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ABSTRACT
We consider the problem of model merging. We focus on cases
when several input models are merged into one, e.g., when com-
bining a set of related products into a software product line rep-
resentation. Most of the existing works on model merging focus
on combining two input models, suggesting to merge n models by
performing n-1 pairwise merges. In this paper, we show that com-
bining n models simultaneously can produce a better result. We
thus propose an n-way model merging framework and formally de-
fine its properties. We instantiate the framework using the Alloy
Analyzer and provide two examples for demonstrating the differ-
ences between the pairwise and n-may merging. We conclude by
discussing issues with the implementation of the framework the re-
maining steps.

1. INTRODUCTION
Model merging – combining information from several models

into a single one – is widely recognized as an essential step in a va-
riety of software development activities. These include reconciling
partial (and potentially inconsistent) views of different stakehold-
ers [12], uniting changes made in distinct branches of a software
configuration management (SCM) system [6], and combining vari-
ants of related products into a single-copy software product line
(SPL) representation [10].

Model merging has been extensively studied in the literature and
frameworks to reason about different merging approaches have been
proposed [2]. Yet, most of the existing works focus on merging
two input models. It is often essential to merge more than two
models together: for example, when reconciling views of multiple
different stakeholders or combining related product variants into an
SPL representation. In such cases, existing approaches suggest to
merge n input models one by one, performing n-1 pairwise combi-
nations [10]. Some approaches also suggest heuristics for the order
in which to pick the pairs [11].

In this work, we show that merging n input models in a pairwise
manner, even when using heuristics on the order in which models
are merged, can lead to suboptimal results. Intuitively, this occurs
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because the pairwise operations can only find “locally” optimal so-
lutions, loosing the “global picture”. We thus suggest to merge
n input models simultaneously, using one n-way merge operation,
rather than applying n-1 pairwise merges one after another. We re-
fine the model merging problem to consider n inputs and discuss
issues related to its implementation.

Contributions of this work:
1. A formal definition of the n-way model merging framework.
2. A concrete instantiation of the framework, applicable for com-

bining models of related product variants into a single-copy
SPL representation.

3. An example-based comparison of the pairwise and n-way
merging approaches.

4. A list of open questions and an outline of future research
directions.

The rest of the paper is structured as follows. In Section 2, we
give the necessary background on model merging. An example
that showcases the process of merging three input models in a pair-
wise and an n-way manner is given in Section 3. In Section 4,
we formally define the n-way merging framework and its concrete
instantiation in Alloy for the SPL scenario. Section 5 focuses on
analyzing the differences between the pairwise and the n-way ap-
proaches. Finally, Section 6 outlines future steps, while Section 7
summarizes the report.

2. BACKGROUND: MODEL MERGING
Following [10], model merging consists of three steps: compare,

match and merge. These steps are described below.
Compare is a heuristic function that receives as input a pair of

elements from the distinct input models M1 and M2 and calculates
their similarity degree: a number between 0 and 1.

compare : M1 ×M2 → [0..1]

Numerous specific implementations, analyzing structural and be-
havioral properties of the compared elements, exist. Most works
calculate the similarity degree between two elements by comparing
their corresponding sub-elements and weighting the results using
empirically determined weights [13, 6, 8]. These weights represent
the contribution of model sub-elements to the overall similarity of
their owning elements. For example, a similarity degree between
two classes can be calculated as a weighted sum of the similar-
ity degrees of their names, attributes, operations, etc. Some works
also utilize behavioral properties of the compared elements, e.g.,
dynamic behaviors of states in the compared state machines, remi-
niscent of deciding bisimilarity [8].
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Figure 1: UML models M1, M2 and M3. Numbers represent a
result of pairwise comparisons.

Match is a heuristic function that receives pairs of elements from
the distinct input models M1 and M2, together with their similarity
degrees, and returns those pairs of model elements that are consid-
ered similar.

match : M1 ×M2 × [0..1]→M1 ×M2

Most implementations of match use empirically assigned similarity
thresholds to decide such similarity. More advanced approaches,
e.g., [3], rely on bipartite graph matching [7] to determine corre-
sponding elements.

