Model-Checking

• Idea of model-checking: establish that the system is a model of a formula (doing a search).

- CTL Model Checking
- SMV input language and its semantics
- SMV examples
- Model checking with fairness
- Binary Decision Diagrams.
- Symbolic model-checking and fixpoints.

38

CTL Model checking

- Assumptions:
 - 1. finite number of processes, each having a finite number of finite-valued variables.
 - 2. finite length of CTL formula
- Problem: Determine whether formula f_0 is true in a finite structure M.
- Algorithm overview:
 - 1. $f_0 = \text{TRANSLATE}(f_0)$ (in terms of AF, EU, EX, \land , \lor , \perp)
 - 2. Label the states of M with the subformulas of f_0 that are satisfied there and work outwards towards f_0 . Ex: AF $(a \land E(b \sqcup c))$
 - 3. If starting state s_0 is labeled with f_0 , then f_0 is holds on M, i.e.

$$(s_0 \in \{s \mid M, s \models f_0\}) \Rightarrow (M \models f_0)$$

Labeling Algorithm

Suppose ψ is a subformula of f and states satisfying all the immediate subformulas of ψ have already been labeled. We want to determine which states to label with ψ . If ψ is:

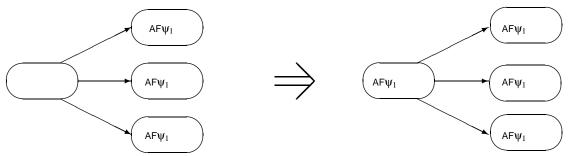
- \perp : then no states are labeled with \perp .
- *p* (prop. formula): label *s* with *p* if $p \in I(s)$.
- $\psi_1 \wedge \psi_2$: label *s* with $\psi_1 \wedge \psi_2$ if *s* is already labeled both with ψ_1 and with ψ_2 .
- $\neg \psi_1$: label *s* with $\neg \psi_1$ if *s* is not already labeled with ψ_1 .
- EX ψ_1 : label any state with EX ψ_1 if one of its successors is labeled with ψ_1 .

40

Labeling Algorithm (Cont'd)

- AF ψ₁:
- If any state s is labeled with ψ_1 , label it with AF ψ_1 .

- Repeat: label any state with AF ψ_1 if all successor states are labeled with AF ψ_1 , until there is no change.



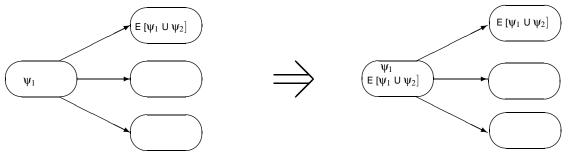
Labeling Algorithm (Cont'd)

- E [ψ₁ U ψ₂]:
- If any state ${\it s}$ is labeled with $\psi_2,$ label it with E[ψ_1 U $\psi_2].$

- Repeat: label any state with $\mathsf{E}[\psi_1 ~\mathsf{U} ~\psi_2]$ if it is labeled with ψ_1 and at least one

of its successors is labeled with E[ψ_1 U ψ_2], until there is no change.

Ex:



Output states labeled with f.

Complexity: $O(|f| \times S \times (S + |R|))$ (linear in the size of the formula and quadratic in the size of the model).

42

Handling EG ψ_1 directly

- EG ψ_1 :
- Label *all* the states with EG ψ_1 .
- If any state s is not labeled with ψ_1 , delete the label EG ψ_1 .

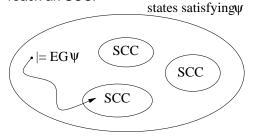
- Repeat: *delete* the label EG ψ_1 from any state if *none* of its successors is labeled with EG ψ_1 ; until there is no change.

Even Better Handling of EG

• restrict the graph to states satisfying ψ_1 , i.e., delete all other states and their transitions;

• find the maximal *strongly connected components* (SCCs); these are maximal regions of the state space in which every state is linked with every other one in that region.

• use breadth-first searching on the restricted graph to find any state that can reach an SCC.

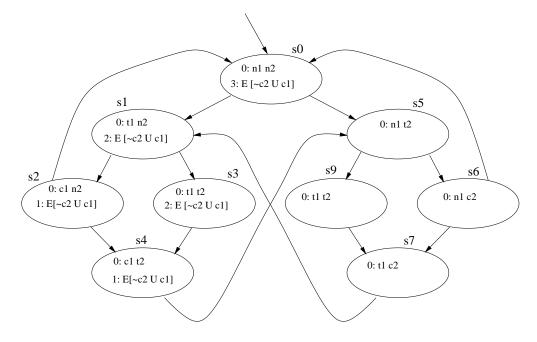


Complexity: $O(|f| \times (S + |R|))$ (linear in size of model and size of formula).

