Hybrid Concolic Testing*

Rupak Majumdar

Koushik Sen

CS Department, UC Los Angeles, USA EECS Department, UC Berkeley, USA

rupak@cs.ucla.edu

Abstract

We present hybrid concolic testingan algorithmthat in-
terleaves random testing with concolic execution to obtain
both a deep and a wide exploration of program state space.
Our algorithm generates test inputs automatically by inter-
leaving random testing until saturation with bounded ex-
haustive symbolic exploration of program points. It thus
combines the ability of random search to reach deeppro-
gram states quickly together with the ability of concolic test-
ing to explore states in a neighborhood exhaustively. We
have implemented our algorithm on top of CUTE and ap-
plied it to obtain better branch coverage for an editor im-
plementation (VIM 5.7, 150K lines of code) as well as a
data structure implementation in C. Our experiments sug-
gest that hybrid concolic testing can handle large programs
and provide, for the same testing budget, almost 4x the
branch coverage than random testing and almost 2x that
of concolic testing.

Categoriesand Subject Descriptors: D.2.5 [Software En-
gineering]: Testing and debugging.

General Terms: Verification, Reliability.

Keywords: directed random testing, concolic testing.

1 Introduction

ksen@cs.berkeley.edu

random testing [3, 22, 12, 5, 7, 23]. Random testing gen-
erates a large number of inputs randomly. The program is
then run on those inputs to check if programmer written as-
sertions hold, or in the absence of specifications, if a wide
range of program behaviors including corner cases are exer-
cised. Random testing scales well in the sense that the time
taken to run the program on an input does not incur addi-
tional overhead beyond program execution. However, ran-
dom testing does not guarantee correctness, and more dis-
turbingly, the range of behaviors covered for large program

is often vanishingly small in comparison to all the possible
behaviors of the program. As a consequence, many bugs re-
main after random testing. Thus, while random testing can
reachdeep states of the program state space by executing
a large number of very long program paths quickly, it fails
to bewide, that is, to capture a large variety of program
behaviors.

The inadequacy of random test input generation has led
to severabymbolic techniques that execute a program using
symbolic values in place of concrete inputs [19, 6, 30, 28,
2, 32, 33]. Precisely, the program is supplied symbolic con-
stants for inputs, and every assignment along an execution
path updates the program state with symbolic expressions
and every conditional along the path generates a constraint
in terms of the symbolic inputs. The goal is then to generate
concrete inputs that satisfy the constraints generatewjalo
a symbolic execution path: these inputs are guaranteed to
execute along this path. Moreover, different symbolic ex-

Testing is the primary way to find bugs in software. Test- ecutions generate different program behaviors, leading to
ing using manually generated test cases is the primary techpetter coverage.

nigue used in industry to improve reliability of software—in
fact, manual testing accounts for 50-80% of the typical cost
of software development. However, manual test input gen-
eration is expensive, error-prone, and usually not exhaus

tive.

With the increasing power of computers and advances in
theorem proving and constraint solving technologies,eher
has been a renewed interest in automated testing. A sim
ple and often effective technique for automated testing is

*This research was sponsored in part by the grants NSF-CCF202
and NSF-CCF-0546170.

Recently,concalic testing [14, 25, 4] has been proposed
as a variant of symbolic execution where symbolic execu-
tion is run simultaneously with concrete executions, that
is, the program is simultaneously executed on concrete and
symbolic values, and symbolic constraints generated along
the path are simplified using the corresponding concrete val
ues. The symbolic constraints are then used to incremen-

tally generate test inputs for better coverage by conjginin

symbolic constraints for a prefix of the path with the nega-
tion of a conditional taken by the execution. The primary
advantage of concolic execution over pure symbolic simu-

lation is the presence of concrete (data and address) valuegienerater, concolic testing gets stuck in exploring a huge
which can be used both to reason precisely about complexhumber of program paths before even reaching the state
data structures as well as to simplify constraints when theyWe give a few examples of this behavior. For example, in
go beyond the capability of the underlying constraint solve a web server, each connection maintains a state machine

In practice, however, both for symbolic and concolic ex- that moves the server between various states: disconnected
ecution, the possible number of paths that must be consid-connected, reading, etc. Random testing can provide the in-
ered symbolically is so large that the methods end up ex-Puts necessary to reach particular states of the machine, fo
ploring only small parts of the program state space, andexample, when the server is processing a request, by gen-
those that can be reached by “short” runs from the ini- erating inputs that exercise the “common case.” However,
tial state, in reasonable time. Furthermore, maintaining from a particular state, the server can consider a specific
and solving symbolic constraints along execution paths be-sequence of events to account for application specific rules
comes expensive as the length of the executions grow. Thugfor example, the server must disconnect if a user name that
previous applications of these techniques have been timite is not registered requests a special command) which are not
to small units of code [25] and path lengths of at most about found by randomly setting the inputs. Similarly, in a text
fifty thousand basic blocks [18]. That is, althougtde, in editor, random inputs can get the system into a state where
that different program paths are explored exhaustively-sy there is enough data in the editor’s buffers so that certain
bolic and concolic techniques are inadequate in exploringcommands (for example, delete lines or format paragraphs)
the deep states reached only after long program executions. are enabled.

