Presentation Title

Software Engineering Institute

10/25/2007

Introduction to CBMC: Part 1

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, PA 15213

Arie Gurfinkel, Sagar Chaki
October 2, 2007

Many slides are courtesy of
Daniel Kroening

Carnegie Mellon
¢

Program

Claim

Software Engineering Institute

Bug Catching with SAT-Solvers

Main Idea: Given a program and a claim use a SAT-solver to find
whether there exists an execution that violates the claim.

>

Analysis

Engine

CNF
ﬁ

SAT

Solver

SAT

(counterexample exists)

—

UNSAT

(no counterexample found)

Carnegie Mellon

Introduction to CBMC: Part 1
Gurfinkel, Chaki, Oct 2, 2007

negie Mel

%% Software Engineering Institute ‘ Carnegie Mellon

© 2006 Carnegie Mellon University

1

Presentation Title

Programs and Claims

-Arbitrary ANSI-C programs

« With bitvector arithmetic, dynamic memory, pointers, ...
-Simple Safety Claims

« Array bound checks (i.e., buffer overflow)

- Division by zero

« Pointer checks (i.e., NULL pointer dereference)

 Arithmetic overflow

» User supplied assertions (i.e., assert (i > j))

* etc

Software Engineering Institute | CarnegieMellon

Why use a SAT Solver?

-SAT Solvers are very efficient
-Analysis is completely automated
-Analysis as good as the underlying SAT solver

-Allows support for many features of a programming language

- bitwise operations, pointer arithmetic, dynamic memory, type casts

Introduction to CBMC: Part 1
K 2007

== Software Engineering Institute | CarnegieMellon curfink

© 2006 C:

10/25/2007

Software Engineering Institute ‘ Carnegie Mellon © 2006 Carnegie Mellon University

2

Presentation Title

A (very) simple example (1)

Program

Constraints

int x

:y__‘]_;

else

=y +1;

assert (z ==

int y=8,z=0,w=0;
if)

711

oftware Engineering Institute ‘ CarnegicMellon

y=38,
z=x?y-1:0,
=x?0:y+1,

zI1=7,

wl!l=9

UNSAT
no counterexample

assertion always holds!

Program

A (very) simple example (2)

Constraints

int x

int y=8,z=0,w=0;

if X

=y -1
else

=y +1;

assert (z ==

S

Software Engineering Institute ‘ Carnegie Mellon

y=8,

z!=5,

w!=9

z=x?y-1:0,
=x?0y+1,

SAT

counterexample found!

‘yz&x=Lw=Q2=7

Introduction to CBMC Part 1
Gu 200

10/25/2007

%% Software Engineering Institute

‘ Carnegie Mellon

© 2006 Carnegie Mellon University

3

Presentation Title

10/25/2007

What about loops?!

Program > Analysis CNF SAT
—
Claim Engine Solver

SAT

oftware Engineering Institute | CarnegicMellon

-SAT Solver can only explore finite length executions!

-Loops must be bounded (i.e., the analysis is incomplete)

Bound (n) _T /\

(counterexample exists) (no counterexample of

UNSAT

bound n is found)

CBMC: C Bounded Model Checker

-Developed at CMU by Daniel Kroening et al.

-Available at: hitp://www.cs.cmu.edu/~modelcheck/cbmc/

-Known to scale to programs with over 30K LOC

drivers

Software Engineering Institute | CarnegieMellon

-Supported platafoms: Windows (requires VisualStudio’s™ CL), Linux

-Provides a command line and Eclipse-based interfaces

‘Was used to find previously unknown bugs in MS Windows device

Introduction to CBMC: Part 1
2007

%% Software Engineering Institute ‘ Carnegie Mellon

© 2006 Carnegie Mellon University

4

Presentation Title

10/25/2007

CBMC: Supported Language Features

but for efficiency

Complex language features, such as
» Bit vector operators (shifting, and, or,...)
» Pointers, pointer arithmetic
- Dynamic memory allocation: malloc/free
« Dynamic data types: char s[n]
- Side effects
- Tloat/double

« Non-determinism

Software Engineering Institute | Carnegie Mellon

== Software Engineering Institute | CarnegieMellon

ANSI-C is a low level language, not meant for verification

=== Software Engineering Institute ‘ Carnegie Mellon

© 2006 Carnegie Mellon University

5

Presentation Title 10/25/2007

Using CBMC from Command Line

-To see the list of claims

cbmc --show-claims -1 include file.c

-To check a single claim

cbmc --unwind n --claim x —I include file.c

-For help

« cbmc --help

tion to CBMC: Part 1

Software Engineering Institute | Carnegie Mellon

Introduction to CBMC: Part 2

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Arie Gurfinkel, Sagar Chaki
October 2, 2007

Many slides are courtesy of
Daniel Kroening

Software Engineering Institute | CarnegieMellon

=== Software Engineering Institute ‘ Carnegie Mellon © 2006 Carnegie Mellon University

6

Presentation Title 10/25/2007

What about loops?!

