Model-Checking
e |dea of model-checking: establish that the system is a model of a formula (doing
a search).
e CTL Model Checking
e SMV input language and its semantics
® SMV examples
e Model checking with fairness

e Binary Decision Diagrams.

e Symbolic model-checking and fixpoints.

38

CTL Model checking

e Assumptions:

1. finite number of processes, each having a finite number of finite-valued
variables.

2. finite length of CTL formula
e Problem:Determine whether formula fq is true in a finite structure M.

e Algorithm overview:
1. fo = TRANSLATE(fp) (in terms of AF, EU, EX, A, V, 1)

2. Label the states of M with the subformulas of fq that are satisfied there

and work outwards towards fo.
Ex: AF(a A E(bUc))

3. If starting state Sy is labeled with fg, then fg is holds on M, i.e.

(soe{s| M,;sk fo}) = (M [= fo)

39

Labeling Algorithm

Suppose U is a subformula of f and states satisfying all the immediate
subformulas of P have already been labeled. We want to determine which states
to label with Y. If Y is:

e | : then no states are labeled with L.

e D (prop. formula): label Swith pif p € 1(S).

o Y1 A Y2: label Swith Y1 A Y2 if Sis already labeled both with Y3 and with Wa.
e —1: label Swith =1 if Sis not already labeled with 1.

e EX 1: label any state with EX)1 if one of its successors is labeled with 1.

40

Labeling Algorithm (Contd)

o AF Y1:

- If any state Sis labeled with Y1, label it with AF ;.

- Repeat: label any state with AF)1 if all successor states are labeled with
AF)1, until there is no change.

Ex:

S @I ED

41

Labeling Algorithm (Contd)

e E [Py U2l
- If any state Sis labeled with Yy, label it with E[()1 U W>].
- Repeat: label any state with E[; U Q7] if it is labeled with)1 and at least one

W1

of its successors is labeled with E[)1 U 2], until there is no change.

Ex:

Output states labeled with f.

Complexity: O(|f| x Sx (S+|R)])) (linear in the size of the formula and
guadratic in the size of the model).

42

Handling EG J; directly

e EG Ys:

- Label all the states with EG).

- If any state Sis not labeled with Y3, delete the label EG Y.

- Repeat: delete the label EG 1 from any state if none of its successors is
labeled with EG W1; until there is no change.

43

Even Better Handling of EG

e restrict the graph to states satisfying Y1, i.e., delete all other states and their
transitions;
e find the maximal strongly connected components (SCCs); these are maximal
regions of the state space in which every state is linked with every other one in
that region.

e use breadth-first searching on the restricted graph to find any state that can
reach an SCC.

states satisfying

Complexity: O(|f| x (S+|R])) (linear in size of model and size of formula).

44
Example
Verifying E[—C2 U C1] on the mutual exclusion example.
sl

A

45

CTL Model-Checking

e Michael Browne, CMU, 1989.

e Usually for verifying concurrent synchronous systems (hardware, SCR specs...)
e Specify correctness criteria: safety, liveness...

e Instead of keeping track of labels for each state, keep track of a set of states in
which a certain formula holds.

46

Example

Verifying E[—C2 U C1] on the mutual exclusion example.

0
sl %
G
A

a7

Counterexamples and Witnesses

e Counterexamples
— explains why a property is false
— typically a violating path for universal properties

— how to explain that something does not exist?

e \Vitnesses
— explains why a property is true
— typically a satisfying path for existential properties

— how to explain that something holds on all paths?

48

Generating Counterexamples

Only works for universal properties
- A)(p
-AG(p= AFQ)

- etc.

Step 1: negate the property and express it using EX, EU, and EG
-e.9. AG(p = AFQ) becomes EF (pAEG—Q)

Step 2:
- For EXp - find a successor state labeled with P
- For EGp - follow successors labeled with EGp until a loop is found
- For E[pU] - remove all states not labeled with p or g, then look for path to g

49

Counterexamples and Witnesses (Cont'd)
e What about properties that combine universal and existential operators?

e Are they really different?
— a counterexample for ¢ is a witness to its negation
— a counterexample for a universal property is a withess to some existential
property
- e.g. AGpand EF—p
e One alternative
— build a proof instead of a counterexample
— works for all properties (but proofs can be big)
— see:

* A. Gurfinkel and M. Chechik. “Proof-like Counterexamples”,
Proceedings of TACAS'03.

* M. Chechik, A. Gurfinkel. “A Framework for Counterexample Generation
and Exploration”, FASE’'2005.

