
Hybrid Concolic Testing∗

Rupak Majumdar
CS Department, UC Los Angeles, USA

rupak@cs.ucla.edu

Koushik Sen
EECS Department, UC Berkeley, USA

ksen@cs.berkeley.edu

Abstract

We present hybrid concolic testing, an algorithm that in-
terleaves random testing with concolic execution to obtain
both a deep and a wide exploration of program state space.
Our algorithm generates test inputs automatically by inter-
leaving random testing until saturation with bounded ex-
haustive symbolic exploration of program points. It thus
combines the ability of random search to reach deeppro-
gram states quickly together with the ability of concolic test-
ing to explore states in a neighborhood exhaustively. We
have implemented our algorithm on top of CUTE and ap-
plied it to obtain better branch coverage for an editor im-
plementation (VIM 5.7, 150K lines of code) as well as a
data structure implementation in C. Our experiments sug-
gest that hybrid concolic testing can handle large programs
and provide, for the same testing budget, almost 4× the
branch coverage than random testing and almost 2× that
of concolic testing.

Categories and Subject Descriptors: D.2.5 [Software En-
gineering]: Testing and debugging.
General Terms: Verification, Reliability.
Keywords: directed random testing, concolic testing.

1 Introduction

Testing is the primary way to find bugs in software. Test-
ing using manually generated test cases is the primary tech-
nique used in industry to improve reliability of software—in
fact, manual testing accounts for 50–80% of the typical cost
of software development. However, manual test input gen-
eration is expensive, error-prone, and usually not exhaus-
tive.

With the increasing power of computers and advances in
theorem proving and constraint solving technologies, there
has been a renewed interest in automated testing. A sim-
ple and often effective technique for automated testing is

∗This research was sponsored in part by the grants NSF-CCF-0427202
and NSF-CCF-0546170.

random testing [3, 22, 12, 5, 7, 23]. Random testing gen-
erates a large number of inputs randomly. The program is
then run on those inputs to check if programmer written as-
sertions hold, or in the absence of specifications, if a wide
range of program behaviors including corner cases are exer-
cised. Random testing scales well in the sense that the time
taken to run the program on an input does not incur addi-
tional overhead beyond program execution. However, ran-
dom testing does not guarantee correctness, and more dis-
turbingly, the range of behaviors covered for large programs
is often vanishingly small in comparison to all the possible
behaviors of the program. As a consequence, many bugs re-
main after random testing. Thus, while random testing can
reachdeep states of the program state space by executing
a large number of very long program paths quickly, it fails
to be wide, that is, to capture a large variety of program
behaviors.

The inadequacy of random test input generation has led
to severalsymbolic techniques that execute a program using
symbolic values in place of concrete inputs [19, 6, 30, 28,
2, 32, 33]. Precisely, the program is supplied symbolic con-
stants for inputs, and every assignment along an execution
path updates the program state with symbolic expressions
and every conditional along the path generates a constraint
in terms of the symbolic inputs. The goal is then to generate
concrete inputs that satisfy the constraints generated along
a symbolic execution path: these inputs are guaranteed to
execute along this path. Moreover, different symbolic ex-
ecutions generate different program behaviors, leading to
better coverage.

Recently,concolic testing [14, 25, 4] has been proposed
as a variant of symbolic execution where symbolic execu-
tion is run simultaneously with concrete executions, that
is, the program is simultaneously executed on concrete and
symbolic values, and symbolic constraints generated along
the path are simplified using the corresponding concrete val-
ues. The symbolic constraints are then used to incremen-
tally generate test inputs for better coverage by conjoining
symbolic constraints for a prefix of the path with the nega-
tion of a conditional taken by the execution. The primary
advantage of concolic execution over pure symbolic simu-



lation is the presence of concrete (data and address) values,
which can be used both to reason precisely about complex
data structures as well as to simplify constraints when they
go beyond the capability of the underlying constraint solver.

In practice, however, both for symbolic and concolic ex-
ecution, the possible number of paths that must be consid-
ered symbolically is so large that the methods end up ex-
ploring only small parts of the program state space, and
those that can be reached by “short” runs from the ini-
tial state, in reasonable time. Furthermore, maintaining
and solving symbolic constraints along execution paths be-
comes expensive as the length of the executions grow. Thus
previous applications of these techniques have been limited
to small units of code [25] and path lengths of at most about
fifty thousand basic blocks [18]. That is, althoughwide, in
that different program paths are explored exhaustively, sym-
bolic and concolic techniques are inadequate in exploring
thedeep states reached only after long program executions.

This is unfortunate, since concolic techniques hold most
promise for larger and complicated pieces of code for which
generating test suites with good coverage of corner case be-
havior is most crucial. A natural question then is how to
combine the strengths of random testing and concolic sim-
ulation to achieve botha deep and a wide exploration of the
program state space.

We presenthybrid concolic testing, a simple algorithm
that interleaves the application of random tests with con-
colic testing to achieve deep and wide exploration of the
program state space. From the initial program state, hy-
brid concolic testing starts by performing random testing
to improve coverage. When random testingsaturates, that
is, does not produce any new coverage points after run-
ning some predetermined number of steps, the algorithm
automatically switches to concolic executionfrom the cur-
rent program state to perform an exhaustive bounded depth
search for an uncovered coverage point. As soon as one is
found, the algorithm reverts back to concrete mode. The
interleaving of random testing and concolic execution thus
uses both the capacity of random testing to inexpensively
generate deep program states through long program execu-
tions and the capability of concolic testing to exhaustively
and symbolically search for new paths with a limited looka-
head.