-SAT Solver can only explore finite length executions!

-Loops must be bounded (i.e., the analysis is incomplete)

Program > Analysis CNF SAT
—
Claim Engine Solver

Bound (n) _T /\

SAT UNSAT

(counterexample exists) (no counterexample of

bound n is found)

Software Engineering Institute | CarnegieMellon

How does it work

Transform a programs into a set of equations

1. Simplify control flow

2. Unwind all of the loops

3. Convert into Single Static Assignment (SSA)
4. Convert into equations

5. Bit-blast

6. Solve with a SAT Solver

7. Convert SAT assignment into a counterexample

Introduction to CBMC: Part 1

== Software Engineering Institute | CarnegiecMellon Gurfinkel, Chaxi, oct2, 2007

© 2006 Carnegie Mellon University

—== Software Engineering Institute ‘ Carnegie Mellon © 2006 Carnegie Mellon University

Presentation Title 10/25/2007

Control Flow Simplifications

e All side effect are removal

e €.g., J=i++becomes j=i;i=i+1

- Control Flow is made explicit

- continue, break replaced by goto

- All loops are simplified into one form

« for,do while replaced by while

Software Engineering Institute | CarnegieMellon

Loop Unwinding

- All loops are unwound

» can use different unwinding bounds for different loops

» to check whether unwinding is sufficient special “unwinding
assertion” claims are added

- If a program satisfies all of its claims and all unwinding
assertions then it is correct!

. Same for backward goto jumps and recursive functions

Introduction to CBMC: Part 1

== Software Engineering Institute ‘ CarnegieMellon Gurfinkel, Chaki, Oct 2, 2007

© 2006 Carnegie Mellon University

—== Software Engineering Institute ‘ Carnegie Mellon © 2006 Carnegie Mellon University

Presentation Title

10/25/2007

Loop Unwinding

void (... {

while(cond) {
Body ;

}

Remainder;

}

while() loops are unwound
iteratively

Break / continue replaced by
goto

Introduction to CBMC: Part 1

Sortware £ngineering insttute | CarnegieMellon Gurtinkel, Chaki, oct2 2007

© 2006 Carnegie Mellon University

Loop Unwinding

void F(...) {

if(cond) {
Body;
while(cond) {
Body;
}
}

Remainder;

while() loops are unwound
iteratively

Break / continue replaced by
goto

Introduction to CBMC: Part 1
K 2007

Sortware Engineering institute | Carnegie Mellon Gurfink

© 2006 C:

Software Engineering Institute

CarnegieMellon

© 2006 Carnegie Mellon University

9

Presentation Title 10/25/2007

Loop Unwinding

void T(...) { while() loops are unwound
. iteratively
if(cond) { Break / continue replaced by
Body; goto
if(cond) {
Body;
while(cond) {
Body;
¥
}
}
Remainder;

}

Introduction to CBMC: Part 1
7

Sortware Engineering insttute | Carnegie Mellon

Unwinding assertion

void f(...) { while() loops are unwound
I iteratively
if(cond) { Break / continue replaced by
Body; goto
if
' gcc1nc‘1) { Assertion inserted after last
sodys iteration: violated if
if(cond) { program runs longer than
Body; bound permits

while(cond) {
Body;
¥
}
3
}

Remainder;

- } Introduction to CBMC: Part 1

Sortware Engineering institute | Carnegie Mellon Gurfinkel, Chaki, Oct 2, 2007

© 2006 Carnegie Mellon University

—== Software Engineering Institute | CarnegieMellon © 2006 Carnegie Mellon University 10

Presentation Title

Unwinding assertion

void (... {

if(cond) {
Body;
if(cond) {
Body;
if(cond) {
Body;
assert(!cond);

Unwinding

assertion
b

Remainder;

| 3

while() loops are unwound
iteratively

Break / continue replaced by
goto

Assertion inserted after last
iteration: violated if
program runs longer than
bound permits

Positive correctness result!

uction to CBMC: Part 1

dortware Engineering insuwute - Carnegic Mellon nkel, Chaki, Oct 2, 2007

Mello:

Example: Sufficient Loop Unwinding

void f(...) { void f(...) {
i=1 i=1
while (J <= 2) if(g <= 2) {
=13 +1 j=j+—h
Remainder; if(g <=
¥ i=3+ L,
it <= 2) {
=173 +1;
unwind = 3 assert(!(j <= 2));
b
s
b
3
Remainder;
3

== Software Engineering Institut | G TIGZIC VICHon

DUFLIKEL, CIaRE, JGU &, 401
© 2006 Carnegie Mellon University

10/25/2007

%% Software Engineering Institute

CarnegieMellon

© 2006 Carnegie Mellon University

11

Presentation Title

Example: Insufficient Loop Unwinding

unwind = 3

}

assert(1(j <= 10));
}
}
}

}

Remainder;

Software Engineering Institut® | CAITICZICIVICTION

Program

== Software Engineering Institute

Transforming Loop-Free Programs Into Equations (1)

Easy to transform when every variable is only assigned once!