50

Are counterexamples always linear?
e SMV only supports linear counterexamples
e But what about (AXp) V (AX(q)?

e Counterexample for AF (—y A AX—X)

AX@_ O_’®AX

— See: E. Clarke et al. “Tree-Like Counterexamples in Model Checking”,
Proceedings of LICS’02.

51

State Explosion

Imagine that you a Kripke structure of size N. What happens if we add another
boolean variable to our model?

How to deal with this problem?

e Symbolic model checking with efficient data structures (BDDs). Don't need to
represent and manipulate the entire model. Model-checker SMV [McMillan, 1993].

e Abstraction: we abstract away variables in the model which are not relevant to
the formula being checked (see later in the course).

e Partial order reduction: for asynchronous systems, several interleavings of
component traces may be equivalent as far as satisfaction of the formula to be
checked is concerned.

e Composition: break the verification problem down into several simpler
verification problems.

52

SMV

Symbolic model verifier — a model-checker that uses symbolic model checking
algorithm. The language for describing the model is a simple parallel assignment.

e Can have synchronous or asynchronous parallelism.

e Model environment non-deterministically.

e Also use non-determinism for systems which are not fully implemented or are
abstract models of complex systems.

53

First SMV Example

MODULE nai n

VAR
request : bool ean;
state : {ready, busy};

ASSI GN
init(state) := ready;
next (state) := case

request : busy;
1. {ready, busy}
esac;
SPEC
AGQ(request -> AF state = busy)

Note that r equest never receives an assignment — this models input.

54

Model for First SMV Example

55

More About the Language

e Program may consist of several modules, but one has to be called hai n.

e Each variable is a state machine, described by i ni t and next .

e Variables are passed into modules by reference.

e Comment — anything starting with - - and ending with a newline.

e No loop construct.

e Datatypes: boolean, enumerated types, user-defined modules, arrays, integer
subranges.

VAR
state : {on, off};
statel : array 2..5 of {on, off};
state2 : conputeState(l);
state3d : conpute;
state4 : array 2..5 of state; <- error
state5 : array on..off of boolean; <- error

56

Another Example

MODULE nai n
VAR
bitO : counter_cell(1);
bitl : counter_cell(bitO.carry_out);
bit2 : counter_cell(bitl.carry_out);
SPEC
AG AF bit2.carry_out

SPEC AQ(!bit2.carry_out)

MODULE counter _cell (carry_in)

VAR

val ue : bool ean
ASSI| GN

init(value) := 0;

next (value) := (value + carry_in) nod 2;
DEFI NE

carry_out := value & carry_in;

57

Notation Used

e a.b — component b of module a.
e DEFI NE — same as ASSI GN but
- cannot be given values non-deterministically
- is dynamically typed
- does not increase the size of state space.
- like #definein C

58

Modeling Interleaving

Keyword pr ocess for modeling interleaving. The program executes a step by
non-deterministically choosing a process, then executing all of its assignment
statements in parallel.

MODULE mai n

VAR
gatel : process inverter(gate3. output);
gate2 : process inverter(gatel. output);
gate3 : process inverter(gate2.output);

SPEC
(AG AF gatel.output) & (AG AF !gatel. output)

MODULE i nverter (i nput)
VAR

out put : bool ean;
ASSI GN

I ni t(output)

next (out put)

0;
I'i nput ;

59

Output of Running SMV

-- specification AG AF gatel.output & ... is false

-- as denonstrated by the foll owi ng execution sequence
-- loop starts here --

state 1.1:

gatel.output = 0

gate2.output = 0

gate3.output = 0

[stuttering]

state 1.2:
[stuttering]

resources used:

user time: 0.11 s, systemtinme: 0.16 s

BDD nodes al | ocat ed: 303

Bytes al |l ocated: 1245184

BDD nodes representing transition relation: 32 + 1

What went wrong? We never specified that each process has to execute infinitely

often — a fairness constraint.
60

Fixing the Example

MODULE mai n

VAR
gatel : process inverter(gate3.output);
gate2 : process inverter(gatel.output);
gate3 : process inverter(gate2.output);

SPEC
(AG AF gatel.output) & (AG AF !gatel. output)

MODULE i nverter (i nput)

VAR

out put : bool ean;
ASSI| GN

init(output) := 0;

next (output) := linput;
FAI RNESS

runni ng

-- specification AG AF gatel.output .. is true

61

Advantages of Interleaving Model
e Allows for a particularly efficient representation of the transition relation:

The set of states reachable by one step of the program is the union of the sets
reachable by each individual process. So, do not need reachability graph.

e But sometimes have increased complexity in representing the set of states
reachable in N steps (can have up to S" possibilities).