The interleaving of random and symbolic techniques is
the crucial insight that distinguishes hybrid concolic testing
from a näıve approach that simply runs random and con-
colic tests in parallel on a program. This is because many
programs show behaviors where the program must reach a
particular states and then follow a precise sequence of in-
put eventsσ in order to get to a required coverage point.
It is often easy to reachs using random testing, but not
then to generate the precise sequence of eventsσ. On the
other hand, while it is usually easy for concolic testing to

generateσ, concolic testing gets stuck in exploring a huge
number of program paths before even reaching the states.
We give a few examples of this behavior. For example, in
a web server, each connection maintains a state machine
that moves the server between various states: disconnected,
connected, reading, etc. Random testing can provide the in-
puts necessary to reach particular states of the machine, for
example, when the server is processing a request, by gen-
erating inputs that exercise the “common case.” However,
from a particular state, the server can consider a specific
sequence of events to account for application specific rules
(for example, the server must disconnect if a user name that
is not registered requests a special command) which are not
found by randomly setting the inputs. Similarly, in a text
editor, random inputs can get the system into a state where
there is enough data in the editor’s buffers so that certain
commands (for example, delete lines or format paragraphs)
are enabled.

As the examples indicate, hybrid concolic testing is most
suitable for testingreactive programs that periodically get
input from their environment. Examples of such programs
include editors, network servers, simple GUI based pro-
grams, event based systems, embedded systems, and sensor
networks. On the other hand,transformational programs,
that get some fixed input initially, are not suitable for hy-
brid concolic testing, since the future behavior cannot be af-
fected by symbolic execution after the initial input has been
set.

In the end, hybrid concolic testing has the same limita-
tions of symbolic execution based test generation: the dis-
covery of uncovered points depends on the scalability and
expressiveness of the constraint solver, and the exhaustive
search for uncovered points is limited by the number of
paths to be explored. Therefore, in general, hybrid concolic
testing may not achieve 100% coverage, although it can im-
prove random testing considerably. Further, the algorithmis
not a panacea for all software quality issues. While we pro-
vide an automatic mechanism for test input generation, all
the other effort required in testing, for example, test oracle
generation, assertion based verification, and mock environ-
ment creation still have to be performed as with any other
test input generation algorithm. Further, we look for code
coverage, which may or may not be an indicator of code
reliability.

We have implemented hybrid concolic testing on top of
the CUTE tool for concolic testing [25] and applied it to
achieve high branch coverage for C programs. In our pre-
liminary experiments, we compare random, concolic, and
hybrid concolic testing on the VIM text editor (150K lines
of C code) and on an implementation of the red-black tree
data structure. Our experiments indicate that for a fixed test-
ing budget, hybrid concolic testing technique outperforms
both random and concolic in terms of branch coverage, of-



void testme() {
char * s;
char c;
int state = 0;

while (1) {
c = input();
s = input();

/ * a simple state machine * /
if (c == ’[’ && state == 0) state = 1;
if (c == ’(’ && state == 1) state = 2;
if (c == ’ {’ && state == 2) state = 3;
if (c == ’˜’ && state == 3) state = 4;
if (c == ’a’ && state == 4) state = 5;
if (c == ’x’ && state == 5) state = 6;
if (c == ’ }’ && state == 6) state = 7;
if (c == ’)’ && state == 7) state = 8;
if (c == ’]’ && state == 8) state = 9;

if (s[0] == ’r’ && s[1] == ’e’
&& s[2] == ’s’ && s[3] == ’e’
&& s[4] == ’t’ && s[5] == 0
&& state == 9) {

ERROR;
} } }

Figure 1. A simple function

ten getting almost 2× the coverage achieved by either ran-
dom or concolic testing alone. These results, together with
the relative ease with which hybrid concolic testing can be
implemented on top of existing random and concolic testers,
demonstrate that hybrid concolic testing is a robust and scal-
able technique for automatic test case generation for large
programs.

2 Motivating Example

We illustrate the benefits of hybrid concolic testing us-
ing the simple functiontestme shown in Figure 1. The
function, which runs in an infinite loop, receives two in-
puts in each iteration. One input is a 8-bit character and
the other input is a string. The function gets into an error
state if the variablestate is 9 and the inputs is the string
‘‘reset’’ . Such functions are often generated by lex-
ers. In the vim editor, we also found more complex forms
of similar functions.

To test the functiontestme , if we generate random
values forc ands , then after a few thousands of iterations
the variablestate will become 9 with high probability.
However, the probability thats will be ‘‘reset’’ is
extremely low. As such the probability that theERROR
statement will be hit after a large number of iterations is
negligibly small. Therefore, for all practical purposes,
random testing would not be able to reveal theERRORin
the testme function. This is true even if we bias random

testing by restricting the values that a character can take to
the set{’[’, ’]’, ’ {’, ’ }’, ’(’, ’)’, ’ ’,
’a’, ’x’, ’r’, ’e’, ’s’, ’e’, ’t’, 0 }.
This is because the probability of randomly generating the
string ‘‘reset’’ is 1/156 ≈ 10−7.

