
CTL Model checking

• Assumptions:

1. finite number of processes, each having a finite number of finite-valued

variables.

2. finite length of CTL formula

• Problem:Determine whether formula f0 is true in a finite structure M.

• Algorithm overview:

1. f0 = TRANSLATE(f0) (in terms of AF, EU, EX, ∧, ∨,⊥)

2. Label the states of M with the subformulas of f0 that are satisfied there

and work outwards towards f0.

Ex: AF(a ∧ E(b U c))

3. If starting state s0 is labeled with f0, then f0 is holds on M, i.e.

(s0 ∈ {s | M,s |= f0})⇒ (M |= f0)

39

Model-Checking

• Idea of model-checking: establish that the system is a model of a formula (doing

a search).

• CTL Model Checking

• SMV input language and its semantics

• SMV examples

• Model checking with fairness

• Binary Decision Diagrams.

• Symbolic model-checking and fixpoints.

38

Labeling Algorithm (Cont’d)

• AF ψ1:

- If any state s is labeled with ψ1, label it with AF ψ1.

- Repeat: label any state with AF ψ1 if all successor states are labeled with

AF ψ1, until there is no change.

Ex: �
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��*

-

H
H

H
HHj

�
�

�
��*

-

H
H

H
HHj

@@
��

AFψ1

AFψ1

AFψ1

AFψ1 AFψ1

AFψ1

AFψ1

41

Labeling Algorithm

Suppose ψ is a subformula of f and states satisfying all the immediate

subformulas of ψ have already been labeled. We want to determine which states

to label with ψ. If ψ is:

• ⊥: then no states are labeled with⊥.

• p (prop. formula): label s with p if p ∈ I(s).

• ψ1∧ψ2: label s with ψ1∧ψ2 if s is already labeled both with ψ1 and with ψ2.

• ¬ψ1: label s with ¬ψ1 if s is not already labeled with ψ1.

• EX ψ1: label any state with EX ψ1 if one of its successors is labeled with ψ1.

40

Handling EG ψ1 directly

• EG ψ1:

- Label all the states with EG ψ1.

- If any state s is not labeled with ψ1, delete the label EG ψ1.

- Repeat: delete the label EG ψ1 from any state if none of its successors is

labeled with EG ψ1; until there is no change.

43

Labeling Algorithm (Cont’d)

• E [ψ1 U ψ2]:

- If any state s is labeled with ψ2, label it with E[ψ1 U ψ2].

- Repeat: label any state with E[ψ1 U ψ2] if it is labeled with ψ1 and at least one

of its successors is labeled with E[ψ1 U ψ2], until there is no change.

Ex: �
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
��*

-

H
H

H
HHj

�
�

�
��*

-

H
H

H
HHj

@@
��

ψ1

ψ1

E [ψ1 U ψ2]
E [ψ1 U ψ2]

E [ψ1 U ψ2]

Output states labeled with f .

Complexity: O(| f |×S× (S+ |R|)) (linear in the size of the formula and

quadratic in the size of the model).

42

Example

Verifying E[¬c2 U c1] on the mutual exclusion example.

s5

s0

0: t1 n2

0: c1 n2 0: t1 t2

0: c1 t2

2: E [~c2 U c1]

s3

s1

s2 s6s9

s4 s7

1: E[~c2 U c1]

1: E[~c2 U c1]

2: E [~c2 U c1]

3: E [~c2 U c1]

0: n1 n2

0: n1 t2

0: t1 t2

0: t1 c2

0: n1 c2

45

Even Better Handling of EG

• restrict the graph to states satisfying ψ1, i.e., delete all other states and their

transitions;

• find the maximal strongly connected components (SCCs); these are maximal

regions of the state space in which every state is linked with every other one in

that region.

• use breadth-first searching on the restricted graph to find any state that can

reach an SCC.
ψ

ψ

states satisfying

|= EG SCC

SCC

SCC

Complexity: O(| f |× (S+ |R|)) (linear in size of model and size of formula).

