Automata-Theoretic LTL Model Checking

Graph Algorithms for Software Model Checking

(based on Arie Gurfinke's csc2108 project)

Emptiness of Büchi Automata

- An automation is non-empty iff
 - there exists a path to an accepting state,
 - such that there exists a cycle containing it
Emptiness of Büchi Automata

An automation is non-empty iff
- there exists a path to an accepting state,
- such that there exists a cycle containing it

Is this automaton empty?
- No – it accepts $a(bef)\omega$
Emptiness of Büchi Automata

- An automation is non-empty iff
 - there exists a path to an accepting state,
 - such that there exists a cycle containing it

- Is this automaton empty?
 - No – it accepts $a(bef)^\omega$
An automation is non-empty iff
- there exists a path to an accepting state,
- such that there exists a cycle containing it

Is this automaton empty?
- No – it accepts $a(bef)^\omega$
LTL Model-Checking

LTL Model-Checking = Emptiness of Büchi automata

- a tiny bit of automata theory +
- trivial graph-theoretic problem
- typical solution – use depth-first search (DFS)

Problem: state-explosion

the graph is HUGE

The result

LTL model-checking is just a very elaborate DFS
Depth-First Search – Refresher

depth-first tree
DFS – The Algorithm

1: proc DFS(v)
2: add v to Visited
3: d[v] := time
4: time := time + 1
5: for all w ∈ succ(v) do
6: if w ∉ Visited then
7: DFS(w)
8: end if
9: end for
10: f[v] := time
11: time := time + 1
12: end proc

DFS – Data Structures

- implicit STACK
- stores the current path through the graph
- Visited table
- stores visited nodes
- used to avoid cycles
- for each node
 - discovery time – array d
 - finishing time – array f
What we want

- Running time
 - at most linear — anything else is not feasible

- Memory requirements
 - sequentially accessed – like STACK
 - disk storage is good enough
 - assume unlimited supply – so can ignore
 - randomly accessed – like hash tables
 - must use RAM
 - limited resource – minimize
 - why cannot use virtual memory?

What else we want

- Counterexamples
 - an automaton is non-empty iff exists an accepting run
 - this is the counterexample – we want it

- Approximate solutions
 - partial result is better than nothing!
DFS – Complexity

- Running time
 - each node is visited once
 - linear in the size of the graph

- Memory
 - the STACK
 - accessed sequentially
 - can store on disk – ignore
 - Visited table
 - randomly accessed – important
 - $|\text{Visited}| = S \times n$
 - n – number of nodes in the graph
 - S – number of bits needed to represent each node

Take 1 – Tarjan’s SCC algorithm

- Idea: find all maximal SCCs: SCC_1, SCC_2, etc.
 - an automaton is non-empty iff exists SCC_i
 containing an accepting state
Take 1 – Tarjan’s SCC algorithm

- Idea: find all maximal SCCs: SCC₁, SCC₂, etc.
 - an automaton is non-empty iff exists SCCᵢ containing an accepting state
- Fact: each SCC is a sub-tree of DFS-tree
 - need to find roots of these sub-trees
Finding a Root of an SCC

- For each node v, compute $\text{lowlink}[v]$
- $\text{lowlink}[v]$ is the minimum of
 - discovery time of v
 - discovery time of w, where
 - w belongs to the same SCC as v
 - the length of a path from v to w is at least 1
- Fact: v is a root of an SCC iff
 - $d[v] = \text{lowlink}[v]$

Finally: the algorithm

1: proc $\text{SCC_SEARCH}(v)$
2: add v to Visited
3: $d[v] := \text{time}$
4: $\text{time} := \text{time} + 1$
5: $\text{lowlink}[v] := d[v]$
6: push v on STACK
7: for all $w \in \text{succ}(v)$ do
8: if $w \notin \text{Visited}$ then
9: $\text{SCC_SEARCH}(w)$
10: end if
11: end for
12: $\text{lowlink}[v] := \min(\text{lowlink}[v], \text{lowlink}[w])$
13: end if
14: end for
15: end if
16: repeat
17: pop x from top of STACK
18: if $x \in F$ then
19: terminate with “Yes”
20: end if
21: until $x = v$
22: end if
23: end proc
Finally: the algorithm