A better alternative that can reveal the error intestme
is concolic testing, which will systematically explore all
possible execution paths of the functiontestme by gen-
erating test inputs from symbolic constraints that force ex-
ecution along particular program paths. Since the function
testme runs in an infinite loop, the number of distinct fea-
sible execution paths is infinite. Therefore, to perform con-
colic testing we need to bound the number of iterations of
testme if we perform depth-first search of the execution
paths, or we need to perform breadth-first search. The num-
ber of possible choices of values ofc ands that concolic
testing would consider in each iteration is 17. Moreover, at
least 9 iterations are required to hit theERROR. Therefore,
concolic testing will explore approximately179 ≈ 1011

paths before it can hit theERROR. Therefore, concolic test-
ing is unlikely to reveal theERRORin testme in a reason-
able amount of time.

In hybrid concolic testing, we exploit the fact that ran-
dom testing can take us in a computationally inexpensive
way to a state in whichstate=9 and then concolic testing
can enable us to generate the string‘‘reset’’ through
exhaustive search. The random testing phase takes a cou-
ple of minutes to reachstate=9 . After that there will be
no increase in the coverage and hybrid testing will start the
concolic testing phase. In the concolic testing phase, con-
colic testing will generate the string‘‘reset’’ in a sin-
gle iteration after exploring 7 feasible execution paths. As
a result hybrid concolic testing will usually hitERRORin a
couple of minutes.

We validated this fact by testing the functiontestme
using all the three methods–pure random testing, pure con-
colic testing, and hybrid concolic testing. We found that
both pure random testing and pure concolic testing was not
able to hit theERRORafter one day of testing. However,
hybrid concolic testing was able to hit the bug within two
minutes on a 2GHz Pentium M laptop with 1GB RAM.

Figure 2 provides an informal comparison between con-
colic testing and hybrid concolic testing. The boxes repre-
sent the entire program state space, with particular coverage
points shown using bold squares. The initial program state
is the filled circle. Figure 2(a) shows concolic testing. After
an initial random run (shown using the thin jagged lines),
constraint solving tries to exhaustively search part of the
state space. In this way, concolic testing does eventually hit
the coverage points in the vicinity of the random execution,
but the expense of exhaustive searching means that many
other coverage points in the program state space can remain
uncovered while concolic testing is stuck searching one part



(b)(a)

Figure 2. Comparison between (a) concolic and (b) hybrid concolic testing

of the state space exhaustively. In contrast, hybrid concolic
testing (Figure 2(b)) switches to inexpensive random test-
ing as soon as it identifiessome uncovered point, relying on
fast random testing to explore as much of the state space as
possible. In this way, it avoids expensive constraint solv-
ing to perform exhaustive search in some part of the state
space. Moreover, if random testing does not hit a new cov-
erage point, it can take advantage of the locally exhaustive
search provided by concolic testing to continue from a new
coverage point.

3 Algorithm

We now present the algorithm for hybrid concolic testing
preceded by a description of the programming model and a
brief recapitulation of concolic testing.

3.1 Programs and Concrete Semantics

We illustrate the hybrid concolic testing algorithm on an
imperative programming language. The operations of the
programming language consist of labeled statements` : s.
Labels correspond to instruction addresses. A statement is
either (1) the halt statementhalt denoting normal program
termination, (2) aninput statement ` : m := input() that
gets an external input into the lvaluem, (3) an assignment
m := e wherem is an lvalue ande is a side-effect free ex-
pression, (4) a conditional statementif(e)goto ` wheree is
a side-effect free expression and` is a program label, and
(5) anabort statement signifying program error. Execution
begins at the program label`0. For a labeled assignment
statement̀ : m := e or input statement̀ : m := input()
we assumè + 1 is a valid label, and for a labeled condi-
tional ` : if(e)goto `′ we assume both̀′ and` + 1 are valid
program labels.

The set ofdata values consists of program memory ad-
dresses and integer values. The semantics of the program

is given using amemory consisting of a mapping from pro-
gram addresses to values. Execution starts from the initial
memoryM0 which maps all addresses to some default value
in their domain. Given a memoryM , we writeM [m 7→ v]
for the memory that maps the addressm to the valuev and
maps all other addressesm′ to M(m′).

Statements update the memory. The concrete semantics
of the program is given in the usual way as a relation from
program location and memory to an updated program loca-
tion (corresponding to the next instruction to be executed)
and updated memory [21]. For an assignment statement
` : m := e, this relation calculates, possibly involving ad-
dress arithmetic, the addressm of the left-hand side, where
the result is to be stored. The expressione is evaluated to
a concrete valuev in the context of the current memoryM ,
the memory is updated toM [m 7→ v], and the new program
location is` + 1. For an input statement` : m := input(),
the transition relation updates the memoryM to the mem-
ory M [m 7→ v] wherev is a nondeterministically chosen
value from the range of data values, and the new location
is ` + 1. For a conditional̀ : if(e)goto `′, the expression
e is evaluated in the current memoryM , and if the evalu-
ated value is zero, the new program location is`′ while if
the value is non-zero, the new location is` + 1. In either
case, the new memory is identical to the old one. Execution
terminates normally if the current statement ishalt, abnor-
mally if the current statement isabort.

The nondeterminism introduced byinput statements is
resolved by using aninput map. An input mapIMap is a
function that specifies values for inputs based on the ex-
ecution history of the program. Therandom input map
Random generates a value at random every time a concrete
input is requested and returns this random value. We as-
sume that the concrete semantics of the program is imple-
mented as a functionConcrete that takes a program loca-
tion, a memory, and an input map, and returns a new pro-
gram location and a new memory or terminates the program.



