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ABSTRACT
The design and development of applications and systems is
a multistep process involving developers and stakeholders.
During the development lifecycle, numerous diagrams are
often created in order to aid the developers and commu-
nicative process with stakeholders. Some diagrams become
overly complex and are not comprehensible by stakeholders.
To remedy this, developers can cluster elements from the di-
agram together and remove elements that only serve in the
development of the system but don’t lend to its high-level
semantics. We propose a novel method for identifying clus-
ters in relational diagrams using a highly tailored version
of the min-cut algorithm in addition to WordNet which will
define the density of a cluster. We discuss the benefits of us-
ing such a method and our vision for an IDE that can make
use of abstraction to lessen the comprehensibility burden on
software developers and stakeholders.

1. INTRODUCTION
Detailed diagrams such as ER and UML class diagrams are
an essential part of the development process. They are used
in several stages, during requirements engineering, software
design and software implementation. They are an essential
aid in communication between members of a software de-
velopment team, between different development teams and
between development teams and company executives. For
large systems, they can become very complex, and therefore
their usefulness decreases drastically, as they can become
daunting or impossible to read, understand and manage. By
abstracting the diagrams however, complex systems can be
presented in an abstract and understandable way, as cog-
nitive load is reduced [Moody, 2004]. In this paper, we
propose a novel abstraction technique based on graph clus-
tering and use of WordNet [Fellbaum, 1998].
The remainder of this paper is organized as follows. Section
2 outlines our vision of a tool wich would assist not only
in reducing cognitive load on users when viewing large dia-
grams, but serve as a bridge between functional and struc-
tural requirements of a system under desing. In Section 3 we

outline the relevant research areas to our vision. In Section 4
we describe a novel approach of abstracting large diagrams,
and in Section 5 we describe our experiments using this ap-
proach. Finally, in Section 6 we outline the conclusions we
reached regarding our approach.

2. VISION
The Software Development process consists of the following
steps:

- Requirements Capturing and Engineering

- Software Design

- Implementation and Integration

- Testing

- Deployment

- Maintenance

There are multiple iterations of each step. During the de-
sign of a product, developers use requirements analysis to
derive functional requirements before proceeding to struc-
tural requirements. Once structural requirements have been
finalized then the class Diagram of the overall system is also
finallized, and development of different modules of the sys-
tem is delegated to groups of developers.

In the case of large systems under development, it would be
of great assistance to a developer to be aware of the con-
text in which he is developing. He/she does not always care
about the entire system in detail, however there are times
when knowledge or understanding of other modules is very
beneficial. For this reason we propose a tool which would
display the UML class diagram of the system under devel-
opment, and allow automated abstraction of that diagram.

Given that developers do not always abstract diagrams in
a similar way, the tool should provide an option to manu-
ally edit the abstracted diagram. This could be achieved
by selecting a clustered node, expanding it, and dragging a
class to another cluster. When reaching the cluster, the en-
tity will be anchored to it automatically and the abstracted
diagram edges updated.

In interest of visualization, each cluster could be assigned
a random color, so that when unclustered, it is clear what



cluster the class belongs to. Users can manually change the
color assigned to a cluster by selecting the clustered node
and selecting another color, or change the cluster the entity
is assigned to by changing the entity color (or by drag and
drop, as mentioned above).

To tie the Requirements Analysis process with the Software
Design process, we propose that the tool would display the
UML class diagram of the system under development, along
side an interface for browsing Use Cases documented for the
system. The developer can view an abstraction of the dia-
gram as a simple graph, with nodes connected via edges and
tagged by the Entity class names in that cluster. The devel-
oper working on a specific Use Case can select the Use Case
from the browsing interface, which would result in highlight-
ing the nodes in the graph that have entities in them that
overlap with the Use Cases in question. By selecting a node
in the graph, the user can uncluster it and view the classes
that have been clustered into it in full detail, with attributes
and methods, and UML notation on the connecting edges (to
show initial relationships). Another potential use of such a
system is that a user selects nodes in a cluster and Use Cases
that interact with the selected nodes are highlighted in the
browsing window.

