
µ-Calculus, Cont’d

• Variables: free or bound (by a fixpoint operator)

E.g., f (Q1), µQ1. f (Q1)

• [a] f – ” f holds in all states reachable in one step by making an a-transition”

•< a > f – ” f holds in at least one state reachable in one step by making an a
transition”

• µ, ν – least and greatest fixpoints

• False – empty set of states

• True – all states S
• s

a
→ s′ means (s,s′) ∈ a

• f – set of states where f is true ([[ f ]]Me, where M - transition system,

e : VAR→ 2S is an environment)

• e[Q←W] – new environment that is same as eexcept that

e[Q←W](Q) = W
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Propositional µ-Calculus

Model: M = (S,T,L), where

• S- nonempty set of states;

• T – a set of transitions, such that ∀a∈ T ·a⊆ S×S
• L : S→ S→ sAP gives the set of atomic propositions true in a state

•VAR= {Q,Q1,Q2, ...} – set of relational variables, where each Q∈VAR
can be assigned a subset of S

µ-calculus formulae:

• If p∈ AP, then p is a formula.

• A relational variable is a formula.

• If f and g are formulas, then ¬ f , f ∧g, f ∨g are formulas.

• If f is a formula, and a∈ T , then [a] f and < a > f are formulas.

• If Q∈VARand f is a formula, then µQ. f and νQ. f are formulas, provided

that f is syntactically monotone in Q, i.e., all occurrences of Q within f fall under

an even number of negations in f
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Relationship between µ-calculus operators

¬[a] f ≡ < a > ¬ f

¬< a > f ≡ [a]¬ f

¬µQ. f (Q) ≡ νQ.¬ f (¬Q)

¬νQ. f (Q) ≡ µQ.¬ f (¬Q)

How do we ensure existence of fixpoints?
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Semantics

• [[p]]Me= {s | p∈ L(s)}
• [[Q]]Me= e(Q)

• [[¬ f ]]Me= S− [[ f ]]Me
• [[ f ∧g]]Me= [[ f ]]Me∩ [[g]]Me
• [[ f ∨g]]Me= [[ f ]]Me∪ [[g]]Me
• [[< a > f ]]Me= {s | ∃t · [s

a
→ t ∧ t ∈ [[ f ]]Me]}

• [[[a] f ]]Me= {s | ∀t · [s
a
→ t⇒ t ∈ [[ f ]]Me]}

• [[µQ. f ]]Me is the least fixpoint of the predicate transformer τ : 2S→ 2S

defined by τ(W) = [[ f ]]Me[Q←W]

• [[νQ. f ]]Me is the greatest fixpoint of the predicate transformer τ : 2S→ 2S

defined by τ(W) = [[ f ]]Me[Q←W]
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Examples

ad(µX.p∨< a > X) = 1

ad(νX.((νY.p ∧ [a]Y)∨< a > X)) = 1

ad(νX.(p∧ < a > νY.(q ∧ [a]Y∨< a > X)) = 1

ad(νX.µY.((p ∧ X)∨< a > Y)) = 2

Note that the nesting depth (longest chain of fixpoint-subformulas of ϕ that are

nested in one another) of the first formula is 1, but for all the rest, it is 2.

Note: negating (and moving negation to atom. props) a µ-calculus formula does

not change its alternation depth.

Also note that fair CTL has alternation depth 2:

• Fair EG (with fairness condition h)

ECG f = νZ. f ∧ EX(E[ f U ( f ∧ Z ∧ h)])

= νZ.( f ∧ < a > (µY.( f ∧ Z ∧ h)∨ ( f ∧ < a > Y)))
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Alternation Depth

Def: Alternation depth of a formula is the number of alternations between

µ-formulas and ν-formulas along chains of nested fixpoint subformulas.

The definition is inductive:

• If ϕ is not a fixpoint-formula then,

ad(ϕ) = max{ad(ψ)|ψ is a fixpoint-subformula of ϕ}

• else if ϕ = µX.ψ, then

ad(ϕ) = max{1,ad(ψ),1+max{ad(χ) | χ is open ν-subformula of ϕ}}

• else if ϕ = νX.ψ, then

ad(ϕ) = max{1,ad(ψ),1+max{ad(χ) | χ is open µ-subformula of ϕ}}

A µ-calculus formula ϕ is said to be alternation-free if ad(ϕ)≤ 1.