3.2 Concolic Testing

We now recapitulate the concolic testing algorithm from
[14, 25]. Concolic testing performs symbolic execution of
the program together with its concrete execution. It main-
tains asymbolic memory map µ and asymbolic constraint
ξ in addition to the memory. These are filled in during the
course of execution. The symbolic memory map is a map-
ping from concrete memory addresses to symbolic expres-
sions, and the symbolic constraint is a first order formula
over symbolic terms. The details of the construction of the
symbolic memory and constraints is standard [28, 14, 25].
That is, at every statement` : m := input(), the symbolic
memory mapµ introduces a mappingm 7→ αm from the
addressm to a fresh symbolic valueαm, and at every as-
signment̀ : m := e, the symbolic memory map updates the
mapping ofm to µ(e), the symbolic expression obtained by
evaluatinge in the current symbolic memory. The concrete
values of the variables (available from the memory mapM )
are used to simplifyµ(e) by substituting concrete values
for symbolic ones whenever the symbolic expressions go
beyond the theory that can be handled by the symbolic de-
cision procedures.

The symbolic constraintξ is initially true. At every
conditional statement̀ : if(e)goto `′, if the execution takes
the then branch, the symbolic constraintξ is updated toξ ∧
(µ(e) 6= 0) and if the execution takes the else branch, the
symbolic constraintξ is updated toξ ∧ (µ(e) = 0). Thus,
ξ denotes a logical formula over the symbolic input values
that the concrete inputs are required to satisfy to execute the
path executed so far.

Given a concolic program execution, concolic testing
generates a new test in the following way. It selects a con-
ditional ` : if(e)goto `′ along the path that was executed
such that (1) the current execution took the “then” (respec-
tively, “else”) branch of the conditional, and (2) the “else”
(respectively, “then”) branch of this conditional is uncov-
ered. Letξ` be the symbolic constraint just before execut-
ing this instruction andξe be the constraint generated by
the execution of this instruction. Using a decision proce-
dure, concolic testing finds a satisfying assignment for the
constraintξ`∧¬ξe. The property of a satisfying assignment
is that if these inputs are provided at each input statement,
then the new execution will follow the old execution up to
the location`, but then take the conditional branch oppo-
site to the one taken by the old execution, thus ensuring that
the other branch gets covered. The satisfying assignment
is used to define a new input map for the next run of the
program. Suppose that there arek symbolic variables in the
symbolic constraint, arranged in chronological order (that
is, the symbolic inputαi was introduced for theith input

statement along the execution). Then, the next time the pro-
gram is executed, theith execution of aninput statement for

i ≤ k will return the value of variableαi from the satisfying
assignment, and fori > k will return a random value.

We assume that concolic testing is implemented as a
functionConcolic that takes as input a program location and
an initial memory map and returns a new input map. Such a
function is easily obtained by wrapping existing implemen-
tations [14, 25].

3.3 Hybrid Concolic Testing: Schema

In hybrid concolic testing, random or biased random
testing phases (that explore deep states of the program)
are interleaved with concolic testing (that ensure com-
plete coverage for a shallow neighborhood). Algorithm 1
shows a non-deterministic version of the hybrid concolic
testing algorithm, where we have abstracted out certain
implementation-dependent heuristics. The algorithms takes
a program and a set of coverage goals (for example, branch
coverage), and performs coverage-driven test input gener-
ation. The main loop of the algorithm (lines 1–15) runs
while there are unsatisfied coverage goals (or, in practice,
until resources run out or coverage goals are met). Each
iteration of the loop starts with the initial location of the
program, the initial memory mapM0 and the random in-
put map (line 2) and runs the program until the program
halts or hits abort. Each step of the execution is chosen ac-
cording to some heuristic to be either a concrete execution
(line 9), when the previous symbolic states are discarded
and only the concrete semantics is followed, or a concolic
execution starting with the current symbolic state (lines 11–
13). The concolic execution first checkpoints the current
concrete execution state (line 11), and starts running a con-
colic testing algorithm from the current state with the aim
of hitting some unsatisfied coverage goals. When the con-
colic execution returns (either because it finds a new input
to an uncovered coverage goal or because some resource
budget is exhausted), the program state is restored but the
input map is updated to be the new input that is guaranteed
to hit a new coverage point (or, if resources were exhausted,
generates random inputs). This has the effect of putting the
execution back at the concrete state while setting (using the
concolic execution) the future values of symbolic inputs to
ensure that a new uncovered coverage goal is reached.

The test continues until the program terminates or a bug
is found. At that point, if there are further uncovered cov-
erage goals, the outer while loop restarts a new hybrid con-
colic execution.

3.4 Hybrid Concolic Testing: Algorithm

Algorithm 2 shows a deterministic version of Algo-
rithm 1 where we instantiate the nondeterministic choices
of Algorithm 1 with particular heuristics. Instead of choos-



Algorithm 1 Algorithm HCT (nondeterministic)
Input: programP , set of coverage goalsGoals.

1: while Goals 6= ∅ do
2: ` = `0, M = M0, IMap = Random

3: while nondet do
4: if stmt at(`) = halt then
5: break
6: if stmt at(`) = bug then
7: return bug

8: if nondet then
9: (`,M) = Concrete(`,M, IMap)

10: remove covered goals fromGoals

11: else
12: snapshot(M)
13: IMap = Concolic(`,M)
14: M = restore()
15: endwhile
16: endwhile

ing a random step or a concolic step at each iteration, the al-
gorithm maintains a counteriter and runs the random steps
until convergence, that is, until no new coverage goal has
been discharged in the lastθ2 input instructions executed
in the random testing. The condition in thewhile loop on
line 4 ensures that we switch to concolic mode only at an
input statement afterθ2 input statements have gone by with-
out seeing a new coverage goal. At this point, the algorithm
switches to the concolic mode, by first taking a snapshot of
the current state and then running concolic execution from
the current node, looking for a new uncovered goal. Once
a new uncovered goal is found, the input map is updated
and the program state is restored. The counter is reset and
the loop starts executing the random mode again. Notice
however that in this mode, the first inputs returned by the
input map have been carefully selected by the concolic en-
gine to hit an uncovered coverage point. Again, the algo-
rithm continues running till a bug is found or at least some
θ1 fraction of coverage goals are met (or resource bounds
are exhausted).