Figure 1: Interface layout of a system that would
allow joint Functional and Structural Design brows-
ing

3. RELATED WORK
[Vanderveken et al., 2005] describes a process of deriving ar-
chitectural descriptions from goal oriented requirement mod-
els. Understanding what modules of functional design are
relevant to structural design is the focus of [Gonzalez-Perez,
2010] work. This relationship would be imperative to sup-
port a system such as the one described in Section 2. En-
abling understanding via diagram abstraction has been a
topic that has concerned many over the years, [Moody and
Flitman, 1999, Villegas and Olivé, 2010, Rauh and Stickel,
1992, Akoka and Comyn-Wattiau, 1996, Francalanci and
Pernici, 1994, Jaeschke et al., 1994, Teorey et al., 1989,
Shoval et al., 2004] as is the visualization of large diagrams
and browsing of large graphs [Gutwenger et al., 2003]. Re-
lieving cognitive load when looking at diagrams is studied

Figure 2: Fisheye view of the diagram, with a Use
Case selected and the relevant entities highlighted
in the diagram

by [Moody, 2009, Eades and Feng, 1997] and [Sarkar and
Brown, 1992].

A number of algorithms that partition graphs using a tech-
nique called min-cut have been available as early as the
1970’s. One particular example is Karger’s Algorithm [Karger
and Stein, 1993] . This algorithm works by randomly con-
tracting nodes over an edge, converting the two nodes into
a single node. This process is repeated until only two nodes
remain. The edge between these two nodes is deemed a
min-cut. This process is repeated a large number of times,
computing a new min-cut each time. The min-cuts found by
this algorithm have little meaning in a class diagram, and
do not allow for finding min-cuts that span across multiple
edges. Another algorithm which is discussed in [Boykov and
Kolmogorov, 2004] using an augmented path technique, but
is also irrelevant due to the algorithms heavy reliance on
weight of edges.

4. A NOVEL ABSTRACTION TECHNIQUE
In this work we look at the clustering of a diagram. Research
spanning many years has been done in regards to clustering
ER diagrams, most of it focusing on the semantics of the dia-
gram, (Abstraction, Aggregation, Composition, Cardinality
of relations). In this work we do not try to continue that
approach, rather we take a step back, and look at a dia-
gram as a simple graph. We calculate candidate clusters of
nodes in this graph, and then look at the node names within
that candidate cluster to determine if the clustering density
meets an acceptable threshold.

Very often related entities in an ER or UML diagram are
named using words that belong under the same hierarchical
tree. (Note here that the tree we use is WordNet, and that
we expect a domain specific ontology would produce even
better results than in Table 3). Often, an entity that is a
part of another entity or very dependant on it uses the same
name as that second entity, concatenated with another word,
either through camelCase or under scores.



Figure 3: Architecture of our Framework

4.1 Min-Cut
We now discuss a novel method to identify min-cuts in an
graph. Our first attempt at a solution to this problem was
through the use of existing min-cut algorithms. The min-cut
algorithm works by searching through a graph to find sets
of edges that when removed from the graph, create discon-
nected partitions. Two partitions are disconnected if we can
not reach one partition from the other through traversal of
the partitions nodes. However, the existing algorithms that
we reviewed in our related works research do not perform
or partition well in terms of UML class diagrams and their
semantics.

Instead of using a pre-existing min-cut algorithm, we devel-
oped a novel min-cut algorithm that identifies min-cuts that
lead to candidate clusters in a class diagram (and other di-
agrams with similar structures and semantics, for example
ERDs). The algorithm is described below:

Input: graph
Output: candidate min-cuts
foreach node in the graph n do1

Find all possible combinations of the edges of n ;2

foreach each combination c do3

Remove the edges in c from n; if all the nodes4

connected to edges in c excluding n then
if node n is NOT reachable from any node in c5

then
if are at least 2 entities in one of the6

partitions then
return this node as this node is a7

candidate min-cut;
end8

end9

end10

Restore the removed edges.;11

end12

end13

Algorithm 1: ComputeMincuts() Computes mincuts in
a given graph

Line 2: The meaning of combination is to combine the edges
in all possible ways, assuming every possibility is equally
likely. For example, if node n has edges 1, 2 and 3, one
possible combination is the edges [2 3]. The full set of com-
binations are [1],[2],[3],[1 2], [1 3], [2 3] ,[1 2 3]. See Figure
4 for an example.