Finally, merge is a function that receives two input models M1

and M2, together with pairs of their matched elements and returns
a merged model M that combines elements of the input in a pre-
scribed way.

match : M1,M2,M1 ×M2 →M

Specific merge algorithms define how to treat the matched and un-
matched elements [2]. For example, the union merge approach [12]
assumes that matched elements are complementary and should be
unified in the produced result, while unmatched elements are copied
to the result as is. It is also possible to produce a result that includes
only those parts of the input models on which the matched elements
agree. Yet another approach is to combine the input model ele-
ments as in union-merge, while keeping track of and explicating the
origin of each element [10] (the annotative SPL merge approach).

3. MOTIVATING EXAMPLE
We use the toy example of three UML models in Figure 1, in-

spired by [9], to illustrate the n-way approach to model merging.
The first model, M1, contains a single UML class Square (element
#1) which has two attributes: position, specifying the location
of the square’s top left corner on the screen and center, speci-
fying the location of its center. These two attributes uniquely de-
scribe the dimensions and the placement of the square. The second
model, M2, also contains a Square class (element #2). However,
in this class, the dimensions and the placement of the square are
described by the position and the width attributes. Finally, M3

contains two elements: the Square class (element #3) described
by the center and the width attributes, and the Circle class (ele-
ment #4) described by the position of its highest point and its
radius.

Comparing each pair of elements from the distinct models pro-
duces the similarity degrees shown as decimal numbers on the arcs
connecting the corresponding elements. The specific details of the
compare heuristic that we used to produce these numbers are not
import at this point; these calculations are discussed in details in
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Figure 2: A pairwise merge of the models M1, M2 and M3 in
Figure 1.
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Figure 3: Another possible merge of the models M1, M2 and
M3 in Figure 1.

Section 4. However, it is important to notice that if we choose to
exclude class names from comparison, all elements are pairwise
similar. That is, all pairs conform to the same “pattern”: two ele-
ments of the pair share one common attribute and contain one pro-
prietary attribute each.

When considering only pairwise similarities between elements,
one can choose to start from matching and merging element #1
from M1 with element #4 from M3 (as indicated by the bold arc
in Figure 1), producing the merged model M1+M3 shown in the
left part of Figure 2(a). The elements of this model are annotated
by their origins. These elements are then compared to the Square
class of M2 (element #2) using the same compare heuristic, and
the Square class of M2 is matched and merged with the Square

class of M1+M3 (as indicated by the bold arc in Figure 2(a)). The
result of this merge is shown in Figure 2(b). Again, the elements
of the resulting model M1+M2+M3 are annotated by their original
models.

Inspecting the three input models in Figure 1 more closely re-
veals that only the Circle class of M3 (element #4) has the radius
attribute. Moreover, the other three classes overlap on two out of
three attributes with the others. Thus, a merge that combines these
three Square classes together, as shown in Figure 3, might be bet-
ter than the one in Figure 2(b). Indeed, it involves less annotations,
contains less attributes and overall looks simpler. We also quanti-
tatively confirm this intuition later in Section 5.

This means that instead of combining element #1 of M1 with
element #4 of M3, as decided earlier, one should have chosen to
combine it with element #3. Making this decision was impossible
without having the “global picture”, when considering elements in
a pairwise manner only.

As discussed in Section 1, some approaches for model merging
propose heuristics for picking the order in which input models are
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merged [11]. It is plausible to assume that one of the heuristics
could work for the example in Figure 1: the problem of merging
elements #1 and #4 could be avoided if models M1 and M2 would
be merged first and then compared to M3. However, in Section 5,
we show that applying such heuristics is not possible in a general
case.

4. N-WAY MODEL MERGING
In this section, we refine the definition of merging given in Sec-

tion 2 to deal with n input models. First, we formally specify the n-
way counterparts of the compare, match and merge operators (Sec-
tion 4.1). Then, we provide a concrete realization of these oper-
ators, designed with the goal of merging related product variants
into SPL representations (Section 4.2).

4.1 The Framework
The main difference between the pairwise and the n-way merg-

ing approaches is the number of elements that are simultaneously
compared, matched and merged together. While the first case oper-
ates on pairs of elements from distinct models, the second considers
n-tuples of elements.