Snapshot and restore. The only remaining technical issue
is the implementation of checkpointing and restoring states
through the functionssnapshot and restore. We use pro-
cess creation through the system callfork to achieve check-
pointing. Precisely, in our implementation, at the point we
need to snapshot the current state, we fork off a child pro-
cess. The child process starts with an exact copy of the
parent’s state and performs the concolic execution from the
current locatioǹ . At the end of the concolic execution, the
child transmits the new logical input map back to the par-
ent and dies. Meanwhile, the parent blocks waiting for the
new logical input map. When it receives the new map, the
parent continues executing the rest of the testing loop. The

Algorithm 2 Algorithm HCT

Input: programP , set of coverage goalsGoals.
1: while Goals 6= ∅ do
2: ` = `0, M = M0, IMap = Random

3: iter = 0
4: while iter < θ2 or stmt at(`) is notx := input() do
5: if stmt at(`) = halt then
6: break
7: if stmt at(`) = bug then
8: return bug

9: (`,M) = Concrete(`,M, IMap)
10: remove covered goals fromGoals

11: if coverage has increasedthen
12: iter = 0
13: else
14: if stmt at(`) is x := input() for somex then
15: iter = iter + 1
16: endwhile
17: if iter = θ2 then
18: snapshot(M)
19: IMap = Concolic(`,M)
20: M = restore()
21: goto 3
22: endwhile

net effect is that the parent maintains the program state, gets
an updated logical input map through the concolic testing,
and can continue executing from the current state using this
input map.

4 Experiments

We have implemented hybrid concolic testing on top of
CUTE, a concolic unit testing engine for C [25]. In this
section, we report the results of our experiments with two
programs– an implementation of the red-black tree data
structure, and the popular text editor VIM.

For each program, we describe the experimental setup
and the results of comparing hybrid concolic testing to ran-
dom testing1 and (pure) concolic testing. We conducted the
experiments on a 2GHz Pentium M laptop running Win-
dows XP with 1 GB RAM. In our experiments, we report
the relative branch coverage (which we will simply call
coverage), i.e., the ratio of the total number of branches
exercised during testing and the total number of branches
present in the functions touched during testing. Relative
coverage is important for the testing of red black tree be-
cause the implementation of red black tree is part of a large
data structure library. Since we do not invoke the functions
of other data structures during testing of the red black tree,

1We only consider uniform random testing where the input space is
sampled uniformly at random.



typedef struct rbtree {
int i;
struct rbtree * left = NULL;
struct rbtree * right = NULL;
char color;

} rbtree;

void testme() {
int toss;
rbtree * elem, * tmp, * root = NULL;

while(1) {
CUTE_input(toss);
if(toss<0) toss = -toss;
toss = toss % 5;
switch(toss) {

case 1:
rbtree_len(root);
break;

case 2:
elem = (rbtree * )malloc(sizeof(rbtree));
CUTE_input(elem->i);
rbtree_add_if_not_member(&root,elem,&tmp);
break;

case 3:
elem = (rbtree * )malloc(sizeof(rbtree));
CUTE_input(elem->i);
rbtree_delete_if_member(&root,elem,&tmp);
break;

case 4:
elem = (rbtree * )malloc(sizeof(rbtree));
CUTE_input(elem->i);
rbtree_find_member(root,elem);
break;

default:
elem = (rbtree * )malloc(sizeof(rbtree));
CUTE_input(elem->i);
rbtree_add(&root,elem);
break;

} } }

Figure 3. Driver for testing red-black tree

the absolute branch coverage will be very low and the num-
ber will not reflect the true branch coverage within the red
black tree only. In the case of the VIM editor, we do not
symbolically track all potential inputs, such as reading from
a file. Therefore, we will not able to exercise many func-
tions whose behaviors depend on such non-tracked inputs.
By using relative branch coverage, we ignore the branches
of such unreachable functions.

4.1 Red Black Tree

In our first experiment, we considered a widely-used
implementation of the red-black tree data structure having
around 500 lines of C code. We adopted the unit testing
methodology to test this implementation. In particular, we
adopted the approach of generating data structures using a
sequence of function calls [28, 33]. This approach is based

Branch Coverage in Percentage
Seed Random Concolic Hybrid Concolic

Testing Testing Testing
523 32.27 52.48 66.67

7487 32.27 52.48 67.02
6726 32.27 52.48 66.67
5439 32.27 52.48 67.73
4494 32.27 52.48 69.86

Average 32.27 52.48 67.59

Table 1. Results of Testing Red-Black Tree

on the following observation: a data structure implements
functions for several basic operations such as creating an
empty structure, adding an element to the structure, remov-
ing an element from the structure, and checking if an ele-
ment is in the structure. A sequence of these interface oper-
ations can be used to exhaustively test the implementation.