This is unfortunate, since concolic techniques hold most ~ As the examples indicate, hybrid concolic testing is most
promise for larger and complicated pieces of code for which suitable for testingeactive programs that periodically get
generating test suites with good coverage of corner case beinput from their environment. Examples of such programs
havior is most crucial. A natural question then is how to include editors, network servers, simple GUI based pro-
combine the strengths of random testing and concolic sim-grams, event based systems, embedded systems, and sensor
ulation to achieve both deep and a wide exploration of the ~ networks. On the other hanttansformational programs,
program state space. that get some fixed input initially, are not suitable for hy-

We presentybrid concolic testing, a simple algorithm ~ brid concolictesti_ng, since_ the future b_ehe_lviqr cannotfbe a
that interleaves the application of random tests with con- fected by symbolic execution after the initial input hasrbee
colic testing to achieve deep and wide exploration of the S€t.
program state space. From the initial program state, hy- In the end, hybrid concolic testing has the same limita-
brid concolic testing starts by performing random testing tions of symbolic execution based test generation: the dis-
to improve coverage. When random testsaturates, that covery of uncovered points depends on the scalability and
is, does not produce any new coverage points after run-expressiveness of the constraint solver, and the exhaustiv
ning some predetermined number of steps, the algorithmsearch for uncovered points is limited by the number of
automatically switches to concolic executifsom the cur- paths to be explored. Therefore, in general, hybrid concoli
rent program state to perform an exhaustive bounded depth testing may not achieve 100% coverage, although it can im-
search for an uncovered coverage point. As soon as one iprove random testing considerably. Further, the algorithm
found, the algorithm reverts back to concrete mode. Thenot a panacea for all software quality issues. While we pro-
interleaving of random testing and concolic execution thus vide an automatic mechanism for test input generation, all
uses both the capacity of random testing to inexpensivelythe other effort required in testing, for example, test frac
generate deep program states through long program execugeneration, assertion based verification, and mock environ
tions and the capability of concolic testing to exhausgivel ment creation still have to be performed as with any other
and symbolically search for new paths with a limited looka- test input generation algorithm. Further, we look for code

head. coverage, which may or may not be an indicator of code
The interleaving of random and symbolic techniques is reliability.
the crucial insight that distinguishes hybrid concolidites We have implemented hybrid concolic testing on top of

from a ndve approach that simply runs random and con- the CUTE tool for concolic testing [25] and applied it to
colic tests in parallel on a program. This is because manyachieve high branch coverage for C programs. In our pre-
programs show behaviors where the program must reach diminary experiments, we compare random, concolic, and
particular states and then follow a precise sequence of in- hybrid concolic testing on the VIM text editor (150K lines
put eventss in order to get to a required coverage point. of C code) and on an implementation of the red-black tree
It is often easy to reach using random testing, but not data structure. Our experiments indicate that for a fixed tes
then to generate the precise sequence of eventdn the ing budget, hybrid concolic testing technique outperforms
other hand, while it is usually easy for concolic testing to both random and concolic in terms of branch coverage, of-

void testme() { testing by restricting the values that a character can take t

EEZ: C, > the Set{’[’, '],! , {,' ' },! ,(,1 ')'1 ' ’1
int state = 0; a, 'x, r, e, ’'s’, e, 't, 0 }.
_ This is because the probability of randomly generating the
Wh"ec(lz inpit()' string“reset” is1/15% ~ 1077,
s = input(); A better alternative that can reveal the errotéstme
, e stat . / is concolic testing, which will systematically explore all
" (‘(‘:S:'Tp,,e 85“; itaTeaC:;”%) state = 1. possible execution paths of the functitestme by gen-
if (c == '(&& state == 1) state = 2: erating test inputs from symbolic constraints that force ex
if ¢ =="' { && state == 2) state = 3; ecution along particular program paths. Since the function
if (c =" && state == 3) state = 4; testme runs in an infinite loop, the number of distinct fea-
y Ez D gk sl = g)) e Y sible execution paths is infinite. Therefore, to perform-con
if ¢ ==’ } && state == 6) state -7 colic testing we need to bound the number of iterations of
if (c == ') && state == 7) state = 8; testme if we perform depth-first search of the execution
if (¢ == 7T && state == 8) state = 9; paths, or we need to perform breadth-first search. The num-
it (s[0] == T && s[1] == '€ berlof possible chqice; of valugs ofgnd.s that concolic
&& s[2] == 'S’ && s[3] == '€ testing would consider in each iteration is 17. Moreover, at
&& s[4] == 't && s[5] == 0 least 9 iterations are required to hit tBRRORTherefore,
ERgFLe%;-tate =9 | concolic testing will explore approximately7® ~ 10t
! ’ paths before it can hit thERRORTherefore, concolic test-

ing is unlikely to reveal th&ERRORN testme in a reason-

able amount of time.
Figure 1. A simple function In hybrid concolic testing, we exploit the fact that ran-
dom testing can take us in a computationally inexpensive
way to a state in whicktate=9 and then concolic testing
can enable us to generate the strimgset” through
exhaustive search. The random testing phase takes a cou-

ten getting almost 2 the coverage achieved by either ran-
dom or concolic testing alone. These results, together with
the relative ease with which hybrid concolic testing can be ple of minutes to reachtate=9 . After that there will be

implemented on top of existing random and concohctesters,no increase in the coverage and hybrid testing will start the

demonstrate that hybrid concolic testing is a robust anld sca concolic testing phase. In the concolic testing phase, con-

S:)cl)zrfr(r:]hsnlque for automatic test case generation for IargeCOIiC testing will generate the stririgeset” in a sin-

gle iteration after exploring 7 feasible execution paths. A
a result hybrid concolic testing will usually HERRORn a
2 Motivating Example couple of minutes.