DEFINITION 1. For a set of models M = M1,M2, . . .Mn, an
n-tuple (or a tuple, for simplicity) is a set t ∈ (M1∪{∅})× (M2∪
{∅}) × . . . × (Mn ∪ {∅}) of two or more elements from distinct
models. That is, a tuple t satisfies the following two properties:

(a) |t| > 2.
(b) ∀ei, ej ∈ t;Mi,Mj ∈M |

ei ∈Mi ∧ ej ∈Mj ∧ ei 6= ej ⇒Mi 6= Mj .

For the example in Figure 1, a tuple can consist of element #1
from M1, element #2 from M2 and element #4 from M3. We de-
note such tuple as (1,2,4). Another tuple could be (1,2). Yet another
one is (1,2,3). (1,3,4) is not a valid tuple though, as it contains two
elements from M3.

In what follows, let T denote the set of all valid tuples for models
M = M1, M2, . . . Mn. The size of T can be calculated using
the formula below, which “chooses” an element from each model,
including choosing none, but disallows tuples of size one or zero.

|T | = (|M1|+ 1)× (|M2|+ 1)× . . .× (|Mn|+ 1)−
(|M1|+ |M2|+ . . .+ |Mn|+ 1)

The goal of compare is then to assign a similarity measure to a
given tuple t ∈ T .

DEFINITION 2. Compare is a function that, given a tuple t ∈
T , returns the similarity measure for its elements – a number in the
range of [0..1]. The larger the number is, the more similar to each
other the elements of t are considered to be.

Match considers the compared tuples, and selects those that are
deemed similar. As in the pairwise case, matching can assume an
empirically set threshold S – elements that are below the threshold
are considered highly dissimilar and should never be matched.

The set of tuples produced by match should be disjoint – it is
not possible to match an element in multiple ways, i.e., to more
than one element of any model. For the example in Figure 1, match
can output the tuple (1,2,3) or (1,2,4), but not both, since otherwise
element #1 would be matched to both element #3 and #4 of M3.

DEFINITION 3. Let s(t) denote the similarity degree of a tuple
t ∈ T , as calculated by compare, and let S ∈ [0..1] be the sim-
ilarity threshold. Then, match is a function that returns a set of
matches T̂ ⊆ T that satisfy the following properties:

enum Property { A, B, C, D, E, F, G, H, I, J, K, L, M,  1 
                            N, O, P, Q, R, S, T, U, V, W, X, Y, Z } 2 
sig Element {properties : set Property} 3 
abstract sig Model { 4 

elements: set Element 5 
} 6 
{  7 

#elements > 0 8 
} 9 
 10 
abstract sig InputModel, OutputModel extends Model {} 11 

Figure 4: Model and model elements in Alloy.

one sig M1, M2, M3 extends InputModel {} 1 
one sig M extends OutputModel {} 2 
 3 
one sig m1Square, m2Square,  m3Square, m3Circle extends Element{}  4 
 5 
fact elementProperties { 6 

m1Square.properties = {A} + {B} 7 
m2Square.properties = {A} + {C} 8 
m3Square.properties = {B} + {C} 9 
m3Circle.properties = {A} + {D} 10 

} 11 
 12 
fact elements { 13 

M1.elements={m1Square} 14 
M2.elements={ m2Square}  15 
M3.elements={m3Square} + {m3Circle} 16 

} 17 

Figure 5: The example in Figure 1 in Alloy.

(a) ∀t̂ ∈ T̂ | s(t̂) ≥ S.

(b) ∀t̂i, t̂j ∈ T̂ ; ei ∈ t̂i; ej ∈ t̂j | t̂i 6= t̂j ⇒ ei 6= ej .

Elements of the matched tuples are combined with each other
using the merge function. The n-way merging framework does not
prescribe any particular way of combining the matched elements –
any of the approaches discussed in Section 2 can be applied. Fig-
ure 2(b) shows a possible result of merging the input models in Fig-
ure 1, when merge assumes annotative SPL union-merge semantics
and match produces two tuples: (1,4) and (2,3). Figure 3 shows
another possible result, obtained for the case when match produces
the tuple (1,2,3).