44

Example

Verifying E[¬c2 U c1] on the mutual exclusion example.

s5

s0

0: t1 n2

0: c1 n2 0: t1 t2

0: c1 t2

2: E [~c2 U c1]

s3

s1

s2 s6s9

s4 s7

1: E[~c2 U c1]

1: E[~c2 U c1]

2: E [~c2 U c1]

3: E [~c2 U c1]

0: n1 n2

0: n1 t2

0: t1 t2

0: t1 c2

0: n1 c2

47

CTL Model-Checking

• Michael Browne, CMU, 1989.

• Usually for verifying concurrent synchronous systems (hardware, SCR specs...)

• Specify correctness criteria: safety, liveness...

• Instead of keeping track of labels for each state, keep track of a set of states in

which a certain formula holds.

46

Generating Counterexamples

Only works for universal properties

- AX p
- AG(p⇒ AFq)

- etc.

Step 1: negate the property and express it using EX , EU , and EG
- e.g. AG(p⇒ AFq) becomes EF(p∧EG¬q)

Step 2:

- For EX p – find a successor state labeled with p
- For EGp – follow successors labeled with EGp until a loop is found

- For E[pUq] – remove all states not labeled with p or q, then look for path to q

49

Counterexamples and Witnesses

• Counterexamples

– explains why a property is false

– typically a violating path for universal properties

– how to explain that something does not exist?

• Witnesses

– explains why a property is true

– typically a satisfying path for existential properties

– how to explain that something holds on all paths?

48

Are counterexamples always linear?

• SMV only supports linear counterexamples

• But what about (AX p)∨ (AXq)?

• Counterexample for AF(¬y∧AX¬x)

AF

x x
AX AX

y

y

– See: E. Clarke et al. “Tree-Like Counterexamples in Model Checking”,

Proceedings of LICS’02.

51

Counterexamples and Witnesses (Cont’d)

• What about properties that combine universal and existential operators?

• Are they really different?

– a counterexample for ϕ is a witness to its negation

– a counterexample for a universal property is a witness to some existential

property

– e.g. AGp and EF¬p

• One alternative

– build a proof instead of a counterexample

– works for all properties (but proofs can be big)

– see:

∗ A. Gurfinkel and M. Chechik. “Proof-like Counterexamples”,

Proceedings of TACAS’03.

∗ M. Chechik, A. Gurfinkel. “A Framework for Counterexample Generation

and Exploration”, FASE’2005.

50

SMV

Symbolic model verifier – a model-checker that uses symbolic model checking

algorithm. The language for describing the model is a simple parallel assignment.

• Can have synchronous or asynchronous parallelism.

• Model environment non-deterministically.

• Also use non-determinism for systems which are not fully implemented or are

abstract models of complex systems.

53

State Explosion

Imagine that you a Kripke structure of size n. What happens if we add another

boolean variable to our model?

How to deal with this problem?

• Symbolic model checking with efficient data structures (BDDs). Don’t need to

represent and manipulate the entire model. Model-checker SMV [McMillan, 1993].

• Abstraction: we abstract away variables in the model which are not relevant to

the formula being checked (see later in the course).

• Partial order reduction: for asynchronous systems, several interleavings of

component traces may be equivalent as far as satisfaction of the formula to be

checked is concerned.

• Composition: break the verification problem down into several simpler

verification problems.

52

Model for First SMV Example

req
ready busy

req

busyready
~req ~req

55

First SMV Example

MODULE main

VAR

request : boolean;

state : {ready, busy};

ASSIGN

init(state) := ready;

next(state) := case

request : busy;

1: {ready, busy}

esac;

SPEC

AG(request -> AF state = busy)

Note that request never receives an assignment – this models input.

54

Another Example

MODULE main

VAR

bit0 : counter_cell(1);

bit1 : counter_cell(bit0.carry_out);

bit2 : counter_cell(bit1.carry_out);

SPEC

AG AF bit2.carry_out

SPEC AG(!bit2.carry_out)

MODULE counter_cell(carry_in)

VAR

value : boolean;

ASSIGN

init(value) := 0;

next(value) := (value + carry_in) mod 2;

DEFINE

carry_out := value & carry_in;

57

More About the Language

• Program may consist of several modules, but one has to be called main.