62

Mutual Exclusion Again

St — status of the process (critical section, or not, or trying)
ot her - st — status of the other process
t Ur n — ensures that they take turns

MODULE mai n
VAR
prl : process prc(pr2.st, turn, 0);
pr2 : process prc(prl.st, turn, 1);
turn : bool ean;
ASSI GN
init(turn) := 0;
--safety
SPEC AG ((prl.st =c) & (pr2.st
--liveness
SPEC AE (prl. st t) -> AF (prl.st
SPEC AQ (pr 2. st t) -> AF (pr2.st
--no strict seguencing
SPEC EF(prl.st = c & E[prl.st = c U
('prl.st =c & E[! pr2.st =c Uprl.st =c])])
63

c))

c))
c))

Model (Cont'd)
MODULE prc(other-st, turn, myturn)

VAR
st . {n, t, c};
ASSI GN
init(st) :=n;
next (st) := case
(st =n) : {t, n};
(st =t) & (other-st =n) : c;
(st =t) & (other-st =t) & (turn = myturn) : c;
(st =c¢) : {c, n};
1 : st;
esac;
next (turn) := case
turn = nmyturn & st = c¢c : lturn;
1 .o turn;
esac;

FAI RNESS r unni ng
FAI RNESS ! (st = c)

64

65

Comments:

e The labels in the slide above denote the process which can make the move.

e Variable t Ur n was used to differentiate between states Sz and Sg, so we now
distinguish between ct 0 and ct 1. But transitions out of them are the same.

e Removed the assumption that the system moves on each tick of the clock. So,
the process can get stuck, and thus the fairness constraint.

e In general, what is the difference between the single fairness constraint
WY1 A Y2 A ... A Ypand N fairness constraints Y1, Yo, etc., written on
separate lines under FAI RNESS?

66

Fairness (Again)

Let C = {W1, Y2, ...,Yn} be a set of N fairness constraints. A computation path
0,51, ... is fair w.r.t. Cif for each i there are infinitely many j s.t. Sj |= Jj, that is,
each Jj is true infinitely often along the path.

We use Ac and Ec for the operators A and E restricted to fair paths.

EcU, EcG and EcX form an adequate set.
EcGT holds in a state if it is the beginning of a fair path.

Also, a path is fair iff any suffix of it is fair. Finally,

EcloUy] = E[@U(W A EcGT)]

EcX@=EX(@ A EcGT)

We only need a new algorithm for EcG@

67

Algorithm for EcG@

e Restrict the graph to states satisfying (¢, of the resulting graph, we want to know
from which states there is a fair path.

e Find the maximal strongly connected components (SCCs) of the restricted
graph;

e Remove an SCC if, for some UJj, it does not contain a state satisfying Y. The
resulting SCCs are the fair SCCs. Any state of the restricted graph that can reach
one has a fair path from it.

e Use breadth-first search backward to find the states on the restricted graph that
can reach a fair SCC.

Complexity: O(nx || x (S+|R]))
(still linear in the size of the model and formula).

68

Guidelines for Modeling with SMV

e |dentify inputs from the environment.

o Make sure that the environment is non-deterministic. All constraints on the
environment should be carefully justified.

e Determine the states of the system and its outputs. Model them in terms of the
environmental inputs.

e Specify fairness criteria, if any. Justify each criterium. Remember that you can
over-specify the system. Fairness may not be implementable, and in fact may
result in no behaviors.

e Specify correctness properties (in CTL or LTL). Comment each property in
English.

e Ensure that desired properties are not satisfied vacuously.

69

Vacuity in Temporal Logic
e Let @[] be a formula with subformula)
e | affects $[W)] if replacing P with another subformula changes the value of ¢
e {[W] is vacuous in Y if Y does not affect ¢
e (is vacuous if there exists a subformula) such that ¢ is vacuous in)

e To check if ¢ [] is vacuous in an occurrence of
— check [P « true]
— check Q[P — false]

— ¢ is vacuous if both results are the same

e Further reading

— |. Beer et al. “Efficient Detection of Vacuity in Temporal Model Checking”,
FMSD, 2001.

— O. Kupferman and M. Vardi. “Vacuity Detection in Temporal Model
Checking”, STTT, 2003.

— A. Gurfinkel and M. Chechik. “How Vacuous is Vacuous”, TACAS'04.

70

Sanity Checks

Check that the model is non-trivial

— EXtrue - at least one successor state

— AGE Xtrue — transition relation is total

If result of model-checking is false, there is a counterexample to prove it. If
the result is true, no extra information is given!

Check that every part of the property matters (vacuity checking).

Replace consequent of an implication with false and check

If AG(p = AFQ), check AG(p = false)

The result should be false.

The counterexample shows one good execution.

Use counterexamples for simulation.

— Example: =EF (floor = 2)

71