Experimental Setup. To generate legal sequences of func-
tion calls of the red-black tree we used the manually writ-
ten test driver shown in Figure 3. The test driver runs in a
loop and calls a public function of the red-black tree in each
iteration. The function to be called in each iteration is de-
termined by an input variabletoss . We biased the random
testing so that each function call has an equal probability
of being called in an iteration. We compared pure random
testing, pure concolic testing, and hybrid concolic testing
on the test driver using five different seeds. We allotted a
time of 30 minutes for each testing experiment.

Results. Table 1 shows the results of testing the red-black
tree implementation. The first column gives the initial seed
for the random number generator used by each of the test-
ing methods. The next three columns give the percentage
of branch coverage for each of the testing methods. The
last row gives the average branch coverage for each of the
methods.

The table shows that the average branch coverage at-
tained by pure random testing is low compared to both
pure concolic testing and hybrid concolic testing. More-
over the branch coverage for random testing saturated at
32.27% for each of the five seeds. Random testing failed
to attain high branch coverage because the probability of
generating two random numbers having the same value is
very small. As such random testing was not able to gen-
erate random numbers that are already in the tree. There-
fore, the functionsrbtree delete if member and
rbtree add if not member were not explored com-
pletely.

In concolic testing we bounded the number of inputs
along each path by 10. This was required because the test
driver has an infinite loop. Note that with the increase in the
number of inputs along each path, the number of distinct
feasible execution paths increases exponentially. There-



fore, to be able to complete the exhaustive search of all the
paths in a reasonable amount of time using concolic testing,
we bounded the number of inputs along each path by 10.
Then concolic testing gave us an average branch coverage of
52.48%. Although this number is better than that of random
testing, we didn’t manage to get better coverage. This is be-
cause to attain better coverage we need longer sequences
of function call. This was also observed by D’Amorim et
al. [9]. However, longer sequences cannot be completely
tested by concolic testing due to the exponential blow-up in
the number of paths.

To address this problem, hybrid concolic testing proved
ideal. This is because the random testing mode of hybrid
concolic testing generated long function call sequences.
This resulted in the creation of large random red-black trees.
After that the concolic testing mode was able to explore
more execution paths. As a result hybrid concolic testing
attained an average branch coverage of 67.59%, which was
the highest of all the testing modes. Note that the branch
coverage is still less than 100%. After investigating the
reason for this, we found that the code contains a number
of assert statements that were never violated and a number
of predicates that are redundant and can be removed from
the conditionals. Nevertheless, the experiment supports the
claim that hybrid concolic testing, which combines the best
of both worlds, can attain better branch coverage than pure
random testing and pure concolic testing.

4.2 The VIM Editor

We next illustrate the use of hybrid concolic testing on
VIM, a popular text editor [27]. The VIM editor has 150K
lines of C code. We want to generate test inputs for VIM
for maximal branch coverage. Unlike the unit testing ap-
proaches adopted by CUTE or DART, we targeted to test
VIM as a whole system. This made the testing task chal-
lenging as the number of possible distinct execution paths
that can be exhibited by VIM as a whole system is astro-
nomically large.

VIM is a modal editor, that is, it has one mode for en-
tering text and a separate mode for entering commands. It
starts in the command mode, where the user can enter edi-
tor commands to move cursors, delete words or lines. When
certain keys are pressed (“a” or “i”), the editor enters into
insert mode, where the user can enter text. From the insert
mode, the user goes back to command mode by pressing
the ESC key. Further, in command mode, by pressing “:”
the editor goes to acommand line mode, where the next
sequence of characters pressed by the user has special com-
mand significance to the editor (for example, “:” followed
by “w” writes the current buffer back to disk). Similarly,
pressing “/” in command mode takes the editor to a search
mode, where the next sequence of characters typed by the

Branch Coverage in Percentage
Seed Random Concolic Hybrid Concolic

Testing Testing Testing
877443 8.01 21.43 41.93
67532 8.16 21.43 40.39
98732 8.72 21.43 33.67
32761 7.80 21.43 35.45
28683 9.75 21.43 40.53

Average 8.17 21.43 37.86

Table 2. Results of Testing the VIM Test Editor

user (up to a newline) is interpreted as a literal string to be
searched for in the text buffer. There is also anex mode for
more complex command lines. There are many other modes
VIM, and many other commands. For our purposes of expo-
sition, we note that VIM has the characteristics of the exam-
ple program in Figure 1: in order to hit certain branches, one
has to take the program to a certain state, and then provide
a precise sequence of inputs (which makes sense as a mode
transfer followed by a command to the editor). For exam-
ple, if we start VIM with an empty buffer, then the com-
manddd (to delete a line) is not enabled. The command
dd gets enabled after we have switched to the insert mode
through the commandi , entered some text into the buffer,
and then switched to the command mode by pressing ESC.
The random testing phase of hybrid concolic testing can
enter garbage text into the buffer easily thus enabling the
line deletion command. The concolic testing phase can then
generate the sequence ESCdd during exhaustive search.

Experimental Setup. To set up the testing experiment,
we first identified the function in the VIM code that re-
turns a 16-bit unsigned integer whenever the user presses
a key. This function, namelysafe vgetc , provides in-
puts to VIM in the normal mode and the insert mode. In
the VIM source code, we replacedsafe vgetc by the
CUTE input functionCUTEinput() . CUTEinput()
provides random values to VIM in the random testing mode
and provides values computed through constraint solving in
the concolic testing mode. We observed thatsafe vgetc
does not provide input to VIM in the Ex mode and we failed
to identify the exact low-level function that provides input
to VIM in the Ex mode. As such in our testing experiments
we were restricted to the exploration of behaviors of VIM
in the insert mode and the normal mode only. This in turn
affected the branch coverage that we obtained in the exper-
iments.