We validated this fact by testing the functieestme

We illustrate the benefits of hybrid concolic testing us- using all the three methods—pure random testing, pure con-
ing the simple functiortestme shown in Figure 1. The colic testing, and hybrid concolic testing. We found that
function, which runs in an infinite loop, receives two in- both pure random testing and pure concolic testing was not
puts in each iteration. One input is a 8-bit character and able to hit theERRORafter one day of testing. However,
the other input is a string. The function gets into an error hybrid concolic testing was able to hit the bug within two
state if the variablstate is 9 and the inpus is the string ~ minutes on a 2GHz Pentium M laptop with 1GB RAM.
“reset” . Such functions are often generated by lex- Figure 2 provides an informal comparison between con-
ers. In the vim editor, we also found more complex forms colic testing and hybrid concolic testing. The boxes repre-
of similar functions. sent the entire program state space, with particular cgeera

To test the functiortestme , if we generate random points shown using bold squares. The initial program state
values forc ands, then after a few thousands of iterations is the filled circle. Figure 2(a) shows concolic testing.ekft
the variablestate will become 9 with high probability. an initial random run (shown using the thin jagged lines),
However, the probability thas will be “reset” is constraint solving tries to exhaustively search part of the
extremely low. As such the probability that tHERROR state space. In this way, concolic testing does eventudlly h
statement will be hit after a large number of iterations is the coverage points in the vicinity of the random execution,
negligibly small. Therefore, for all practical purposes, but the expense of exhaustive searching means that many
random testing would not be able to reveal BHRRORN other coverage points in the program state space can remain
thetestme function. This is true even if we bias random uncovered while concolic testing is stuck searching ont par

(a) (b)

Figure 2. Comparison between (a) concolic and (b) hybrid concolic testing

of the state space exhaustively. In contrast, hybrid cancol is given using anemory consisting of a mapping from pro-
testing (Figure 2(b)) switches to inexpensive random test-gram addresses to values. Execution starts from the initial
ing as soon as it identifies®me uncovered point, relyingon memoryM, which maps all addresses to some default value
fast random testing to explore as much of the state space am their domain. Given a memoty/, we write M[m +— v]
possible. In this way, it avoids expensive constraint solv- for the memory that maps the addresgo the valuev and

ing to perform exhaustive search in some part of the statemaps all other addresses to M (m’).

space. Moreover, if random testing does not hit a new cov-
erage point, it can take advantage of the locally exhaustive
search provided by concolic testing to continue from a new
coverage point.

Statements update the memory. The concrete semantics
of the program is given in the usual way as a relation from
program location and memory to an updated program loca-
tion (corresponding to the next instruction to be executed)
and updated memory [21]. For an assignment statement
3 Algorithm ¢ : m := e, this relation calculates, possibly involving ad-

dress arithmetic, the addressof the left-hand side, where

We now present the algorithm for hybrid concolic testing the result is to be stored. The expressiois evaluated to
preceded by a description of the programming model and a2 concrete value in the context of the current memory,

brief recapitulation of concolic testing. the memory is updated &/ [+— v], and the new program
location is¢ + 1. For an input statemert: m := input(),
3.1 Programs and Concrete Semantics the transition relation updates the memadyto the mem-

ory M[m — v] wherev is a nondeterministically chosen
value from the range of data values, and the new location
is ¢ + 1. For a conditional : if(e)goto ¢, the expression

e is evaluated in the current memony, and if the evalu-
5ated value is zero, the new program locatior’isvhile if

the value is non-zero, the new locationfis- 1. In either
case, the new memory is identical to the old one. Execution
terminates normally if the current statemenhigt, abnor-
mally if the current statement ibort.

We illustrate the hybrid concolic testing algorithm on an
imperative programming language. The operations of the
programming language consist of labeled stateménts.
Labels correspond to instruction addresses. A statement i
either (1) the halt statemehslt denoting normal program
termination, (2) arinput statement ¢ : m := input() that
gets an external input into the Ivalue, (3) an assignment
m := e wherem is an Ivalue ana is a side-effect free ex-
pression, (4) a conditional stateméfie)goto ¢ wheree is The nondeterminism introduced lyput statements is
a side-effect free expression afnds a program label, and resolved by using amput map. An input maplMap is a
(5) anabort statement signifying program error. Execution function that specifies values for inputs based on the ex-
begins at the program labé}. For a labeled assignment ecution history of the program. Thendom input map
statement : m := e or input statement : m := input() Random generates a value at random every time a concrete
we assumé + 1 is a valid label, and for a labeled condi- input is requested and returns this random value. We as-
tional ? : if (e)goto ¢’ we assume botH and/ + 1 are valid sume that the concrete semantics of the program is imple-
program labels. mented as a functio@oncrete that takes a program loca-

The set ofdata values consists of program memory ad- tion, a memory, and an input map, and returns a new pro-
dresses and integer values. The semantics of the prograngram location and a new memory or terminates the program.

3.2 Concolic Testing 1 < k will return the value of variable; from the satisfying
assignment, and far> k will return a random value.