Discussing and comparing different possible realizations of the
model merging framework, i.e., different implementations of the
compare, match and merge operators, is orthogonal to our work
and thus is out of the scope of this paper. Moreover, we believe
that there cannot exist one preferable way to realize the operators.
Instead, their realization is domain-specific and is driven by the
goal of the merging process.

Yet, in order to carry out the discussion on the pairwise and n-
way merging approaches and to compare the two, we need to pick
an operational definition of the above operators. In the next section
section, we present an implementation that we have chosen for this
work.

4.2 A Realization of the Framework
Our implementation of compare, merge and match is aligned

with our broader research agenda that includes using model merg-
ing for combining related product variants into annotative SPL rep-
resentations [5, 1, 10]. In such representations, a set of related
product variants is captured by a single model in which elements
are “tagged” by features – an approach similar to preprocessor di-
rectives. In the simplest form, merging produces a feature for each
input product and uses it to annotate all elements which originated
from that product [10], like we did in Figures 2(b) and 3.

We instantiate the chosen implementation using the Alloy Ana-
lyzer [4] – a tool for declarative specification and SAT-based anal-
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sig Tuple { 1 
elements: set Element, 2 
weight : Int, 3 
union: set Property 4 

} 5 
{ 6 

#elements > 1 7 
all e: elements | some m: InputModel | e in m.elements 8 
all disj e1, e2: elements |  9 

{all m1, m2: Model | {e1 in m1.elements and e2 in m2.elements => m1!=m2}} 10 
all p: Property | {p in union <=> (some e: elements | {p in e.properties})} 11 
weight = (sum e: elements | #e.properties).mul[10].div[#union] 12 

} 13 

Figure 6: Compare in Alloy.

sig Solution { 1 
tuples: set Tuple, 2 
weight: Int 3 

} 4 
{ 5 

#tuples > 0 6 
all disj t1, t2: tuples | { #(t1.elements & t2.elements)=0} //disjoint 7 
all t: Tuple |  8 

{ not t in tuples =>some t1: tuples | 9 
{#(t.elements & t1.elements) > 0}} //maximal 10 

weight = (sum t: tuples | t.weight).div[#tuples] 11 
} 12 
pred match[s: Solution] { 13 

no o: Solution | {o.weight > s.weight or 14 
 (o.weight = s.weight and #o.tuples < #s.tuples)} 15 
} 16 

Figure 7: Match in Alloy.

pred merge[m: OutputModel] { 1 

one s: Solution | match[s] and  2 

all e: Element | ( (one im: InputModel | e in im.elements ) =>  3 

(one t: s.tuples | e in t.elements) or 4 

((no t: s.tuples |e in t.elements) and e in m.elements)) and 5 

all t:s.tuples | one e: m.elements | t.union = e.properties and  6 

all e: m.elements | (one t: s.tuples | t.union = e.properties) or  7 

((no t: s.tuples | e in t.elements) and one im: InputModel | e in im.elements) 8 

} 9 

Figure 8: Merge in Alloy.

Figure 9: The merge produced by Alloy for models in Figure 1.

ysis of models. Figure 4 presents our simplified representation of
models and model elements. In this representation, each element
can have up to 26 different properties, represented as letters A to
Z (lines 1–2). These properties encode, for example, UML class
attributes, methods, etc., and are used for comparing elements to
each other. A model is a non-empty set of elements (lines 4–9). We
explicitly distinguish between input and output models (line 11).

Figure 5 uses this representation to encode the three input mod-
els in Figure 1 and one output model (lines 1–2). It declares four
elements, corresponding to the elements #1–4 in Figure 1 (line 4),
and uses the properties A,B,C and D to represent their attributes
(lines 6–11). For example, the attribute position of elements #1,
#2 and #4 in Figure 1 is represented by the property A, while the
attribute center of element #4 is represented by the property D.
Finally, we assign elements to their corresponding models (lines
13–17). We use this data representation to define compare, match
and merge below.

Compare. Figure 6 specifies a tuple in Alloy. Similar to Defini-
tion 1, it states that a tuple is a set of more than one element (lines
2 and 7). It also states that the tuple’s elements originate from dis-
tinct input models (lines 8–10).