• Each variable is a state machine, described by init and next.

• Variables are passed into modules by reference.

• Comment – anything starting with -- and ending with a newline.

• No loop construct.

• Datatypes: boolean, enumerated types, user-defined modules, arrays, integer

subranges.

VAR

state : {on, off};

state1 : array 2..5 of {on, off};

state2 : computeState(1);

state3 : compute;

state4 : array 2..5 of state; <- error

state5 : array on..off of boolean; <- error

56

Modeling Interleaving

Keyword process for modeling interleaving. The program executes a step by

non-deterministically choosing a process, then executing all of its assignment

statements in parallel.

MODULE main

VAR

gate1 : process inverter(gate3.output);

gate2 : process inverter(gate1.output);

gate3 : process inverter(gate2.output);

SPEC

(AG AF gate1.output) & (AG AF !gate1.output)

MODULE inverter(input)

VAR

output : boolean;

ASSIGN

init(output) := 0;

next(output) := !input;

59

Notation Used

• a.b – component b of module a.

• DEFINE – same as ASSIGN but

- cannot be given values non-deterministically

- is dynamically typed

- does not increase the size of state space.

- like #define in C

58

Fixing the Example

MODULE main

VAR

gate1 : process inverter(gate3.output);

gate2 : process inverter(gate1.output);

gate3 : process inverter(gate2.output);

SPEC

(AG AF gate1.output) & (AG AF !gate1.output)

MODULE inverter(input)

VAR

output : boolean;

ASSIGN

init(output) := 0;

next(output) := !input;

FAIRNESS

running

-- specification AG AF gate1.output .. is true

61

Output of Running SMV

-- specification AG AF gate1.output & ... is false

-- as demonstrated by the following execution sequence

-- loop starts here --

state 1.1:

gate1.output = 0

gate2.output = 0

gate3.output = 0

[stuttering]

state 1.2:

[stuttering]

resources used:

user time: 0.11 s, system time: 0.16 s

BDD nodes allocated: 303

Bytes allocated: 1245184

BDD nodes representing transition relation: 32 + 1

What went wrong? We never specified that each process has to execute infinitely

often – a fairness constraint.
60

Mutual Exclusion Again

st – status of the process (critical section, or not, or trying)

other-st – status of the other process

turn – ensures that they take turns

MODULE main
VAR
pr1 : process prc(pr2.st, turn, 0);
pr2 : process prc(pr1.st, turn, 1);
turn : boolean;

ASSIGN
init(turn) := 0;

--safety
SPEC AG!((pr1.st = c) & (pr2.st = c))
--liveness
SPEC AG((pr1.st = t) -> AF (pr1.st = c))
SPEC AG((pr2.st = t) -> AF (pr2.st = c))
--no strict sequencing
SPEC EF(pr1.st = c & E[pr1.st = c U

(!pr1.st = c & E[! pr2.st = c U pr1.st = c])])
63

Advantages of Interleaving Model

• Allows for a particularly efficient representation of the transition relation:

The set of states reachable by one step of the program is the union of the sets

reachable by each individual process. So, do not need reachability graph.

• But sometimes have increased complexity in representing the set of states

reachable in n steps (can have up to sn possibilities).

62

Model

2

2 1

1,2

1,2 1
1,2

1

2

1

12

2

2 tn0tc0

tt0

nn0

ct0

1,2

2 1

1

1

2

1,2

1

2

2

1,2

1

1,2 1,2
12

1,2

nt0 nc0

2

1,2

tc1

nc1

tt1

1
2

1

1

1

2

1

2

2

nn1

tn1cn1ct1nt1

cn0

65

Model (Cont’d)

MODULE prc(other-st, turn, myturn)
VAR

st : {n, t, c};
ASSIGN

init(st) := n;
next(st) := case

(st = n) : {t, n};
(st = t) & (other-st = n) : c;

(st = t) & (other-st = t) & (turn = myturn) : c;
(st = c) : {c, n};

1 : st;
esac;

next(turn) := case
turn = myturn & st = c : !turn;

1 : turn;

esac;
FAIRNESS running

FAIRNESS !(st = c)
64

Fairness (Again)

Let C = {ψ1,ψ2, ...,ψn} be a set of n fairness constraints. A computation path

s0,s1, ... is fair w.r.t. C if for each i there are infinitely many j s.t. s j |= ψi, that is,

each ψi is true infinitely often along the path.