1: proc SCC_SEARCH(v)
2: add v to Visited
3: d[v] := time
4: time := time + 1
5: lowlink[v] := d[v]
6: push v on STACK
7: for all w ∈ succ(v) do
8: if w /∈ Visited then
9: SCC_SEARCH(w)
10: lowlink[v] := min(lowlink[v], lowlink[w])
11: else if d[w] < d[v] and w is on STACK then
12: lowlink[v] := min(d[w], lowlink[v])
13: end if
14: end for
15: if lowlink[v] = d[v] then
16: repeat
17: pop x from top of STACK
18: if x ∈ F then
19: terminate with “Yes”
20: end if
21: until x = v
22: end if
23: end proc

Tarjan’s SCC algorithm – Analysis

- Running time
 - linear in the size of the graph

- Memory
 - STACK – sequential, ignore
 - Visited – $O(S \times n)$
 - lowlink – $\log n \times n$ (wasted space?)
 - n is not known a priori
 - assume n is at least $\geq 2^{32}$

- Counterexamples
 - can be extracted from the STACK
 - even more – get multiple counterexamples

- If we sacrifice some of generality, can we do better?
Take 2 – Two Sweeps

- Don’t look for maximal SCCs
- Find a reachable accepting state that is on a cycle
- Idea: use two sweeps
 - sweep one: find all accepting states
 - sweep two: look for cycles from accepting states
- Problem?
 - no longer a linear algorithm (revisit the states multiple times)
Take 2 – Two Sweeps

- Don’t look for maximal SCCs
- Find a reachable accepting state that is on a cycle
- Idea: use two sweeps
 - sweep one: find all accepting states
 - sweep two: look for cycles from accepting states
- Problem?
 - no longer a linear algorithm (revisit the states multiple times)

![Graph Diagram]

Fixing non-linearity

- Graph Theoretic Result: let v and u be two nodes, such that
 - $f[v] < f[u]$
 - v is not on a cycle
 - then, no cycle containing u contains nodes reachable from v
Fixing non-linearity

- Graph Theoretic Result: let \(v \) and \(u \) be two nodes, such that
 - \(f[v] < f[u] \)
 - \(v \) is not on a cycle
 - then, no cycle containing \(u \) contains nodes reachable from \(v \).
Take 3 – Double DFS

1: proc DFS1(v)
2: add v to Visited
3: for all w ∈ succ(v) do
4: if w ∉ Visited then
5: DFS1(w)
6: end if
7: end for
8: if v ∈ F then
9: add v to Q
10: end if
11: end proc

1: proc SWEEP2(Q)
2: while Q ≠ [] do
3: f := dequeue(Q)
4: DFS2(f, f)
5: end while
6: terminate with “No”
7: end proc

1: proc DFS2(v, f)
2: add v to Visited
3: for all w ∈ succ(v) do
4: if v = f then
5: terminate with “Yes”
6: else if w ∉ Visited then
7: DFS2(w, f)
8: end if
9: end for
10: end proc

1: proc DDFS(v)
2: Q = ∅
3: Visited = ∅
4: DFS1(v)
5: Visited = ∅
6: SWEEP2(Q)
7: end proc

Double DFS – Analysis

- Running time
 - linear! (single Visited table for different final states, so no state is processed twice)

- Memory requirements
 - $O(n \times S)$

- Problem
 - where is the counterexample?!
Take 4 – Nested DFS

- Idea
 - when an accepting state is finished
 - stop first sweep
 - start second sweep
 - if cycle is found, we are done
 - otherwise, restart the first sweep
- As good as double DFS, but
 - does not need to always explore the full graph
 - counterexample is readily available
 - a path to an accepting state is on the stack of the first sweep
 - a cycle is on the stack of the second