Each tuple stores its weight (line 3) – the result of applying com-
pare for the tuple, as per Definition 2. We define compare as the
total number of properties of all tuple elements divided by the num-
ber of properties in their union. We normalize the result by the
number of input models:

compare(t) =

∑
e∈t.elements

|e.properties|

|M | × |
⋃

e∈t.elements

e.properties|

The union of properties of the tuple elements represents the union-
merge for the tuple (lines 4 and 11). Thus, our compare function
essentially calculates the “distance” of the tuple elements from their
potential union-merge. We choose this heuristic as it allows to min-
imize the number of annotations in the produced annotative product
line representation [10].

For example, the result of applying compare on the tuple (1,2)
that contains the Square classes from models M1 and M2 is 2+2

3∗3 =
0.44: each element has two attribute and there are three attributes
in their union – position, center and width. We normalize by
the number of input models, i.e., three. The result of applying com-
pare on the tuple (1,2,3) is 2+2+2

3∗3 = 0.66, while the tuple (1,2,4)
results in 2+2+2

4∗3 = 0.5.
Note that even though the first tuple contains only two elements,

we still normalize by the total number of input models, i.e., three.
This allows “fair” comparison between tuples containing different
number of elements: in some cases, merging only two elements
without adding a third one is more beneficial (if the third element
is radically different from the first two). In other cases, adding more
elements improves the weight of a tuple (if they are highly similar
to the existing tuple’s elements).

Line 12 in Figure 6 calculates the tuple’s weight. Since Alloy
does not support floating point numbers, we limit the precision to
one decimal digit and do not normalize by the number of models.
This does not contradict the above discussion about the “fairness”
of comparison but merely means that for three input models, our
implementation produces results in the range of [0..30] rather than
[0..1].

Match. The code in Figure 7 searches the space of different pos-
sible matches and then selects the best one. A possible match, re-
ferred to as a Solution, has a non-empty set of tuples (lines 2 and
6) and a weight (line 3). As in Definition 3, all tuples are disjoint
(line 7). Also, it is not possible to add additional tuples to the so-
lution without violating the above disjoint constraint (lines 8–11).
This means that we attempt to find matches for as many elements
of the input models as possible.

If matching elements with low similarity degree is undesirable, a
similarity could be used to filter out tuples that correspond to such
elements, e.g., all tuples with a weight below 15. Even though our
implementation does not use any similarity threshold at this point,
adding it to the statement in lines 8–11 is trivial.

The weight of a possible solution (line 3) is calculated by aver-
aging weights of all its tuples (line 11). The match predicate (lines
13–16) then chooses a solution with the maximal possible weight.
If there is more than one such solution, it prefers that with the mini-
mal number of tuples (line 15): everything else been equal, we aim
at more “tight” matches, minimizing the number of elements in
the resulting merged model. Even with these restrictions, multiple
matches are possible and we pick any.
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(d) N-way merge.

Figure 10: Possible matches / merges for the models in Figure 1.

Merge. Figure 8 defines the merge operator. It picks the match
produced by the match operator (line 2) and ensures that each input
model element is either part of the matched tuple or is copied to
the result as is (lines 3–5). It also ensures that the output model has
one element for each of the matched tuples (line 6). The properties
of that element are a union of properties of all elements in the tu-
ple, as defined in line 4 of Figure 6. Moreover, each element of the
resulting model either comes from a tuple in the match or is an un-
matched element that is not included in any tuple (lines 7–8). This
implementation corresponds to the definition of the union-merge
approach [12]. Extending it to also “tag” elements of the resulting
model by their origins, like in Figure 3, is trivial.

Figure 9 shows the result of merging the models in Figure 1, as
produced by Alloy. Exactly as the result in Figure 3, it has the
Circle element that was transferred to the result as is and an ele-
ment that is obtained by merging the Square classes together. The
first one has two properties, represented by A and D, while the sec-
ond has three – A, B and C.