We compared pure random testing, pure concolic test-
ing, and hybrid concolic testing on the VIM source code
using five different random seeds. In each experiment we
restricted the total testing time to 60 minutes.

Results. Table 2 shows the results of testing the VIM text



editor. As in the previous example, the first column gives
the initial seed for the random number generator used by
each of the testing methods. The next three columns give
the percentage of branch coverage for each of the testing
methods. The last row gives the average branch coverage
for each of the methods.

For all the seeds for the random number generator, hy-
brid concolic testing gave better branch coverage than con-
colic testing and far better branch coverage than random
testing. After analyzing the trace for one hybrid concolic
testing experiment, we found that the random testing phases
took VIM to deep states which cannot be otherwise be led
by concolic testing. In the deep states, we found a lot
of garbage text in the buffer. The concolic testing phases
widely explored the state space near these deep states. This
resulted in comparatively larger exploration of the state
space of VIM.

Note that branch coverage obtained by hybrid concolic
testing is still much lower than 100%. This is because we
only tested the insert and the command modes of the VIM
editor and did not touch the code for the other modes. The
VIM experiment illustrates two caveats of our technique.
First, the user has to identify the appropriate boundary at
which to receive inputs for testing. This is not always easy
to do without some knowledge of the implementation. We
could only identify one input source (safe vgetc ). How-
ever, once a suitable input point is chosen, no further knowl-
edge of the implementation is required. Second, even with
some suitable input source, new coverage points may only
be hit after a long sequence of correlated input. For exam-
ple, certain configuration options may be read from a file.
In our experience, concolic testing working at the individ-
ual character level does not scale very well in these cases.
However, even with these caveats, hybrid testing performed
around4× better than random testing because VIM requires
a relatively short sequence of characters as input for a large
number of commands; nevertheless, these sequences are
long enough that they are not likely to be generated by ran-
dom testing alone.

4.3 Discussion

In hybrid concolic testing, the concolic testing phase
starts whenever random testing saturates, that is, does not
find new coverage points even after running a predeter-
mined number of steps. The presence of interleaved ran-
dom testing phases in hybrid concolic testing thus guaran-
tees that hybrid concolic testing is as good as random test-
ing. Concolic testing generates meaningful sequences of
inputs which cannot be otherwise generated by random test-
ing. This boosted the branch coverage of the whole testing
method considerably. In contrast, concolic testing was able
to explore states only near the initial state rather than the

deep states. As such in our experiments, pure concolic test-
ing performed worse than hybrid concolic testing.

5 Related Work

In order to improvetest coverage, several techniques
have been proposed to automatically generate values for the
inputs during testing. The simplest, and yet often very ef-
fective, techniques use random generation of (concrete) test
inputs [3, 22, 12, 5, 7, 23, 20]. Although it has been quite
successful in finding bugs, the problem with such random
testing is twofold: first, many sets of values may lead to the
same observable behavior and are thusredundant, and sec-
ond, the probability of selecting particular inputs that cause
buggy behavior may be astronomically small [22].

One approach which addresses the problem of redun-
dant executions and increases test coverage issymbolic ex-
ecution [19, 6]. Tools based on symbolic execution use a
variety of approaches—including abstraction-based model
checking [1, 2], parameterized unit testing [26], explicit-
state model checking of the implementation [28, 29] or of a
model [16, 31, 10], symbolic-sequence exploration [33, 24],
and static analysis [8]—to automatically generate non-
redundant test inputs. Several other approaches, such
as the chaining method[11] and the iterative relaxation
method [15], for test case generation do not use random ex-
ecution or symbolic execution. Concolic testing [14, 25, 4]
is a variation of symbolic execution where the symbolic ex-
ecution is performed concurrently with random simulation.
However, our experience with concolic testing using the
CUTE and jCUTE tools have been that all these techniques
ultimately run up againstpath explosion: programs have so
many paths that must be symbolically explored that within
a reasonable amount of time concolic testing can only ex-
plore only a small fraction of branches, those that can be
reached using “short” executions from the initial state of the
program. This was the initial motivation for our work: we
wanted to augment concolic testing so that “deep” program
states could be explored.

Our work on hybrid concolic testing is inspired by simi-
lar work in VLSI design validation [13, 17] where a combi-
nation of formal (symbolic execution or BDD based reach-
ability) and random simulation engines are combined to im-
prove design coverage for large scale industrial designs.
Our contribution is to scale the orchestration of random
and concolic testing to large software implementations. In
comparison to model based testing using model checking
[16, 10], we use random testing to seed the test, and use
concolic testing rather than abstract model checking to ex-
plore the vicinity of a state. Using concolic testing circum-
vents aliasing issues that arise in abstraction based soft-
ware model checking which makes abstract reachability
imprecise for programs that manipulate heap data struc-



tures [2], and also alleviate the capacity problem for soft-
ware model checkers. On the other hand, abstraction based
model checking can prove branches definitely unreachable
whereas our incomplete technique can only prove reacha-
bility.

References

[1] T. Ball. Abstraction-guided test generation: A case study.
Technical Report MSR-TR-2003-86, Microsoft Research,
2003.

[2] D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, and
R. Majumdar. Generating Test from Counterexamples. In
ICSE 04: International Conference on Software Engineer-
ing, pages 326–335. IEEE, 2004.

[3] D. Bird and C. Mũnoz. Automatic Generation of Random
Self-Checking Test Cases.IBM Systems Journal, 22(3):229–
245, 1983.