44

Example

Verifying $E[\neg c_2 \cup c_1]$ on the mutual exclusion example.



CTL Model-Checking

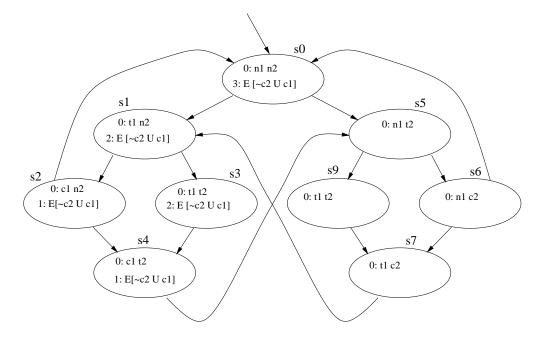
- Michael Browne, CMU, 1989.
- Usually for verifying concurrent synchronous systems (hardware, SCR specs...)
- Specify correctness criteria: safety, liveness...

• Instead of keeping track of labels for each state, keep track of a set of states in which a certain formula holds.

46

Example

Verifying $E[\neg c_2 \cup c_1]$ on the mutual exclusion example.



Counterexamples and Witnesses

- Counterexamples
 - explains why a property is false
 - typically a violating path for universal properties
 - how to explain that something does not exist?
- Witnesses
 - explains why a property is true
 - typically a satisfying path for existential properties
 - how to explain that something holds on all paths?

48

Generating Counterexamples

Only works for universal properties

$$-AXp -AG(p \Rightarrow AFq)$$

- etc.

Step 1: negate the property and express it using EX, EU, and EG

- e.g. $AG(p \Rightarrow AFq)$ becomes $EF(p \land EG \neg q)$

Step 2:

- For EXp find a successor state labeled with p
- For EGp follow successors labeled with EGp until a loop is found
- For E[pUq] remove all states not labeled with p or q, then look for path to q

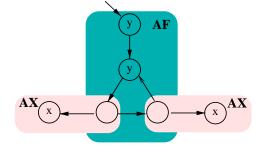
Counterexamples and Witnesses (Cont'd)

- What about properties that combine universal and existential operators?
- Are they really different?
 - a counterexample for ϕ is a witness to its negation
 - a counterexample for a universal property is a witness to some existential property
 - e.g. AGp and $EF \neg p$
- One alternative
 - build a proof instead of a counterexample
 - works for all properties (but proofs can be big)
 - see:
 - * A. Gurfinkel and M. Chechik. "Proof-like Counterexamples", Proceedings of TACAS'03.
 - * M. Chechik, A. Gurfinkel. "A Framework for Counterexample Generation and Exploration", FASE'2005.

50

Are counterexamples always linear?

- SMV only supports linear counterexamples
- But what about $(AXp) \lor (AXq)$?
- Counterexample for $AF(\neg y \land AX \neg x)$



 See: E. Clarke et al. "Tree-Like Counterexamples in Model Checking", Proceedings of LICS'02.

State Explosion

Imagine that you a Kripke structure of size n. What happens if we add another boolean variable to our model?

How to deal with this problem?

• Symbolic model checking with efficient data structures (BDDs). Don't need to represent and manipulate the entire model. Model-checker SMV [McMillan, 1993].

• Abstraction: we abstract away variables in the model which are not relevant to the formula being checked (see later in the course).

• Partial order reduction: for asynchronous systems, several interleavings of component traces may be equivalent as far as satisfaction of the formula to be checked is concerned.

• Composition: break the verification problem down into several simpler verification problems.

52

SMV

Symbolic model verifier – a model-checker that uses symbolic model checking algorithm. The language for describing the model is a simple parallel assignment.

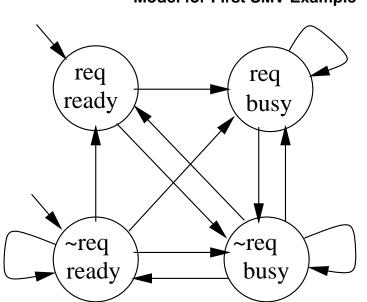
- Can have synchronous or asynchronous parallelism.
- Model environment non-deterministically.

• Also use non-determinism for systems which are not fully implemented or are abstract models of complex systems.

First SMV Example

```
MODULE main
VAR
request : boolean;
state : {ready, busy};
ASSIGN
init(state) := ready;
next(state) := case
request : busy;
1: {ready, busy}
esac;
SPEC
AG(request -> AF state = busy)
```

Note that request never receives an assignment – this models input.