5. COMPARING THE PAIRWISE AND
N-WAY MERGING ON EXAMPLES

In this section, we use two examples to illustrate the pairwise
and the n-way model merging and compare the approaches to each
other. We first analyze the example in Figure 1 and then further
generalize it to gain better understanding of the differences be-
tween the approaches. For simplicity of the discussion, we rep-
resent model elements using their abstract properties (A to Z), as in
the Alloy implementation (see Section 4.2). We also name the el-
ements using these properties. This abstract representation allows
us to focus on those details that are essential for the discussion.

Example 1. Figure 10(a) shows the representation of the three in-
put models in Figure 1. As in that figure, the similarity degree
between each pair of elements is 2+2

3∗2 = 0.66 (we normalize here
by 2 as we only consider two input models). Also, like in the pair-
wise merging described in Section 3, element AB is matched with
AD, while AC is matched with BC. These matches are represented
with bold lines connecting the corresponding elements. Using the
n-way merging terminology from Section 4.2, this matching cor-
responds to a solution with two tuples – (AB, AD) and (AC, BC).
The weight of each tuple is 2+2

3∗3 = 0.44. Thus, the weight of the
entire solution (the average weight of the tuples) is 0.44 as well.
The corresponding merge is shown in Figure 10(b).
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Figure 11: Example 2 – pairwise similar input models.
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(a) Matching for M1 and M2.
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(b) Merging M1 and M2.
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A 
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C [M2,M3] 

I [M1,M2] 

J [M1] 
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H [M1] 

I [M3] 

J [M2] 

K [M2,M3] 

E [M3] 

F [M1] 

G [M1,M3] 

[M3] 

(c) Merging M1+M2 and M3.

Figure 12: A pairwise merge of the models M1, M2 and M3 in
Figure 11.

As discussed in Section 3, this solution is not the optimal one.
Indeed, the solution shown in Figure 10(c) contains a single tuple,
(AB, AC, BC), whose weight is 2+2+2

3∗3 = 0.66. Thus, the weight of
the entire solution is 0.66, which is larger than 0.44. This solution
is found by our n-way merge implementation. The corresponding
merge is shown in Figure 10(d).

A “smart” heuristic for the ordering of pairwise merges could
suggest to match and merge the models M1 and M2 first, before
considering M3. In that case, pairwise merging would produce the
result equivalent to the n-way algorithm. However, in some cases,
input models are pairwise similar, thus heuristics on the order of
merging cannot be helpful. The example below demonstrates one
such case.

Example 2. Figure 11 generalizes the example in Figure 10(a).
We now have four elements in each model. There are two types
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of elements pairs – those that share one common property (e.g.,
AB and AC) and those that share none (e.g., AB and JK). Pairwise
similarity measure between the pairs of the first type is 2+2

3∗2 =

0.66, while pairs of the second type are 2+2
4∗3 = 0.33 similar. In

Figure 11, to avoid cluttering, we only show arcs for the pairs of
the first type; pairs of the second type are disregarded by matching
in any case, as their similarity measure is lower.

Each pair of models shares the same “similarity pattern”, shown
in Figure 12(a) for models M1 and M2: there are five possible pairs
of elements considered by the match. The first pair is “exclusive”
– its elements (e.g., AB and AC) are not part of any other possible
match. They will be matched to each other. The next two pairs
share an element in the first model (e.g., IJ). This element can thus
be matched to either one of the two elements in the second model
(e.g., either JK or IM). However, pairwise, it is impossible to see
which of these two elements should be preferred. The last two
pairs have the “inverse” issue: an element from the second model
(e.g., EF) can be matched to one of the two elements in the first
(e.g., either EH or FG). Again, it is impossible to see which of
these two elements should be preferred when considering pairwise
comparisons only.

Since each pair of models exhibit the same similarity “pattern”,
the decision in which order to pick models for pairwise merging
becomes arbitrary. Further, picking a match candidate out of two
possible options is also an arbitrary decision. Thus, one could de-
cide to start from the models M1 and M2, and produce the matches
marked with the bold lines in Figure 12(a): AB and AC, IJ and IM,
EH and EF. The corresponding merge is shown in the upper part of
Figure 12(b).