Figure 4: Removing a candidate min-cut

Line 4: This step is performed to find only a minimal set
of min-cuts, i.e we wish to ignore min-cuts composed of all
min-cuts. We essentially want the min-cut to strictly create
two partitions. This step is best explained as an example.
In Figure 5, we see four nodes, A, B,C and D. One candidate
min-cut consists of the combination of edges [1 3]. In this
scenario, we have 3 distinct partitions, C, A, D, B instead
of the desired value of two.

Figure 5: rejected min-cut that creates three parti-
tions

Instead, we consider the min-cut of 1 which results in two
partitions as seen in Figure 6 below. The min-cuts 2, 3
would have also worked.

Figure 6: accepted mincut

4.2 Discovering Candidate Clusters
Now that we have a set of candidate min-cuts, we must cut
the graph at specific min-cuts to form clusters. Some of our
discovered min-cuts will be applied to the graph, and others
will be discarded. The general idea here is to apply the out-
ermost min-cuts, i.e remove these edges from the graph, and
check if the cut partitions the graph into a cluster using the
cluster’s WordNet distance metric. If a cluster is discovered,
we remove the edges connecting the cluster from the graph.



If not, we attempt to combine this mincut with its neighbor-
ing mincuts. If we still cannot form a cluster, this min-cut
is ignored. The algorithm essentially begins processing from
the outer points of the graph and works towards the centre.

The algorithm is described below:

Input: graph, candidate min-cuts
Output: clusters
Store list of min-cuts in cuts;1

while cuts is not empty do2

foreach min-cut c in cuts do3

Temporarily remove the edges in c from the graph,4

separating the graph into two partitions;
foreach Partition p do5

Traverse through the nodes and attempt to6

locate a cut in cuts;
if a cut was reachable then7

Label p as NOT A CLUSTER;8

end9

else if p does not meet WordNet distance10

threshold then
Label p as NOT A CLUSTER;11

Mark pfor potential combination with other12

clusters;
end13

else14

Label p as CLUSTER;15

Remove the cut from the list of cuts;16

end17

end18

end19

if No clusters were found in this iteration;20

then21

Recompute the list of cuts;22

end23

end24

foreach Cluster found do25

Repeat from step 2;26

end27

Algorithm 2: IdentifyClusters() Identify clusters using
mincuts

Line 5 This step forces the algorithm to first discover nodes
on the outskirts of the graph.

Line 7 This min-cut will be returned to later, once we have
processed the min-cuts leading out of this partition.

Line 16 We do not restore the removed edges from the min-
cut here. This allows us to cluster the inner edges during
the following iterations.

Line 20 Recomputing the list of min-cuts will provide a new
list as the graph has been modified with the removal of cer-
tain min-cuts (from approved clusters).

4.3 Evaluating Cluster Density
For every candidate cluster of entities, we calculate the av-
erage minimum pairwise distance given by WordNet RiTa
[Howe, ], keeping in mind that entity names should be nouns.
We want each node name to be similar to at least another

node name in the candidate cluster.

We start by computing the pairwise distance of node names
in the candidate cluster. We break each node name into
terms (ex: madeTransactions becomes made, Transactions,
or flight attendant becomes flight, attendant), and consider
pairwise distance to be the minimum pairwise distance on
terms in each name. We compute the distance via the get-
Distance() method of the RiTa WordNet API.

This function returns the min distance between any two
senses for the 2 words in the WordNet tree (result normal-
ized to 0-1) with specified pos, or 1.0 if either is not found.

The algorithm used by RiTa procedes as follows:

Input: word1, word2
Output: shortest distance between senses of two words in

WordNet
if locate node cp, the common parent of the two lemmas, if1

one exists, by checking each sense of each lemma then
calculate minDistToCommonParent, the shortest path2

from either lemma to cp;
calculate distFromCommonParentToRoot, the length of3

the path from cp to the root of ontology;
return (minDistToCommonParent /4

(distFromCommonParentToRoot +
minDistToCommonParent));

end5

else6

return 1.0 ;7

end8

Algorithm 3: getDistance() shortest distance between
senses of two words in WordNet (normalized)

We then evaluate each pairwise distance computed and sum
over the minimum distance each node has to any other node,
averaging over all nodes, to calculate the average distance
in the cluster.