Model for First SMV Example

More About the Language

- Program may consist of several modules, but one has to be called main.
- Each variable is a state machine, described by init and next.
- Variables are passed into modules by reference.
- Comment anything starting with – and ending with a newline.
- No loop construct.
- Datatypes: boolean, enumerated types, user-defined modules, arrays, integer subranges.

VAR

```
state : {on, off};
state1 : array 2..5 of {on, off};
state2 : computeState(1);
state3 : compute;
state4 : array 2..5 of state; <- error
state5 : array on..off of boolean; <- error</pre>
```

```
56
```

Another Example

```
MODULE main
VAR
 bit0 : counter_cell(1);
 bit1 : counter_cell(bit0.carry_out);
 bit2 : counter_cell(bit1.carry_out);
SPEC
 AG AF bit2.carry_out
SPEC AG(!bit2.carry_out)
MODULE counter_cell(carry_in)
VAR
 value : boolean;
ASSIGN
  init(value) := 0;
 next(value) := (value + carry_in) mod 2;
DEFINE
 carry_out := value & carry_in;
```

Notation Used

- *a.b* component *b* of module *a*.
- DEFINE same as ASSIGN but
 - cannot be given values non-deterministically
- is dynamically typed
- does not increase the size of state space.
- -like #define in C

58

Modeling Interleaving

Keyword process for modeling interleaving. The program executes a step by non-deterministically choosing a process, then executing all of its assignment statements in parallel.

```
MODULE main
VAR
gate1 : process inverter(gate3.output);
gate2 : process inverter(gate1.output);
gate3 : process inverter(gate2.output);
SPEC
(AG AF gate1.output) & (AG AF !gate1.output)
MODULE inverter(input)
VAR
output : boolean;
ASSIGN
init(output) := 0;
next(output) := !input;
```

Output of Running SMV

```
-- specification AG AF gate1.output & ... is false
-- as demonstrated by the following execution sequence
-- loop starts here --
state 1.1:
gate1.output = 0
qate2.output = 0
gate3.output = 0
[stuttering]
state 1.2:
[stuttering]
resources used:
user time: 0.11 s, system time: 0.16 s
BDD nodes allocated: 303
Bytes allocated: 1245184
BDD nodes representing transition relation: 32 + 1
What went wrong? We never specified that each process has to execute infinitely
```

What went wrong? We never specified that each process has to execute infinitely often – a *fairness* constraint.

60

Fixing the Example

```
MODULE main
VAR
  gate1 : process inverter(gate3.output);
 gate2 : process inverter(gate1.output);
 gate3 : process inverter(gate2.output);
SPEC
  (AG AF gate1.output) & (AG AF !gate1.output)
MODULE inverter(input)
VAR
  output : boolean;
ASSIGN
  init(output) := 0;
 next(output) := !input;
FAIRNESS
 running
-- specification AG AF gate1.output .. is true
```

Advantages of Interleaving Model

• Allows for a particularly efficient representation of the transition relation:

The set of states reachable by one step of the program is the union of the sets reachable by each individual process. So, do not need reachability graph.

• But sometimes have increased complexity in representing the set of states reachable in n steps (can have up to s^n possibilities).

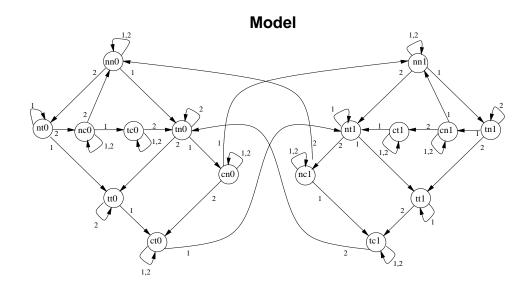
62

Mutual Exclusion Again

```
st - status of the process (critical section, or not, or trying)
other-st-status of the other process
turn - ensures that they take turns
MODULE main
  VAR
    pr1 : process prc(pr2.st, turn, 0);
    pr2 : process prc(pr1.st, turn, 1);
    turn : boolean;
  ASSIGN
    init(turn) := 0;
  --safety
  SPEC AG!((pr1.st = c) \& (pr2.st = c))
  --liveness
  SPEC AG((prl.st = t) -> AF (prl.st = c))
  SPEC AG((pr2.st = t) -> AF (pr2.st = c))
  --no strict sequencing
  SPEC EF(prl.st = c & E[prl.st = c U
          (!pr1.st = c & E[! pr2.st = c U pr1.st = c ])])
                            63
```

Model (Cont'd)

```
MODULE prc(other-st, turn, myturn)
  VAR
    st : {n, t, c};
  ASSIGN
    init(st) := n;
    next(st) := case
        (st = n) : \{t, n\};
        (st = t) \& (other-st = n) : c;
        (st = t) \& (other-st = t) \& (turn = myturn) : c;
        (st = c) : {c, n};
        1 : st;
               esac;
    next(turn) := case
        turn = myturn & st = c : !turn;
        1
           : turn;
               esac;
  FAIRNESS running
  FAIRNESS !(st = c)
                         64
```



Comments:

• The labels in the slide above denote the process which can make the move.

