
Representing Models Symbolically

• A system state represents an interpretation (truth assignment) for a set of

propositional variables V .

• Formulas represent sets of states that satisfy it

– False - /0, True - S

– a - set of states in which a is true - ({s0,s1})

– b - set of states in which b is true - ({s1,s2})

– a∨b = {s0,s1}∪{s1,s2} = {s0,s1,s2}

S0

S2 S3

S1

a

b

a, b

• State transitions are described by relations over two sets of variables, V
(source state) and V ′ (destination state)

– Trans. from s2 to s3 is described by (¬a∧b∧¬a′∧¬b′).

– Trans. from s0 to s1 and s2, and from s1 to s2 and to itself is described by

(a∧b′).

– Relation R is described by (a∧b′)∨ (¬a∧b∧¬a′∧¬b′)
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Symbolic model checking

Why?

Saves us from constructing a model’s state space explicitly. Effective ”cure” for

state space explosion problem.

How?

Sets of states and the transition relation are represented by formulas. Set

operations are defined in terms of formula manipulations.

Data structures

ROBDDs - allow for efficient storage and manipulation of logic formulas.
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Model Checking on Sets of States, Cont’d

function SATEX(ϕ):

return {s0 ∈ S| s0 → s1 for some s1 ∈ ||ϕ||}

function SATEG(ϕ)

X := /0; Y := S;

repeat

X := Y
Y := ||ϕ||∩SATEX(X)

until X = Y
return Y
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Model Checking using Sets of States

Computing ||ϕ||

ϕ is ⊤ : return S

ϕ is ⊥ : return /0
ϕ is atomic : return {s∈ S| ϕ ∈ L(s)}

ϕ is ¬ϕ1 : return S\ ||ϕ1||

ϕ is ϕ1 ∧ϕ2 : return ||ϕ1||∩ ||ϕ2||

ϕ is ϕ1 ∨ϕ2 : return ||ϕ1||∪ ||ϕ2||

ϕ is AXϕ1 : return ||¬EX¬ϕ||
ϕ is EXϕ1 : return SATEX(ϕ1)

ϕ is EUϕ1 : return SATEU(ϕ1)

ϕ is EGϕ1 : return SATEG(ϕ1)
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Example: M,s2 |= E[a U ¬b])

1. Model 2. ~b

S0

S2 S3

S1

a

b

a, b

3. ~b \/ (a /\ EX E[a U ~b])

S0

S2 S3

S1

a

b

a, b

S0

S2 S3

S1

a

b

a, b

4. ~b \/ (a /\ EX E[a U ~b]) \/ (a /\ EX EX E[a U~b])

S0

S2 S3

S1

a

b

a, b
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Model Checking on Sets of States, Cont’d

function SATEU(ϕ, ψ)

/* compute set of states satisfying E[ϕUψ] */

X := /0; Y := /0
repeat

X :=Y
Y := ||ψ||∪ (||ϕ||∩SATEX(X))

until X = Y
return Y
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Properties of Lattices

monotonicity a≤ a′ ∧ b≤ b′ ⇒ a⊓b≤ a′⊓b′

a≤ a′ ∧ b≤ b′ ⇒ a⊔b≤ a′⊔b′

idempotence a⊔a = a
a⊓a = a

commutativity a⊔b = b⊔a
a⊓b = b⊓a

associativity a⊔ (b⊔c) = (a⊔b)⊔c
a⊓ (b⊓c) = (a⊓b)⊓c

absorption a⊔ (a⊓b) = a
a⊓ (a⊔b) = a

In general, a function F : L → L is monotone if

∀x,y∈ L ·x≤ y⇒ F(x) ≤ F(y).
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Lattice Theory

Def: A lattice is a partial order (L, ≤) for which a unique greatest lower bound and

a unique least upper bound exist for each pair of elements.

These are known as join (a⊔b) and meet (a⊓b).

Examples:

(a)

T

F (b)

4
3
2
1
0 (c) (d)

(a) (Bool, ⇒); (b) (Nat, ≤); (c) A non-lattice; (d) (2{a,b,c},⊆)

⊤ (top) = ⊔L
⊥ (bottom) = ⊓L

102



Fixpoints (Cont’d)

Greatest fixpoint:

Y = F(Y) ∧ ∀X ·X = F(X) ⇒ X ⊆Y
Computing greatest fixpoint:

⊤⊇ F(⊤) ⊇ F(F(⊤)) ⊇ ... ⊇ F i(⊤) = F i+1(⊤)

Least fixpoint:

Y = F(Y) ∧ ∀X = F(X) ⇒Y ⊆ X
Computing least fixpoint:

⊥⊆ F(⊥) ⊆ F(F(⊥) ⊆ ... ⊆ F i(⊥) = F i+1(⊥)

F i(X) means ”F applied i times”.
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Monotone Functions and Fixpoints

S— set of states, F : P(S) → P(S) — function on the powerset of S.