We now recapitulate the concolic testing algorithm from W(_a assume that concolic _testlng IS |mplement_ed as a
[14, 25]. Concolic testing performs symbolic execution of functionConcolic that takes as input a program location and

the program together with its concrete execution. It main- &" initial memory map and retums a new input map. Such a

tains asymbolic memory map 2 and asymbolic constraint fuqction is easily obtained by wrapping existing implemen-
¢ in addition to the memory. These are filled in during the tations [14, 25].
course of execution. The symbolic memory map is a map-
ping from concrete memory addresses to symbolic expres-3-3 Hybrid Concolic Testing: Schema
sions, and the symbolic constraint is a first order formula
over symbolic terms. The details of the construction of the In hybrid concolic testing, random or biased random
symbolic memory and constraints is standard [28, 14, 25].testing phases (that explore deep states of the program)
That is, at every statemeft: m := input(), the symbolic ~ are interleaved with concolic testing (that ensure com-
memory mapu introduces a mapping: — «,, from the plete coverage for a shallow neighborhood). Algorithm 1
addressn to a fresh symbolic value,,,, and at every as- shows a non-deterministic version of the hybrid concolic
signment : m := e, the symbolic memory map updates the testing algorithm, where we have abstracted out certain
mapping ofm to u(e), the symbolic expression obtained by implementation-dependent heuristics. The algorithmegak
evaluatinge in the current symbolic memory. The concrete a program and a set of coverage goals (for example, branch
values of the variables (available from the memory map coverage), and performs coverage-driven test input gener-
are used to simplifyu(e) by substituting concrete values ation. The main loop of the algorithm (lines 1-15) runs
for symbolic ones whenever the symbolic expressions gowhile there are unsatisfied coverage goals (or, in practice,
beyond the theory that can be handled by the symbolic de-until resources run out or coverage goals are met). Each
cision procedures. iteration of the loop starts with the initial location of the
The symbolic constraing is initially true. At every Program, the initial memory map/, and the random in-
conditional statemertt: if (¢)goto ¢/, if the execution takes ~ Put map (line 2) and runs the program until the program

the then branch, the symbolic constrajris updated tg A halts or hits abort. Each step of the execution is chosen ac-
(1(e) # 0) and if the execution takes the else branch, the cording to some heuristic to be either a concrete execution
symbolic constraing is updated te A (pu(e) = 0). Thus, (line 9), when the previous symbolic states are discarded

¢ denotes a logical formula over the symbolic input values and only the concrete semantics is followed, or a concolic

that the concrete inputs are required to satisfy to exebete t €Xecution starting with the current symbolic state (lings 1

path executed so far. 13). The concolic execution first checkpoints the current
Given a concolic program execution, concolic testing concrete execution state (line 11), and starts running a con

generates a new test in the following way. It selects a con-C0lic testing algorithm from the current state with the aim
ditional ¢ : if(e)goto ¢ along the path that was executed of hitting some unsatisfied coverage goals. When the con-

such that (1) the current execution took the “then” (respec- colic execution returns (either because it finds a new input
tively, “else”) branch of the conditional, and (2) the “else 10 @n upcovered coverage goal or becaqse some resource
(respectively, “then”) branch of this conditional is uneov Pudget is exhausted), the program state is restored but the
ered. Let¢, be the symbolic constraint just before execut- INPUt map is updated to be the new input that is guaranteed
ing this instruction and. be the constraint generated by to hita new coverage point (or,. if resources were exhgusted,
the execution of this instruction. Using a decision proce- 9€nerates random inputs). This has the effect of putting the
dure, concolic testing finds a satisfying assignment for the 8x€cution back at the concrete state while setting (usieg th
constraint, A —&.. The property of a satisfying assignment concolic execution) the future values of sympollc inputs to
is that if these inputs are provided at each input statement€NSure that a new uncovered coverage goal is reached.
then the new execution will follow the old execution upto The test continues until the program terminates or a bug
the location?, but then take the conditional branch oppo- S found. At that point, if t.here are further uncovereq cov-
site to the one taken by the old execution, thus ensuring tharage goals, the outer while loop restarts a new hybrid con-
the other branch gets covered. The satisfying assignmenfolic execution.

is used to define a new input map for the next run of the

program. Suppose that there arsymbolic variablesinthe 3.4 Hybrid Concolic Testing: Algorithm
symbolic constraint, arranged in chronological order t(tha

is, the symbolic inputy; was introduced for theth input Algorithm 2 shows a deterministic version of Algo-
statement along the execution). Then, the next time the pro+ithm 1 where we instantiate the nondeterministic choices
gram is executed, thith execution of ainput statement for of Algorithm 1 with particular heuristics. Instead of cheos

Algorithm 1 Algorithm HCT (nondeterministic) Algorithm 2 Algorithm HCT

Input: programpP, set of coverage goalsoals. Input: programpP, set of coverage goalsoals.
1: while Goals # 0 do 1: while Goals # 0 do
2: = ly, M = My, IMap = Random 2. { =¥y, M = My, IMap = Random
3: whilenondet do 3 iter=0
4 if stmt_at(¢) = halt then 4: whileiter < 03 or stmt_at(¢) is notz := input() do
5: break 5: if stmt_at(¢) = halt then
6: if stmt_at(¢) = bug then 6: break
7: return bug 7: if stmt_at(¢) = bug then
8: if nondet then 8: return bug
o: (¢, M) = Concrete(¢, M, IMap) 9 (¢, M) = Concrete(¢, M, IMap)
10: remove covered goals frofeoals 10: remove covered goals frofioals
11: ese 11: if coverage has increasten
12: snapshot(M) 12: iter =0
13: IMap = Concolic(¢, M) 13: else
14: M = restore() 14: if stmt_at(¢) is := input() for somex then
15. endwhile 15: iter = iter + 1
16: endwhile 16: endwhile
17: if iter = 65 then
18: snapshot(M)
ing a random step or a concolic step at each iteration, the al-19: IMap = Concolic(¢, M)
gorithm maintains a countéter and runs the random steps 20: M = restore()
until convergence, that is, until no new coverage goal has 21: goto 3

been discharged in the lagt input instructions executed 22: endwhile
in the random testing. The condition in thdile loop on

line 4 ensures that we switch to concolic mode only at an . o
input statement afte, input statements have gone by with- Net effect is that the parent maintains the program state, ge

out seeing a new coverage goal. At this point, the algorithm n Updated logical input map through the concolic testing,
switches to the concolic mode, by first taking a snapshot of _and can continue executing from the current state using this
the current state and then running concolic execution from NPUt map.