A Few More Tweaks

- No need for two \textit{Visited} hashtables
 - empty hashtable wastes space
 - merge into one by adding one more bit to each node
 - \((v, 0) \in \text{Visited} \iff v \text{ was seen by the first sweep}
 - \((v, 1) \in \text{Visited} \iff v \text{ was seen by the second sweep}
- Early termination condition
 - nested DFS can be terminated as soon as it finds a node that is on the stack of the first DFS
On-the-fly Model-Checking

- Typical problem consists of
 - description of several process P_1, P_2, \ldots
 - property φ in LTL
- Before applying DFS algorithm
 - construct graph for $P = \Pi_{i=1}^nP_i$
 - construct Büchi automaton $A_{\neg \varphi}$ for $\neg \varphi$
 - construct Büchi automaton for $P \cap A_{\neg \varphi}$

But,
- all constructions can be done in DFS order
- combine everything with the search
- result: on-the-fly algorithm, only the necessary part of the graph is built
State Explosion Problem

- the size of the graph to explore is huge
- on real programs
 - DFS dies after examining just 1% of the state space
- What can be done?
 - abstraction
 - false negatives
 - partial order reduction. (to be covered)
 - exact – but not applicable to full LTL
 - partial exploration – explore as much as possible
 - false positives
- In practice – combine all 3

Partial exploration techniques

- Explore as much of the graph as possible
- The requirements
 - must be compatible with
 - on-the-fly model-checking
 - nested depth-first search
 - size of the graph not known a priori
 - must perform as good as full exploration when enough memory is available
 - must degrade gracefully
- We will look at two techniques
 - bitstate hashing
 - hashcompact – a type of state compression
Bitstate Hashing

- a hashtable is
 - an array d of k entries
 - a hash function $hash : States \rightarrow 0..k - 1$
 - a collision resolution protocol
- to insert v into a hashtable
 - compute $hash(v)$
 - if $d[hash(v)]$ is empty, $d[hash(v)] = v$
 - otherwise, apply collision resolution
- to lookup v
 - if $d[hash(v)]$ is empty, v is not in the table
 - else if $d[hash(v)] = v$, v is in the table
 - otherwise, apply collision resolution

- if there are no collisions, don’t need to store v at all!
 - instead, just store one bit – empty or not
- even better, use two hash functions
 - to insert v, set $d[hash_1(v)] = 1$ and $d[hash_2(v)] = 1$
- sound with respect to false answers
 - if a counterexample is found, it is found!
- in practice, up to 99% coverage
- collisions increase gradually when not enough memory
- coverage decreases at the rate collisions increase
Why does this work?

- If nested DFS stops when a successor to \(v \) in \(DFS_2 \) is on the stack of \(DFS_1 \), how is soundness guaranteed, i.e., why is the counterexample returned by model-checker real?
- Answer: States are stored on the stack without hashing, since stack space does not need to be saved.

Hashcompact

- Assume a large virtual hashtable, say \(2^{64} \) entries
- For each node \(v \),
 - instead of using \(v \),
 - use \(hash(v) \), its hash value in the large table
- Store \(hash(v) \) in a normal hashtable,
 - or even the one with bitstate hashing
- When there is enough memory
 - probability of missing a node is \(< 10^{-3} \)
- Degradation
 - expected coverage decreases rapidly, when not enough memory
Symbolic LTL Model-Checking

- LTL Model-Checking = Finding a reachable cycle
 - Represent the graph symbolically
 - and use symbolic techniques to search
- There exists an infinite path from s, iff $||EG$ true$|| (s)$
 - the graph is finite
 - infinite \Rightarrow cyclic!
 - exists a cycle containing an accepting state a iff a
 - occurs infinitely often
 - use fairness to capture accepting states
- LTL Model-Checking = EG true under fairness!

food for slide eater