Alternation-free µ-calculus – a language of such ϕs.
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Model-Checking Algorithm (Cont’d)

11. if f = µQ.g(Q) then

12. Qval := False;

13. repeat

14. Qold := Qval;

15. Qval := eval(g,e[Q←Qval]);

16. until Qval = Qold;

17. return Qval;

18. if f = νQ.g(Q) then

19. Qval := True;

20. repeat

21. Qold := Qval;

22. Qval := eval(g,e[Q←Qval]);

23. until Qval = Qold;

24. return Qval;

25. end function
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Model-Checking Algorithm

1. function eval ( f , e)

2. if f = p then return {s | p∈ L(s)};
3. if f = g1 ∧ g2 then

4. return eval(g1,e) ∩ eval(g2,e);

5. if f = g1∨g2 then

6. return eval(g1,e) ∪ eval(g2,e);

7. if f =< a > g then

8. return {s | ∃t · [s
a
→ t and t ∈ eval(g,e)]};

9. if f = [a]g then

10. return {s | ∀t · [s
a
→ t implies t ∈ eval(g,e)]};
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A Better Algorithm [Emerson, Lai]

Goal: decrease the number of fixpoint iterations to O(| f |×n)d), where d –

alternation depth of f .

Idea: exploit sequences of fixpoints that have the same type to reduce the

complexity of the algorithm:

• It is unnecessary to reinitialize computations of inner fixpoints with False or

True!

• Instead, to compute a least fixpoint, it is enough to start iterating with any

approximation known to be below the fixpoint. Similar, for greatest fixpoint.
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Complexity

1. Each loop executes at most n+1 times (n = |S|)
2. Each iteration does a recursive call to evaluate the body of fixpoint with a

different value for the fixpoint variable

3. It can also lead to recursive calls...

Complexity: O(nk) iterations of the fixpoint , where k – maximum nesting depth of

fixpoint operators in the formula.

Each iteration: O(|M|× | f |), where

|M|= |S|+Σa∈T |a|

Overall complexity: O(|M|× | f |×nk)
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Emerson-Lai Cont’d

19. if f = νQi .g(Qi) then

20. for all top-level least fixpoint subformulas

µQj .g′(Q j) of g
21. do A[ j ] := False;

22. repeat

23. Qold := A[i];
24. A[i] := eval(g,e[Qi ← A[i]]);

25. until A[i] = Qold;

26. return A[i];
27. end function
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Emerson-Lai Algorithm

11. if f = µQi .g(Qi) then

12. for all top-level greatest fixpoint subformulas

νQ j .g′(Q j) of g
13. do A[ j ] := True;

14. repeat

15. Qold := A[i];
16. A[i] := eval(g,e[Qi ← A[i]]);

17. until A[i] = Qold;

18. return A[i];
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µ-calculus and CTL

Translation of CTL into µ-calculus (a is the only transition):

Tr(p) = p

Tr(¬ f ) = ¬Tr( f )

Tr( f ∧ g) = Tr( f ) ∧ Tr(g)

Tr(EX f) = < a > Tr( f )

Tr(E[ fUg]) = µY.(Tr(g)∨ (Tr( f ) ∧ < a > Y))

Tr(EG f) = νY.(Tr( f ) ∧ < a > Y)

Any resulting µ-calculus formula is closed; so, omit environment e from

translation.
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Complexity

1. | f | – upper bound on the number of consecutive fixpoints of the same type in f
2. Number of iterations for each such sequences is O(| f |×n) instead of n| f | as

before

3. Computation is reinitialized at the boundary between two sequences of

different types

Overall number of iterations: O((| f |×n)d)

Moreover, complexity of model-checking µ-calculus is in NP ∩ co-NP (see book)

[Sterling’03] Complexity of model-checking µ-calculus is in P!
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food for slide eater
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µ-calculus and CTL, Cont’d

Example: Tr(EGE[pUq])) =

νY.(µZ.(q∨ (p∧ < a > Z)) ∧ < a > Y)

Theorem: Let M = (S,T,L) be a Kripke structure. Assume that the transition a
in the translation algorithm Tr is the relation T of the Kripke structure. Let f be a

CTL formula. Then, for all s∈ S,

M,s |= f ⇔ s∈ [[Tr( f )]]M
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