1. F is monotone if ∀X,Y ⊆ S·X ⊆Y implies F(X) ⊆ F(Y)

2. X ⊆ S is a fixpoint of F if X = F(X)

Examples:

1. S= {s0,s1}, F(Y) = Y∪{s0}

Is F monotone?

What are fixpoints of F?

2. G(Y) = if Y = s0 then {s1} else {s0}

Is G monotone?

What are fixpoints of G?
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Theorem (Knaster-Tarski)

Let (L,≤) be a lattice, F : L → L be a monotone function. Then,

µX.F(X) = Fn+1(⊥) and νX.F(X) = Fn+1(⊤), where n = height(L).

Proof:

1. ⊥⊆ F1(⊥) ⊆ F2(⊥) ⊆ ... ⊆ F i(⊥)∀i ≥ 1.

F1(⊥) needs to contain at least one element. F2 – at least two. Thus, Fn+1

should contain n+2 elements. This cannot happen since L has only n+1
unique elements.

2. Suppose X is another fixpoint. We should show that Fn+1(⊥) ⊆ X.

The proof goes by induction:

(a). ⊥⊆ X
(b). F(⊥) ⊆ F(X) = X since F is monotone.

Thus, F i(⊥) ⊆ X ∀i ≥ 0, including the i which is n+1.
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Fixpoints (Cont’d)

Can a monotone function have several fixpoints?

If F is a monotone function, is lfp(F ) = gfp(F)? (or µX.F(X) = νX.F(X))

Exercises:

Let H1,H2,H3 : P ({1, ...,10}) → P ({1, ...,10}). Let ∀Y ⊆ {1, ...,10}.

Which of the functions are monotone:

• H1(Y) = Y−{1,4,7}

• H2(Y) = {2,5,9}−Y

• H3(Y) = {1,2,3,4,5}∩ ({2,4,8}∪Y)

What are greatest and least fixpoints of H3?
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Symbolic Calculation of EXbfor System on Slide 97

Symbolic representation of the transition relation is:

R= (a∧b′)∨ (¬a∧b∧¬a′∧¬b′)

Symbolic computation using pre-image on Slide 107.

||EXb||

= pre(b,R)

= ∃a′,b′ ·R∧b′

= ∃a′,b′ · ((a∧b′)∨ (¬a∧b∧¬a′∧¬b′))∧b′

= ∃a′,b′ · ((a∧b′)∧b′)∨ ((¬a∧b∧¬a′∧¬b′)∧b′)

= ∃a′,b′ · (a∧b′)∨ f

= ∃a′,b′ · (a∧b′)

= ∃b′ · (a∧b′)

= (a∧ t)∨ (a∧ f)

= a

That is, ||EXb|| is true in a state s iff s |= a.
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Forward and Backward Image
• Forward image:

img(X, R)X

R

img(X, R) = {s′ | ∃s∈ X ∧ (s,s′) ∈ R}
||img(X,R)||(s′) = ∃s·X(s)∧R(s,s′)
||img(X,R)||(s′) = ∃s∈ (X∩R−1(s′))
||img(X,R)|| = ∃V ·X ∧ R−1

• Backward (pre)image:

R

pre(Y, R) Y

pre(Y, R) = {s | ∃s′ ∈Y ∧ (s,s′) ∈ R}
||pre(Y,R)||(s) = ∃s′ ·Y(s′)∧R(s,s′)
||pre(Y,R)|| = ∃V ′ ·Y′∧R

Theorem: preand img (post) are monotone.
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Proof

1. Monotonicity. Take X,Y ⊆ S, X ⊆Y.

We need to show G(X) ⊆ G(Y)

G(X) = ||ψ||∪ (||ϕ||∩ ||EXX||
⊆ ||ψ||∪ (||ϕ||∩ ||EXY||
= G(Y)

2. Show that

∀X ⊆ S·G(X) = X ⇒ X ⊇ ||E[ϕUψ]||

Proof is by induction on the length of prefix of the path along which ϕUψ is

satisfied: there is a path s0,s1, ... and j ≥ 0 s.t. sj |= ψ ∧ ∀l < i,sl |= ϕ.