The elements of the produced model M1+M2 are further matched
with the elements of M3, and their similarity measures are shown
on the corresponding arcs in Figure 12(b). Again, we only show the
results of comparison for pairs that share at least one common prop-
erty. Matched pairs are marked with bold lines: ABC is matched
with BC, FG with EG and JK with IJ. The produced merge is shown
in Figure 12(c).

It can be seen that the n-way solution that corresponds to the
merge in this figure has five tuples: (AB, AC, BC), (IJ, IM), (JK,
IK), (EH, EF) and (FG, EG). The weight of the first tuple is 2+2+2

3∗3 =
2
3

, while the weight of the other four is 2+2
3∗3 = 4

9
. Thus, the over-

all weight of the solution is
2
3
+4∗ 4

9
5

= 22
45

= 0.48. However, when
looking at all three models simultaneously, it becomes apparent that
the element IJ should better be matched with JK rather than IM, be-
cause then they later can be matched with IK, constituting a tuple
(IJ, JK, IK). The property M is an “outlier” and matching with the
only element that contain this property will decrease the quality of
the final result. The same reasoning holds for the element EF – it
should be matched with FG rather than with EF.

Figure 13(a) shows such matching, produced by our n-way match
algorithm. It has three tuples (AB, AC, BC), (IJ, JK, IK) and (FG,
EF, EG). Each tuple’s weight is 2+2+2

3∗3 = 2
3

, and thus the weight
of this solution is 2

3
as well, which is larger than 22

45
of the previous

one. Figure 13(b) shows the corresponding merge. Apart of the
quantitative comparison between the two, it can be seen that this
result is visually simpler.

Conclusion. We showed that n-way merging produces results that
are better than those obtained by the pairwise approach. We also
showed that a heuristic for picking the order in which models are
merged can fail if models are pairwise similar. Even though we do
not theoretically compare the pairwise and the n-way approaches
for model merging, our example shows that the pairwise approach
is at least by 11

15
worse than the n-way counterpart ( 22

45
vs 2

3
).

B 
C 

A 
D 

I 
K 

E 
G 

M3 

A 
C 

J 
K 

I 
M 

E 
F 

M2 M1 

A 
B 

I 
J 

E 
H 

F 
G 

(a) N-way matching.

E 
H 

I 
M 

A 
D 
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B [M1,M3] 

C [M2,M3] 

I [M1,M3] 
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(b) N-way merging.

Figure 13: An n-way merge of the models M1, M2 and M3 in
Figure 11.

6. OPEN ISSUES AND FUTURE WORK
The main problem of our Alloy implementation is its scalabil-

ity: the implementation will clearly not work for input models of a
reasonable size. In fact, any implementation that is based on enu-
merating the tuples and constructing all possible solutions will not
scale well, as these are exponential to the number of input model
elements. We thus need to devise efficient exact or approximate
solutions for the n-way merging. Moreover, for approximate so-
lutions, it is important to show that they perform better than the
pairwise merging approach – a reasonable approximation as well.

Specifically, the following three steps are main tasks of our fu-
ture work:

1. Theoretically evaluate the approximation factor of the pair-
wise merging solution.

2. Devise an efficient n-way merging algorithm and theoreti-
cally evaluate it against the pairwise approach.

3. Implement the algorithm from step 2 and empirically evalu-
ate it against the pairwise solution on a large set of real and
randomly generated case studies.

7. SUMMARY AND CONCLUSIONS
In this report, we discussed the problem of merging n input mod-

els. We showed that the pairwise approach to merging the models
one-by-one can miss the “global picture” and produce a result that
is inferior to an approach that considers all input models simultane-
ously. We thus defined an n-way modeling framework that consist
of n-way compare, match and merge operators. We formally spec-
ified the properties of these operators and instantiated them for the
case of combining related products into an SPL representation, us-
ing the Alloy Analyzer. We used the operational implementations
of the framework to analyze the differences between the pairwise
and the n-may merging approaches on two concrete examples. We
also showed that heuristics for choosing the order in which input
models are merged can be ineffective, as in some cases input mod-
els are pairwise similar. Finally, we discussed issues related to the
implementation of the n-way merge and outlined future steps for
continuing this work.
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