the current node, looking for a new uncovered goal. Once

a new uncovered goal is found, the input map is updated4 Experiments

and the program state is restored. The counter is reset and

the loop starts executing the random mode again. Notice \We have implemented hybrid concolic testing on top of
however that in this mode, the first inputs returned by the CUTE, a concolic unit testing engine for C [25] In this
input map have been carefully selected by the concolic en-section, we report the results of our experiments with two
gine to hit an uncovered coverage point. Again, the algo- programs— an implementation of the red-black tree data
rithm continues running till a bUg is found or at least some structure, and the popu|ar text editor VIM.

¢ fraction of coverage goals are met (or resource bounds For each program, we describe the experimental setup
are exhausted). and the results of comparing hybrid concolic testing to ran-
Snapshot and restore. The only remaining technical issue 9om tgstiné and (pure) concolic testing. We conducted the
is the implementation of checkpointing and restoring state €XPeriments on a 2GHz Pentium M laptop running Win-
through the functionsnapshot and restore. We use pro- ~ dows XP with 1 GB RAM. In our experiments, we report
cess creation through the system ¢altk to achieve check- ~ the relative branch coverage (which we will simply call
pointing. Precisely, in our implementation, at the point we COverage), i.e., the ratio of the total number of branches
need to snapshot the current state, we fork off a child pro-€xercised during testing and the total number of branches
cess. The child process starts with an exact copy of thePresent in the functions touched during testing. Relative
parent's state and performs the concolic execution from theCoverage is important for the testing of red black tree be-
current locatiorr. At the end of the concolic execution, the ~€ause the implementation of red black tree is part of a large
child transmits the new logical input map back to the par- data structure library. Since we do not invoke the functions
ent and dies. Meanwhile, the parent blocks waiting for the Of other data structures during testing of the red black tree
new logical input map. When it receives the new map, the 1\ye only consider uniform random testing where the input spac
parent continues executing the rest of the testing loop. Thesampled uniformly at random.

Wpe_(ri(téf_ struct rbtree { Branch Coverage in Percentage
Istrulét biree vleit = NULL: Seed| Random|[Concolic | Hybrid Concolic
struct rbtree *right = NULL; Testing Testing Testing
char color: 523 | 3227 | 5248 66.67
} rbtree; 7487 | 32.27 52.48 67.02
6726 | 32.27 52.48 66.67
VOid_ testme() { 5439 32.27 52.48 67.73
Irr;)ttr;c()ess; =elem, *tmp, =*root = NULL; 4494 | 32.27 52.48 69.86
' ' ' Average | 32.27 52.48 67.59
while(1) {
CUTE_input(toss); Table 1. Results of Testing Red-Black Tree
if(toss<0) toss = -toss;
toss = toss % 5;
S""“Ch(tossl). { on the following observation: a data structure implements
Caserbtrée_len(root); functions for several basic operations such as creating an
break; empty structure, adding an element to the structure, remov-
case 2: . ing an element from the structure, and checking if an ele-
g'ﬁ?E:inggzzﬁemoS_)ma"OC(S'ZEOf(rb”ee)); ment is in the structure. A sequence of these interface oper-
rbiree_add_if_not_member(&root,elem.&mp); ations can be used to exhaustively test the implementation.
casebrg?k? Experimental Setup. To generate legal sequences of func;—
elem = (rbtree *)malloc(sizeof(rbtree)); tion calls of the red-black tree we used the manually writ-
CUTE_input(elem->i); ten test driver shown in Figure 3. The test driver runs in a
rbtree_delete_if_member(&root,elem,&tmp); loop and calls a public function of the red-black tree in each
break; iteration. The function to be called in each iteration is de-
case 4:
elem = (rbtree +)malloc(sizeof(rbtree)); termined by an input variabbess . We biased the random
CUTE_input(elem->i); testing so that each function call has an equal probability
rbtree_find_member(root,elem); of being called in an iteration. We compared pure random
defazrliak; testing, pure concolic testing, and hybrid concolic testin
elem = (rbtree +)malloc(sizeof(rbtree)); on the test driver using five different seeds. We allotted a
CUTE_input(elem->i); time of 30 minutes for each testing experiment.
L?g:ﬁ;‘add(&mm’elem)’ Results. Table 1 shows the results of testing the red-black
I tree implementation. The first column gives the initial seed

for the random number generator used by each of the test-
ing methods. The next three columns give the percentage
of branch coverage for each of the testing methods. The
last row gives the average branch coverage for each of the
methods.