If this length is 0, then it can be computed by G1( /0) = ||ψ||
Inductive hypothesis: Gi+1 computes E[ϕUψ] for length up to i.
Inductive case: Consider the path s0,s1, .... For state s1, inductive hypothesis

holds. Since (s0,s1) ∈ R,s0 |= ϕ and s0 |= EX(Gi+1( /0)), thus, s0 ∈ Gi+2.
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Correctness Arguments: SAT EU

Intuition: least fixpoint - finite number of iterations

E[ϕUψ] = ψ∨ (ϕ ∧ EXE[ϕUψ]) or

||E[ϕUψ]|| = ||ψ||∪ (||ϕ||∩ ||EXE[ϕUψ]||)

So, ||E[ϕUψ]|| is a fixpoint of G(X) = ||ψ||∪ (||ϕ||∩ ||EX X||)

Theorem: For G as defined above and n = |S|,
1. G is monotone

2. ||E[ϕUψ]|| = µX.G(X)
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Symbolic Model-Checking Algorithm on BDDs

Procedure MC(p)
Case

p∈ A : return Build(“p”)

p = ¬ϕ : return Apply (’¬’, MC(ϕ))

p = ϕ∧ψ : return Apply (’∧’, MC(ϕ), MC(ψ))

p = ϕ∨ψ : return Apply (’∨’, MC(ϕ), MC(ψ))

p = EXϕ : return existQuantify (V′,

Apply (‘∧’, R, Prime(MC(ϕ)))

p = AXϕ : return Apply (’¬’, MC(EX ¬ϕ))

p = E[ϕUψ] : Q0 = Build(’⊥’)

Qi+1 = Apply (’∨’, Qi , Apply (’∨’, MC(ψ),

Apply (’∧’, MC(ϕ), MC(EX Qi )))

return Qn when Qn = Qn+1
p = EGϕ : Q0 = Build(’⊤’)

Qi+1 = Apply (’∧’, MC(ϕ), MC(EX Qi ))))

return Qn when Qn = Qn+1
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Correctness Arguments: SAT EG

Intuition: greatest fixpoint: infinite number of iterations

EGϕ = ϕ ∧ EXEGϕ or ||EGϕ||= ||ψ||∩{s | ∃s′ s→ s′ ∧ s′ ∈ ||EGϕ||}
So, ||EGϕ|| is a fixpoint of F(X) = ||ϕ||∩ ||EX X||

Theorem: Let F be defined above and n = |S|.
1. F is monotone

2. ||EGϕ|| = νX.F(X)

Proof:

1. Monotonicity. Obvious because of monotonicity of EX.

2. Show that

∀X ⊆ S·F(X) = X ⇒ X ⊆ ||EGϕ||
So, take an element s∈ X and show that it is in ||EGϕ||.
Take s0 ∈ X. F(X) = ||ϕ||∩EX X, so clearly, ||ϕ||(s0) holds.

By mathematical induction, construct a path s0, s1, ... such that ||ϕ||(si) holds.

So, s0 ∈ ||EGϕ||.
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Symbolic Fairness

• Let C = {ψ1,ψ2, . . . ,ψk} be fairness constraints.

• Recall, we only need to know how to compute ||ECGϕ||

• A set Z = ||ECGϕ|| if it is the largest set such that

1. Z ⊆ ||ϕ||
2. for all fairness constraints ψi , and all states s∈ Z, there exists a path of

length one or more to a state in ||ψi ||, going only through states in ||ϕ||.

• Symbolically

– νZ ·ϕ∧
Vk

i=1 EXE[ϕ U (Z∧ψi)]

– BTW: formula not expressible in CTL

– Note: EU recomputed at each iteration of EG!

– Complexity: square in |S|
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How do all CTL operators look like?

AG f = µZ. f ∧ AX Z

EG f = νZ. f ∧ EX Z

AF f = νZ. f ∨ AX Z

EF f = µZ. f ∨ EX Z

E[ f U g] = µZ.g∨ ( f∧ EX Z)
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Witnesses and Counterexamples (Cont’d)

• Witness for ||EGϕ||(s)
– Need to find a looping path from s, going through states in ||ϕ||.
– ||ϕ∧EXE[ϕ U (ϕ∧{s})]||(s) means – there exists a path from s to

itself going only through states in ||ϕ||.
– If ||ϕ∧EXE[ϕ U (ϕ∧{s})]||(s) holds, then apply algorithm for EU

– Otherwise,

∗ find a witness s1 for ||ϕ∧EXEGϕ||(s)
∗ repeat from s1

– Why does this terminate?
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Witnesses and Counterexamples

• Witness for ||EXϕ||(s)
– s1 is a witness iff it is in img({s},R)∩||ϕ′||

• Witness for ||E[ϕUψ]||(s0)

– From the algorithm: s∈ Qi iff there exists a path of at most i steps from s
to a state in ||ψ||, going only through states in ||ϕ||.

– Find the smallest i such that s0 ∈ Qi

– Let s1 be a witness to ||EX Qi−1||(s0), s2 a witness to ||EX Qi−2||(s1),

etc.

– s0,s1,s2, . . . is the witness for EU
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