• Variable turn was used to differentiate between states s_3 and s_9 , so we now distinguish between ct0 and ct1. But transitions out of them are the same.

• Removed the assumption that the system moves on each tick of the clock. So, the process can get stuck, and thus the fairness constraint.

• In general, what is the difference between the single fairness constraint $\psi_1 \land \psi_2 \land \ldots \land \psi_n$ and *n* fairness constraints ψ_1, ψ_2 , etc., written on separate lines under FAIRNESS?

66

Fairness (Again)

Let $C = \{\psi_1, \psi_2, ..., \psi_n\}$ be a set of *n* fairness constraints. A computation path $s_0, s_1, ...$ is *fair* w.r.t. *C* if for each *i* there are infinitely many *j* s.t. $s_j \models \psi_i$, that is, each ψ_i is true infinitely often along the path.

We use A_C and E_C for the operators A and E restricted to fair paths.

 E_CU , E_CG and E_CX form an adequate set.

 $E_C G \top$ holds in a state if it is the beginning of a fair path.

Also, a path is fair iff any suffix of it is fair. Finally,

$$\mathbf{E}_{C}[\phi \mathbf{U} \boldsymbol{\psi}] = \mathbf{E}[\phi \mathbf{U}(\boldsymbol{\psi} \wedge \mathbf{E}_{C} \mathbf{G} \top)]$$

$$\mathbf{E}_C \mathbf{X} \mathbf{\phi} = \mathbf{E} \mathbf{X} (\mathbf{\phi} \wedge \mathbf{E}_C \mathbf{G} \top)$$

We only need a new algorithm for $E_C G \phi$

Algorithm for $E_C G \phi$

• Restrict the graph to states satisfying ϕ ; of the resulting graph, we want to know from which states there is a fair path.

• Find the maximal *strongly connected components* (SCCs) of the restricted graph;

• Remove an SCC if, for some ψ_i , it does not contain a state satisfying ψ_i . The resulting SCCs are the fair SCCs. Any state of the restricted graph that can reach one has a fair path from it.

• Use breadth-first search backward to find the states on the restricted graph that can reach a fair SCC.

Complexity: $O(n \times |f| \times (S + |R|))$ (still linear in the size of the model and formula).

Guidelines for Modeling with SMV

• Identify inputs from the environment.

• Make sure that the environment is non-deterministic. All constraints on the environment should be carefully justified.

• Determine the states of the system and its outputs. Model them in terms of the environmental inputs.

• Specify fairness criteria, if any. Justify each criterium. Remember that you can over-specify the system. Fairness may not be implementable, and in fact may result in no behaviors.

• Specify correctness properties (in CTL or LTL). Comment each property in English.

• Ensure that desired properties are not satisfied vacuously.

Vacuity in Temporal Logic

- Let $\phi[\psi]$ be a formula with subformula ψ
- ψ affects $\phi[\psi]$ if replacing ψ with another subformula changes the value of ϕ
- $\phi[\psi]$ is vacuous in ψ if ψ does not affect ϕ
- ϕ is vacuous if there exists a subformula ψ such that ϕ is vacuous in ψ
- To check if $\phi[\psi]$ is vacuous in an occurrence of ψ
 - check $\phi[\psi \leftarrow true]$
 - check $\phi[\psi \leftarrow \text{false}]$
 - ϕ is vacuous if both results are the same
- Further reading
 - I. Beer et al. "Efficient Detection of Vacuity in Temporal Model Checking", FMSD, 2001.
 - O. Kupferman and M. Vardi. "Vacuity Detection in Temporal Model Checking", STTT, 2003.
 - A. Gurfinkel and M. Chechik. "How Vacuous is Vacuous", TACAS'04.

70

Sanity Checks

- Check that the model is non-trivial
 - EXtrue at least one successor state
 - AGEXtrue transition relation is total
- If result of model-checking is false, there is a counterexample to prove it. If the result is true, no extra information is given!
- Check that every part of the property matters (vacuity checking).
 - Replace consequent of an implication with false and check
 - If $AG(p \Rightarrow AFq)$, check $AG(p \Rightarrow false)$
 - The result should be false.
 - The counterexample shows one good execution.
- Use counterexamples for simulation.
 - Example: $\neg EF(\texttt{floor} = 2)$