The table shows that the average branch coverage at-
tained by pure random testing is low compared to both
. o : pure concolic testing and hybrid concolic testing. More-
symbolically track all potential inputs, such as readiregrir over the branch coverage for random testing saturated at

a file. Therefore, we will not able to exercise many func- 0 g . .
tions whose behaviors depend on such non-tracked inputs?’z'27@ for each of the five seeds. Random testmg.f-aned
fo attain high branch coverage because the probability of

By using relative branch coverage, we ignore the branches X) .

of such unreachable functions. generating two random numbers .havmg the same value is
very small. As such random testing was not able to gen-
erate random numbers that are already in the tree. There-

4.1 Red Black Tree fore, the functionsrbtree _delete _if _member and
rbtree _add_if _not _member were not explored com-

In our first experiment, we considered a widely-used pletely.

implementation of the red-black tree data structure having In concolic testing we bounded the number of inputs

around 500 lines of C code. We adopted the unit testing along each path by 10. This was required because the test

methodology to test this implementation. In particular, we driver has an infinite loop. Note that with the increase in the

adopted the approach of generating data structures using aumber of inputs along each path, the number of distinct

sequence of function calls [28, 33]. This approach is basedfeasible execution paths increases exponentially. There-

Figure 3. Driver for testing red-black tree

the absolute branch coverage will be very low and the num-
ber will not reflect the true branch coverage within the red
black tree only. In the case of the VIM editor, we do not

fore, to be able to complete the exhaustive search of all the Branch Coverage in Percentage
paths in a reasonable amount of time using concolic testing, Seed| Random| Concolic | Hybrid Concolic
we bounded the number of inputs along each path by 10. Testing | Testing Testing
Then concolic testing gave us an average branch coverage of 877443| 801 21.43 41.93
52.48%. Although this number is better than that of random g;gg; g'%g gifg ggg?
testing, we didn’'t manage to get better coverage. This is be- 32761 7:80 21:43 35:45
cause to attain better coverage we need longer sequences 28683| 975 2143 4053

of function call. This was also observed by D’Amorim et Average| 8.17 51.43 37.86

al. [9]. However, longer sequences cannot be completely
tested by concolic testing due to the exponential blow-up in Table 2. Results of Testing the VIM Test Editor
the number of paths.

To address this problem, hybrid concolic testing proved
ideal. This is because the random testing mode of hybrid . o])
concolic testing generated long function call sequences.USer (Up to a newline) is interpreted as a literal string to be
This resulted in the creation of large random red-blackstree S€arched for in the text buffer. There is alsceanmode for
After that the concolic testing mode was able to explore More complex command lines. There are many other modes
more execution paths. As a result hybrid concolic testing V!M, and many other commands. For our purposes of expo-
attained an average branch coverage of 67.59%, which wasition, we note that VIM has the characteristics of the exam-
the highest of all the testing modes. Note that the branchP!€ Programin Figure 1: in order to hit certain branches, one
coverage is still less than 100%. After investigating the has to take the program to a certain state, and then provide
reason for this, we found that the code contains a number@ Precise sequence of inputs (which makes sense as a mode
of assert statements that were never violated and a numbefransfer followed by a command to the editor). For exam-
of predicates that are redundant and can be removed fronP!€; if we start VIM with an empty buffer, then the com-
the conditionals. Nevertheless, the experiment supploets t Manddd (to delete a line) is not enabled. The command
claim that hybrid concolic testing, which combines the best 9d gets enabled after we have switched to the insert mode

of both worlds, can attain better branch coverage than purethrough the command, entered some text into the buffer,
random testing and pure concolic testing. and then switched to the command mode by pressing ESC.

The random testing phase of hybrid concolic testing can
enter garbage text into the buffer easily thus enabling the
line deletion command. The concaolic testing phase can then

_ _ _ _ generate the sequence EBC€ during exhaustive search.
We next illustrate the use of hybrid concolic testing on

VIM, a popular text editor [27]. The VIM editor has 150K Experimental Setup. To set up the testing experiment,

lines of C code. We want to generate test inputs for VIM \t/ve first l'%eg,tt'f'ed .the (fjupc;ﬂon in r:he VIMtEOde that re-
for maximal branch coverage. Unlike the unit testing ap- urns a 16-dit unsigned Integer whenever the USer presses

proaches adopted by CUTE or DART, we targeted to test® key. -Ul]:\; fun(r:]tion, narrllelyege *V?jetﬁ " provides din- |
VIM as a whole system. This made the testing task chal- phUtthloM In the gorma mole ;;f the insert l;m he. n
lenging as the number of possible distinct execution pathst e source code, we replacemfe vgetc Dby the

that can be exhibited by VIM as a whole system is astro- CUT.E Input functlonCUTElnput'() ' CUTElnput'()
nomically large. provides random values to VIM in the random testing mode

VIM is a modal editor, that is, it has one mode for en- and provides values computed through constraint solving in

tering text and a separate mode for entering commands. Itghoeegc;]r:;o“r%\t/?dsg?r? Tﬁgiﬂ?ﬁ&?&fﬁoﬁ dﬂe‘ear;\(;?/sécfaile q
starts in the command mode, where the user can enter edi: P P

tor commands to move cursors, delete words or lines. Whento identify the exact low-level function that provides ifpu

certain keys are pressed (“a” or *i”), the editor enters into to VIM in the Ex mode. As such in our testing experiments

insert mode, where the user can enter text. From the insert’ ¢ Were restricted to the exploration of behaviors of VIM

mode, the user goes back to command mode by pressingi;r the insert mode and the normal mode only. This in turn
the ESC key. Further, in command mode, by pressing “:" ir;fgﬁid the branch coverage that we obtained in the exper-
the editor goes to @aommand line mode, where the next '

sequence of characters pressed by the user has special com- We (;orr?pba_rgd purel_rando_m testmg, Q/L:ﬁ concolic t((ajst-
mand significance to the editor (for example, “:" followed Ing, and hybrid concolic testing on the source code

by “w” writes the current buffer back to disk). Similarly, using five different random seeds. In each experiment we

pressing “/" in command mode takes the editor to a Searchrestrlcted the total testing time to 60 minutes.
mode, where the next sequence of characters typed by th&esults. Table 2 shows the results of testing the VIM text