At this point we have a distance measure assigned to the
cluster. We compare this distance measure to a distance
threshold set by the user, to accept the candidate cluster or
not. In future work, we plan to automatically compute this
threshhold value from aggregate data of the diagram.

This can be applied to any diagram that is in a graph struc-
ture. For graphs such as UML class diagrams or ER dia-
grams that contain more information, preprocessing tech-
niques can be applied first that take into account relation-
ships such as abstraction, composition and aggregation, and
cardinality. After this preprocessing, our techniques can be
applied on the graph to provide another layer of abstraction.

5. EXPERIMENTATION AND RESULTS
We ran our algorithm on two diagrams to examine its per-
formance, capabilities and accuracy. It is important to note
that these diagrams were created before the algorithm and
that the diagrams were not referred to while creating the
algorithm, hence the algorithm is in no way tailored to the
diagrams.

The first diagram shown in Figure 7 represents an online



information system for medical students. The diagram was
produced in January 2012, and during this time, another
version of this diagram containing a more simplified view
of the system was also produced (Figure 8). The latter is
essentially a manually created abstraction of the original
diagram. Ideally, our automated abstraction should create
a diagram that is similar to the diagram depicted in Figure 8.
After running our algorithm on this diagram we discovered
4 clusters, as seen in Figure 9. The clusteres are labeled
numerically. Table 1 describes the resulting clusteres along
with their distance measures.

An interesting point to note is the behaviour of the Image
entity. The min-cut to this cluster were the edges Specimen-
Slide, and Specimen-Image. Two partitions are created,
however Image is not part of the partition that Slide is in
(unreachable from Slide), and is instead reachable from the
partition that Specimen is in. Hence, Image is not clustered
in cluster 3.

Table 1: Distance measures from RiTa
Cluster Description Distance Measure

1 Person 0.11
2 Specimen Media 0.03
3 Slide (cells on stained glass) 0.15
4 Student exercise/test 0

The clusters form an accurate representation and coincide
with our expectations from the simplified view diagram, with
the exception that cluster 4 could have been split into an ad-
ditional cluster (although this could be debated depending
on the person that partitions the graph) and User Group
would be better represented in cluster 1.

The second diagram that we tested our algorithm on is a
representation an airport management system and can be
viewed in Figure 10. Unlike the diagram above, we did not
have a simplified view for this diagram. Instead, we asked
two users (experienced in UML class diagrams), who had
never seen the diagram to attempt to manually cluster it.
The results are shown in Figure 13 and Figure 12 (ideally
this task would have been performed by the software engi-
neers who originally created this diagram). Our algorithm
found 5 clusters in this diagram which can be seen in Figure
??. The clusters are labeled numerically. Table 2 describes
the resulting clusteres along with their distance measures.

Table 2: Distance measures from RiTa
Cluster Description Distance Measure

1 Flight Technical Servicing 0.36
2 Staff 0
3 Flight meta data 0.375
4 Scheduling 0
5 Transaction and money handling 0.4

Once again, the clusters form an accurate representation of
the graph. We expect that the entity Aircraft would be
better represented outside of cluster 1. Our results match
up very well with the manual clustering performed by the
users with minor differences of adding/removing an entity

or two between clusters. The biggest difference is that the
first user in Figure 13 clustered Flight Schedule and Flight
Done together with cluster 3, whereas the second user in
Figure 12 clustered these nodes in a separate cluster as our
automated system has done.

Shown in Table 3 is an example of pairwise distance mea-
sures for entities in the proposed cluster. For the distance
measures in Table 3, we assigned the distance metric of
0.4047619 to the candidate cluster. The distance measure
0.4047619 is enough to accept the candidate cluster given
that our tolerance threshold is 0.5. We noticed however
that some of the distances calculated were not optimal (get-
Distance(madeTransactions, transactions) should have been
0 ideally), and propose a solution to this in Conclusions.

6. CONCLUSION
This paper describes our first attempt at a novel graph clus-
tering algorithm for abstracting relational diagrams. We use
a highly tailored version of the popular min-cut algorithm
to identify candidate clusters in diagrams and WordNet to
evaluate similarity of concepts in names of nodes clustered.
While much more development is required for the algorithm
to be robust, accurate and optimized, we have shown that
our algorithm produces positive results and demonstrates
that word hierarchies have relevance to relational diagram
abstraction. In the following sections we describe improve-
ments to be done in future work.