[4] C. Cadar and D. Engler. Execution generated test cases:
How to make systems code crash itself. InSPIN 05: Soft-
ware Model Checking, LNCS, pages 2–23. Springer, 2005.

[5] K. Claessen and J. Hughes. Quickcheck: A lightweight tool
for random testing of Haskell programs. InICFP 00, pages
268–279. ACM, 2000.

[6] L. Clarke. A system to generate test data and symbolically
execute programs.IEEE Trans. Software Eng., 2:215–222,
1976.

[7] C. Csallner and Y. Smaragdakis. JCrasher: an automatic ro-
bustness tester for Java.Software: Practice and Experience,
34:1025–1050, 2004.

[8] C. Csallner and Y. Smaragdakis. Check ’n’ Crash: Combin-
ing static checking and testing. InICSE 05: International
Conference on Software Engineering, pages 422–431. IEEE,
2005.

[9] M. d’Amorim, C. Pacheco, T. Xie, D. Marinov, and M. D.
Ernst. An empirical comparison of automated generation
and classification techniques for object-oriented unit testing.
In ASE 06: Automated Software Engineering, pages 59–68.
IEEE, 2006.

[10] G. Devaraj, M. Heimdahl, and D. Liang. Coverage-directed
test generation with model checkers: Challenges and oppor-
tunities. InCOMPSAC (1), pages 455–462. IEEE, 2005.

[11] R. Ferguson and B. Korel. The chaining approach for
software test data generation.ACM Trans. Softw. Eng.
Methodol., 5(1):63–86, 1996.

[12] J. E. Forrester and B. P. Miller. An Empirical Study of the
Robustness of Windows NT Applications Using Random
Testing. InProceedings of the 4th USENIX Windows Sys-
tem Symposium, 2000.

[13] M. Ganai, A. Aziz, and A. Kuehlman. Enhancing simula-
tion with BDDs and ATPG. InDAC 99: Design Automation
Conference, pages 385–390. ACM, 1999.

[14] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
automated random testing. InPLDI 05: Programming Lan-
guage Design and Implementation, pages 213–223. ACM,
2005.

[15] N. Gupta, A. P. Mathur, and M. L. Soffa. Automated test
data generation using an iterative relaxation method. InFSE
98: Foundations of Software Engineering, pages 231–244.
ACM, 1998.

[16] G. Hamon, L. de Moura, and J. Rushby. Generating efficient
test sets with a model checker. InSEFM 04: Software Engi-
neering and Formal Methods, pages 261–270. IEEE Press,
2004.

[17] P.-H. Ho, T. Shiple, K. Harer, J. Kukula, R. Damiano,
V. Bertacco, J. Taylor, and J. Long. Smart simulaton using
collaborative formal and simulation engines. InICCAD 00:
International Conference on Computer-Aided Design, pages
120–126. ACM, 2000.

[18] R. Jhala and R. Majumdar. Path slicing. InPLDI 05: Pro-
gramming Language Design and Implementation, pages 38–
47. ACM, 2005.

[19] J. C. King. Symbolic Execution and Program Testing.Com-
munications of the ACM, 19(7):385–394, 1976.

[20] Y. Lei and J. H. Andrews. Minimization of randomized unit
test cases. InISSRE 05, pages 267–276, 2005.

[21] J. Mitchell. Foundations for Programming Languages. MIT
Press, 1996.

[22] J. Offut and J. Hayes. A Semantic Model of Program Faults.
In ISSTA 96, pages 195–200. ACM, 1996.

[23] C. Pacheco and M. D. Ernst. Eclat: Automatic genera-
tion and classification of test inputs. InECOOP 05: Eu-
ropean Conference Object-Oriented Programming, LNCS
3586, pages 504–527. Springer, 2005.

[24] Parasoft. Jtest manuals version 6.0. Online manual, Febru-
ary 2005. http://www.parasoft.com/.

[25] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit
testing engine for C. InFSE 05: Foundations of Software
Engineering. ACM, 2005.

[26] N. Tillmann and W. Schulte. Parameterized unit tests. In
FSE 05: Foundations of Software Engineering, pages 253–
262. ACM, 2005.

[27] Vim. http://www.vim.org/.
[28] W. Visser, C. Pasareanu, and S. Khurshid. Test input gen-

eration with Java PathFinder. InISSTA 04: International
Symposium on Software Testing and Analysis, pages 97–107.
ACM, 2004.

[29] W. Visser, C. S. Pasareanu, and R. Pelanek. Test input gen-
eration for red-black trees using abstraction. InASE 05: Au-
tomated Software Engineering, pages 414–417. IEEE, 2005.

[30] S. Visvanathan and N. Gupta. Generating test data for func-
tions with pointer inputs. InASE 02: Automated Software
Engineering, pages 149–162. IEEE, 2002.

[31] S. Xia, B. D. Vito, and C. Mũnoz. Automated test gener-
ation for engineering applications. InASE 05: Automated
Software Engineering, pages 283–286. IEEE, 2005.

[32] T. Xie, D. Marinov, and D. Notkin. Rostra: A frame-
work for detecting redundant object-oriented unit tests. In
ASE 04: Automated Software Engineering, pages 196–205.
IEEE, 2004.

[33] T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra:
A framework for generating object-oriented unit tests using
symbolic execution. InTACAS 05: Tools and Algorithms
for the Construction and Analysis of Systems, LNCS 3440,
pages 365–381. Springer, 2005.