4.2 The VIM Editor

editor. As in the previous example, the first column gives deep states. As such in our experiments, pure concolic test-
the initial seed for the random number generator used bying performed worse than hybrid concolic testing.
each of the testing methods. The next three columns give
the percentage of branch coverage for each of the testin95 Related Work
methods. The last row gives the average branch coverage
for each of the methods. . .
In order to improvetest coverage, several techniques
For all the seeds for the random number generator, hy- :
. , : have been proposed to automatically generate values for the
brid concolic testing gave better branch coverage than con-

colic testing and far better branch coverage than random:czgt:\tlse dtlézgzgitisgsngée-rgij:)r?npleesrzé?;?oze;f(zzssc\r/gg)?Z
testing. After analyzing the trace for one hybrid concolic ! 9 9

testing experiment, we found that the random testing phasesInlDUts [3, 22,12, 5, 7, 23, 20]. Although it has been quite

took VIM to deep states which cannot be otherwise be led sucges_sful n f'”‘?'”_‘g bugs, the problem with such random
.) testing is twofold: first, many sets of values may lead to the
by concolic testing. In the deep states, we found a lot

of garbage text in the buffer. The concolic testing phasessame observable behavior and are tresisindant, and sec-

widely explored the state space near these deep states. Th%nd’ the probability of selecting particular inputs thatsa

resulted in comparatively larger exploration of the state uggy behavior may l_ae astronomically small [22].
space of VIM. One approach which addresses the problem of redun-

Note that branch coverage obtained by hybrid concolic dant executions and increases test coveraggrisolic ex

testing is still much lower than 100%. This is because we ecuftlon [19, 6]. Tools bgsed on symbolic gxecutlon use a
) variety of approaches—including abstraction-based model
only tested the insert and the command modes of the VIM g
. : checking [1, 2], parameterized unit testing [26], explicit
editor and did not touch the code for the other modes. The ; . .
: . . state model checking of the implementation [28, 29] or of a
VIM experiment illustrates two caveats of our technique. model [16, 31, 10], symbolic-sequence exploration [33, 24]
First, the user has to identify the appropriate boundary at o5 2, SY 9 P ’

which to receive inputs for testing. This is not always easy and static analysis [8]—to automatically generate non-

. . . redundant test inputs. Several other approaches, such
to do without some knowledge of the implementation. We e . : .
. . . as the chaining method[11] and the iterative relaxation
could only identify one input sourcedfe _vgetc). How-

. . S method [15], for test case generation do not use random ex-
ever, once a suitable input point is chosen, no further knowl

edge of the implementation is required. Second, even with.ecuuon or symbolic execution. Concolic testing [14, 25, 4]

.) . is a variation of symbolic execution where the symbolic ex-
some suitable input source, new coverage points may only L ; : :
) . ecution is performed concurrently with random simulation.
be hit after a long sequence of correlated input. For exam-

le, certain configuration options may be read from a file However, our experience with concolic testing using the
pie, contig option y ..~ CUTE and jCUTE tools have been that all these techniques
In our experience, concolic testing working at the individ-

: ultimately run up againgtath explosion: programs have so
ual character level does not scale very well in these cases, y b againgk b prog

However, even with these caveats, hybrid testing performedmany paths that must be _'symbohcally explpred that within
. .~ “areasonable amount of time concolic testing can only ex-
around4 x better than random testing because VIM requires .
;) plore only a small fraction of branches, those that can be
a relatively short sequence of characters as input for & larg o , . L
i reached using “short” executions from the initial statehef t
number of commands; nevertheless, these sequences are

: program. This was the initial motivation for our work: we
long enough that they are not likely to be generated by ran- . . B n
. wanted to augment concolic testing so that “deep” program
dom testing alone.

states could be explored.
. . Our work on hybrid concolic testing is inspired by simi-
4.3 Discussion lar work in VLSI design validation [13, 17] where a combi-
nation of formal (symbolic execution or BDD based reach-
In hybrid concolic testing, the concolic testing phase ability) and random simulation engines are combined to im-
starts whenever random testing saturates, that is, does ngtrove design coverage for large scale industrial designs.
find new coverage points even after running a predeter-Our contribution is to scale the orchestration of random
mined number of steps. The presence of interleaved ran-and concolic testing to large software implementations. In
dom testing phases in hybrid concolic testing thus guaran-comparison to model based testing using model checking
tees that hybrid concolic testing is as good as random test{16, 10], we use random testing to seed the test, and use
ing. Concolic testing generates meaningful sequences ofconcolic testing rather than abstract model checking to ex-
inputs which cannot be otherwise generated by random testplore the vicinity of a state. Using concolic testing circum
ing. This boosted the branch coverage of the whole testingvents aliasing issues that arise in abstraction based soft-
method considerably. In contrast, concolic testing was abl ware model checking which makes abstract reachability
to explore states only near the initial state rather than theimprecise for programs that manipulate heap data struc-

tures [2], and also alleviate the capacity problem for soft- [15] N. Gupta, A. P. Mathur, and M. L. Soffa. Automated test
ware model checkers. On the other hand, abstraction based data generation using an iterative relaxation metho&3a
model checking can prove branches definitely unreachable ~ 98: Foundations of Software Engineering, pages 231-244.

whereas our incomplete technique can only prove reacha- ACM, 1998.) .
bility. [16] G.Hamon, L. de Moura, and J. Rushby. Generating efficient

test sets with a model checker. 38FM 04: Software Engi-
neering and Formal Methods, pages 261-270. IEEE Press,

References 2004.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

9]

(10]

(11]

(12]

(13]

(14]

[17] P.-H. Ho, T. Shiple, K. Harer, J. Kukula, R. Damiano,
V. Bertacco, J. Taylor, and J. Long. Smart simulaton using
collaborative formal and simulation engines.|GCAD 00:
International Conference on Computer-Aided Design, pages

T. Ball. Abstraction-guided test generation: A case study.
Technical Report MSR-TR-2003-86, Microsoft Research,

2003. 120-126. ACM, 2000.