6.1 Calculating Distance
Semantic similarity or distance measures of words in a the-
saurus of words is still a hot area in research. We used the
getDistance() function provided by the RiTa API but agree
that the results are not always intuitive. In future work we
will explore different distance computing algorithms.

6.2 Automated Distance Threshold
Instead of having the user set a distance threshold, the
threshold can be automatically computed. The problem now
is determining whether that distance shows high or low sim-
ilarity given the context defined by all entity names used in
the diagram. For example: Are chair and table similar or
not? True, they will have a distance metric. How does that
compare to the largest pairwise distance of words used in the
diagram? If the diagram touches on a very broad ontology,
then chair and table are extremely similar, and therefore
make should ideally be clustered together. If all words in
the diagram are furniture related, the greatest pairwise dis-
tance will still be small, making chair and table much less
similar and much less probable to be clustered.

6.3 Creating Subgraphs
In our current algorithm, the system finds candidate clus-
ters and gives them an inter cluster distance measure. If
the distance measure doesnt exceed a threshold, we accept
that cluster as a reasonable one. Consider now the case
where within a proposed cluster, all node names are similar
but one. Currently, the whole candidate cluster will be dis-
carded. There should be an extension in the algorithm that
allows for creation of subclusters.



Table 3: Distance measures from RiTa
Entity names waiting List transactions madeTransaction cashier customer reservation

waiting List - 0.625 0.2857143 0.8 0.85714287 0.375
transactions 0.625 - 0.75 0.875 0.875 0.625

madeTransaction 0.2857143 0.75 - 0.8333333 0.85714287 0.375
cashier 0.8 0.875 2356 - 0.42857143 0.625

customer 0.85714287 0.875 0.85714287 0.42857143 - 0.7
reservation 0.375 0.625 0.375 0.625 0.7 -

6.4 Strictness of Abstraction
Depending on the purpose of the diagram, the user might
need to see a different level of abstraction. Different pur-
poses could be to see what packages should be created dur-
ing development, to view a high level overview of a system
to present to a boardroom meeting, or just for the sake of
understanding the diagram, in which increasing levels of ab-
straction would also help. Depending on the level of ab-
straction the user wants, the user should be able to specify
the minimum number of nodes that should be placed in a
cluster.

6.5 Advanced Min-Cut Discovery/Combination
Our current technique for discovering min-cuts in a graph,
while producing accurate results, represents only a first at-
tempt at a solution. One fairly large issue that our approach
has is its difficulty in identifying clusters where a single min-
cut is split across multiple nodes. Currently, we approach
this problem by recursively executing the min-cut algorithm,
each time with various cuts removed which produces a simi-
lar result, however a more accurate and optimized approach
would be one that could locate all candidate min-cuts dur-
ing the first execution. Additionally, we require a more ad-
vanced technique for the combination of min-cuts to form
clusters. As mentioned in this paper, we currently only
try to merge cuts that are adjacent, however this approach
will produce inaccurate results when the clusters relating to
three or more min-cuts need to be merged.

One technique we are considering is: For a node n identify
the edge combinations as performed in the current approach.
If no disconnection is found between n and it’s neighboring
nodes, recursively search through the other edges of n and
attempt to locate paths to the disconnected edges. If pat-
terns of common nodes appear high up in the path hierarchy
(close to node n), the edge related to these nodes can be ap-
pended to the current combination to form a mincut, given
that they form a disconnection.

6.6 Advanced testing
We would like to perform additional testing once we have
resolved a number of issues described in this section. Specif-
ically, we would like to test our algorithm on much larger
diagrams, and bring in a larger set of users to form a detailed
comparison between our automated clustering and manual
clustering performed by the users.
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APPENDIX

Figure 7: Medical information system

Figure 8: Simplified medical information system



Figure 9: Automated abstraction of medical infor-
mation system

Figure 11: Automated abstraction of an airline man-
agement system

Figure 12: Abstraction solution performed by User
1



Figure 13: Abstraction solution performed by User
2



Figure 10: Diagram of an airline management system


