discussed and
justified, however, they are not compared with other static
models. Moreover, there exist other conceptual frameworks
which conceptualize the dynamism of the systems. This
raises the issue of appropriate selection of the dynamic
conceptual frameworks which also needs further
investigation.

 The proposed methodology for the integration of i* models
with the stock-flow models should be validated and further
improvements should be explored. More specifically, the

proposed methodology has one specific limitation which is
important: Although most parts of the stock-flow diagrams
are directly developed from the static models, for the
development of the dynamic view of systems more
information is required than there exist in the static models
(The information feedbacks are not derived from the static
models). This raises this question if other static models
should be involved to completely build the dynamic view of
the system from its statics. Moreover, since the information
feedbacks are not derived from the statics they are assumed
to be pre-defined. However, if the information feedbacks can
be developed based on other static models, then
reconfiguration the static part of the enterprise may also
affect the information feedbacks (This point is not
considered in this report).

 From the static models, the strategic dependencies of i*
models are employed to model the different types of
interactions between the elements of the enterprise
architecture. Therefore, the concept of intentionality which
exists in i* are not fully exploited. This raises the following
question: Does the incorporation of the notion of
intentionality of individual actors influence the dynamic
behavior of the enterprise over time, or over long run? An
interesting issue which exists regarding this question is that
although each actor is mapped on a sector in the stock-flow
models and is in control of a portion of the dynamism of the
system, however, the interconnected of the information
feedbacks in the stock flow models may neutralize the
influence of the intentionality of each actor over time. This
points to one other limitation of the current work: In the
proposed methodology, it is assumed that the behavior of the
system is decided globally and not locally by individual
actors.

 i* is a problem structuring method which appropriately
addresses the issue of assignment and reassignment of
responsibilities between different structural elements of the
as-is architecture. Integrating i* models with the dynamic
behavior of the system can be used for the evaluation of
structure of the as-is architecture based on its behavior. This
issue requires further investigation.

5. Conclusion
In this report, I presented a methodology for integrating two static
models of enterprise architecture, namely i* models and process
models, with one modeling framework addressing the dynamics
of systems, namely stock-flow models. The proposed
methodology provides one technique for constructing a dynamic
model of enterprise from static models, and addresses how the
static models can be reconfigured to result into the desired
dynamic behavior of enterprise over time. Although in the
proposed methodology, stock-flow models are constructed from
i* and process models, the construction process cannot be referred
to as transformation. This is because that the dynamic view of
stock-flow models contains more information and concepts than
what is provided in i* models and process models. Accordingly,
the mapping process is not complete. The next step of this
research is promoting the proposed integration methodology to a
transformation methodology.

6. References
[1] Sterman, J.D., Business Dynamics, Irwin/McGrow-Hill,

2000.

[2] Yu, E., Giorgini, P., Maiden, N., Mylopoulos, J. Social
Modeling For Requirements Engineering, MIT Press, 2010.

[3] Barone, D., Yu, E., Won,J., Jiang, L., and Mylopoulos, J.,
“Enterprise Modeling for Business Intelligence”, In
proceedings of IFIP International federation for Information
Processing (PoEM 2010), LNBIP 68, pp. 31–45, 2010.