D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, and [18] R. Jhala and R. Majumdar. Path slicing. RhDI 05: Pro-
R. Majumdar. Generating Test from Counterexamples. In gramming Language Design and | mplementation, pages 38—
ICSE 04: International Conference on Software Engineer- 47. ACM, 2005.

ing, pages 326-335. IEEE, 2004. [19] J.C. King. Symbolic Execution and Program TestiGgm-

D. Bird and C. Mdioz. Automatic Generation of Random munications of the ACM, 19(7):385-394, 1976.
Self-Checking Test Casd8M Systems Journal, 22(3):229— [20] Y. Lei and J. H. Andrews. Minimization of randomized unit
245, 1983. test cases. INSSRE 05, pages 267-276, 2005.

C. Cadar and D. Engler. Execution generated test cases: [21] J. Mitchell. Foundations for Programming Languages. MIT
How to make systems code crash itself. SPIN 05: Soft- Press, 1996.

ware Model Checking, LNCS, pages 2—23. Springer, 2005. [22] J. Offut and J. Hayes. A Semantic Model of Program Faults.

K. Claessen and J. Hughes. Quickcheck: A lightweight tool In ISSTA 96, pages 195-200. ACM, 1996.

) 23] C. Pacheco and M. D. Ernst. Eclat: Automatic genera-
for random testing of Haskell programs. IaFP 00, pages 122 tion and classification of test inputs. ECOOP 05: gEu—
268-279. ACM, 2000. . ropean Conference Object-Oriented Programming, LNCS
L. Clarke. A system to generate test data and symbolically 3586, pages 504-527. Springer, 2005
execute programslEEE Trans. Software Eng., 2:215-222, [24] Parasoft. Jtest manuals version 6.0. Online manual, Febru-

1976.)) ary 2005. http://www.parasoft.com/.
C. Csallner and Y. Smaragdakis. JCrasher: an automatic ro- [25] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit

bustness tester for Javgoftware: Practice and Experience, testing engine for C. IfFSE 05: Foundations of Software
34:1025-1050, 2004. Engineering. ACM, 2005.

C. Csallner and Y. Smaragdakis. Check 'n’ Crash: Combin- [26] N. Tillmann and W. Schulte. Parameterized unit tests. In
ing static checking and testing. I€SE 05: International FSE 05: Foundations of Software Engineering, pages 253—
Conference on Software Engineering, pages 422-431. IEEE, 262. ACM, 2005.

2005. [27] Vim. http://www.vim.org/.

M. d’Amorim, C. Pacheco, T. Xie, D. Marinov, and M. D. [28] W. Visser, C. Pasareanu, and S. Khurshid. Test input gen-
Ernst. An empirical comparison of automated generation eration with Java PathFinder. ISSTA 04: International

and classification techniques for object-oriented unit testing. Symposiumon Software Testing and Analysis, pages 97-107.

In ASE 06: Automated Software Engineering, pages 59—68. ACM, 2004.

IEEE, 2006. [29] W. Visser, C. S. Pasareanu, and R. Pelanek. Test input gen-
G. Devaraj, M. Heimdahl, and D. Liang. Coverage-directed eration for red-black_tree_s using abstractionASE 05: Au-

test generation with model checkers: Challenges and oppor- tomated Software Engineering, pages 414-417. IEEE, 2005.
tunities. INCOMPSAC (1), pages 455-462. IEEE, 2005. [30] S. Visvanathan and N. Gupta. Generating test data for func-

tions with pointer inputs. IrASE 02: Automated Software
Engineering, pages 149-162. IEEE, 2002.
) [31] S. Xia, B. D. Vito, and C. Miioz. Automated test gener-
Methodol., 5(1):63-86, 1996. ation for engineering applications. WSE 05: Automated

J. E. Forrester and B. P. Miller. An Empirical Study of the Software Engineering, pages 283-286. IEEE, 2005
Robustness of Windows NT Applications Using Random [32] T. Xie, D. Marinov. and D. Notkin. Rostra: A frame-
Testing. InProceedings of the 4th USENIX Windows Sys- ’ i

R. Ferguson and B. Korel. The chaining approach for
software test data generationACM Trans. Softw. Eng.

work for detecting redundant object-oriented unit tests. In

tem Symposium, 2000. ASE 04: Automated Software Engineering, pages 196—205.
M. Ganai, A. Aziz, and A. Kuehlman. Enhancing simula- IEEE, 2004.

tion with BDDs and ATPG. IrDAC 99: Design Automation [33] T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra:
Conference, pages 385-390. ACM, 1999. A framework for generating object-oriented unit tests using
P. Godefroid, N. Klarlund, and K. Sen. DART: Directed symbolic execution. ITACAS 05: Tools and Algorithms
automated random testing. RLDI 05: Programming Lan- for the Construction and Analysis of Systems, LNCS 3440,
guage Design and Implementation, pages 213-223. ACM, pages 365-381. Springer, 2005.

2005.