We use AC and EC for the operators A and E restricted to fair paths.

ECU, ECG and ECX form an adequate set.

ECG⊤ holds in a state if it is the beginning of a fair path.

Also, a path is fair iff any suffix of it is fair. Finally,

EC[φUψ] = E[φU(ψ ∧ ECG⊤)]

ECXφ = EX(φ ∧ ECG⊤)

We only need a new algorithm for ECGφ

67

Comments:

• The labels in the slide above denote the process which can make the move.

• Variable turn was used to differentiate between states s3 and s9, so we now

distinguish between ct0 and ct1. But transitions out of them are the same.

• Removed the assumption that the system moves on each tick of the clock. So,

the process can get stuck, and thus the fairness constraint.

• In general, what is the difference between the single fairness constraint

ψ1 ∧ ψ2 ∧ ... ∧ ψn and n fairness constraints ψ1, ψ2, etc., written on

separate lines under FAIRNESS?

66

Guidelines for Modeling with SMV

• Identify inputs from the environment.

• Make sure that the environment is non-deterministic. All constraints on the

environment should be carefully justified.

• Determine the states of the system and its outputs. Model them in terms of the

environmental inputs.

• Specify fairness criteria, if any. Justify each criterium. Remember that you can

over-specify the system. Fairness may not be implementable, and in fact may

result in no behaviors.

• Specify correctness properties (in CTL or LTL). Comment each property in

English.

• Ensure that desired properties are not satisfied vacuously.

69

Algorithm for ECGφ
• Restrict the graph to states satisfying φ; of the resulting graph, we want to know

from which states there is a fair path.

• Find the maximal strongly connected components (SCCs) of the restricted

graph;

• Remove an SCC if, for some ψi, it does not contain a state satisfying ψi. The

resulting SCCs are the fair SCCs. Any state of the restricted graph that can reach

one has a fair path from it.

• Use breadth-first search backward to find the states on the restricted graph that

can reach a fair SCC.

Complexity: O(n×| f |× (S+ |R|))
(still linear in the size of the model and formula).

68

Sanity Checks

• Check that the model is non-trivial

– EX true – at least one successor state

– AGEX true – transition relation is total

• If result of model-checking is false, there is a counterexample to prove it. If

the result is true, no extra information is given!

• Check that every part of the property matters (vacuity checking).

– Replace consequent of an implication with false and check

– If AG(p⇒ AFq), check AG(p⇒ false)

– The result should be false.

– The counterexample shows one good execution.

• Use counterexamples for simulation.

– Example: ¬EF(floor = 2)

71

Vacuity in Temporal Logic

• Let ϕ[ψ] be a formula with subformula ψ

• ψ affects ϕ[ψ] if replacing ψ with another subformula changes the value of ϕ

• ϕ[ψ] is vacuous in ψ if ψ does not affect ϕ

• ϕ is vacuous if there exists a subformula ψ such that ϕ is vacuous in ψ

• To check if ϕ[ψ] is vacuous in an occurrence of ψ
– check ϕ[ψ← true]

– check ϕ[ψ← false]

– ϕ is vacuous if both results are the same

• Further reading

– I. Beer et al. “Efficient Detection of Vacuity in Temporal Model Checking”,

FMSD, 2001.

– O. Kupferman and M. Vardi. “Vacuity Detection in Temporal Model

Checking”, STTT, 2003.

– A. Gurfinkel and M. Chechik. “How Vacuous is Vacuous”, TACAS’04.

70