Constraints

. . ; Introduction to CBMC: Part 1
(431‘11(‘{}'1(‘1\[(‘]10[1 Gurfinkel, Chaki, Oct 2, 2007

© 2006 Carnegie Mellon University

10/25/2007

=== Software Engineering Institute

‘ CarnegieMellon

© 2006 Carnegie Mellon University

12

Presentation Title

Transforming Loop-Free Programs Into Equations (2)

When a variable is assigned multiple times,

use a new variable for the RHS of each assignment

Program SSA Program

X1=Xp+Y0;
L Xo=X1%2;
aj [ip]=100;

X=X*2;
al[i]l=100;

Software Engineering Institute | CarnegieMellon

What about conditionals?

Program SSA Program
if (v) it (vy)

X =Y. Xo = Yo
else else

X = z; p X, = Zg

w = X; w, = X?7?;

What should ‘X’
be?

Introduction to CBMC: Part 1

== Software Engineering Institute | CarnegiecMellon Gurfinkel, Chaxi, oct2, 2007

© 2006 Carnegie Mellon University

10/25/2007

=== Software Engineering Institute ‘ Carnegie Mellon

© 2006 Carnegie Mellon University

13

Presentation Title

10/25/2007

What about conditionals?

Program SSA Program
it (v) it (vy)

X =Y, Xo = Yo;
else else

Software Engineering Institute | CarnegieMellon

Adding Unbounded Arrays

— — p(e) i = p(a)
talo] =e p Va = Al { vo—1[i] : otherwise
Arrays are updated “whole array” at a time
All] =5; A=A i==1725: A
A[2] = 10; A=A i==27210: Al
AK] = 20; A=Aii==k?20: A
BAMPIEST A)==10 AJUESS AfS== A

A4[2] == (k==2 ? 20 : 10)

Uses only as much space as there are uses of the array!

Introduction to CBMC: Part 1

Software Engineering Institute ‘ CarnegieMellon Gurfinkel, Chaki, Oct 2, 2007

© 2006 Carnegie Mellon University

Software Engineering Institute ‘ Carnegie Mellon

© 2006 Carnegie Mellon University

14

Presentation Title 10/25/2007

Example
int main(} { int mainQ) {
int x, ¥; int x, ¥;
7=8; y1=8; (m==8
if(x) if (xg)
y2=y1-1; A w=n-1
2 - e S
yH; Y3=y1+ls A m=Entl
Ya= X0 7¥2:¥3; A ya=z0Ty :y3)
assert assert
(3= II (ya=7 11 = (}a=7TVys=29)
=9); ¥a=9);
} j } 7 7

duction to CBMC: Part 1
7

Software Engineering Institute ‘ Carnegie Mellon

Pointers

While unwinding, record right hand side of assignments to pointers
This results in very precise points-to information

» Separate for each pointer

« Separate for each instance of each program location

Dereferencing operations are expanded into
case-split on pointer object (not: offset)

« Generate assertions on offset and on type
Pointer data type assumed to be part of bit-vector logic

» Consists of pair <object, offset>

Introduction to CBMC: Part 1

Software Engineering Institute | CarnegieMellon Gurfinkel, Chaki, oct2, 2007

© 2006 Carnegie Mellon University

=== Software Engineering Institute ‘ Carnegie Mellon © 2006 Carnegie Mellon University 15

Presentation Title 10/25/2007

Pointer Typecast Example

int i;
int c;
int main (void) {
int inputl, intput2, z;
p = inputl ? (void*)&i : (void*) &c;
if (input2)
z = *(int*)p;

(char)p; } ZC;;7

duction to CBMC: Part 1
7

else

z

Software Engineering Institute ‘ Carnegie Mellon

Dynamic Objects

Dynamic Objects:
- malloc/ free
- Local variables of functions
Auxiliary variables for each dynamically allocated object:
» Size (number of elements)
« Active bit
« Type
mal loc sets size (from parameter) and sets active bit

free asserts that active bit is set and clears bit

Same for local variables: active bit is cleared upon leaving the function

Introduction to CBMC: Part 1

Software Engineering Institute | CarnegieMellon Gurfinkel, Chaki, oct2, 2007

© 2006 Carnegie Mellon University

—== Software Engineering Institute ‘ Carnegie Mellon © 2006 Carnegie Mellon University 16

Presentation Title 10/25/2007

Deciding Bit-Vector Logic with SAT

Pro: all operators modeled with their precise semantics
Arithmetic operators are flattened into circuits
- Not efficient for multiplication, division
« Fixed-point for float/double
Unbounded arrays
« Use uninterpreted functions to reduce to equality logic
- Similar implementation in UCLID
» But: Contents of array are interpreted

Problem: SAT solver happy with first satisfying assignment that is found.
Might not look nice.

duction to CBMC: Part 1
Ch

Software Engineering Institute

Example
void f (int a, int b, int c) Qte 1-3 \
{ a=-8193 (11111111111111111101111111111111)

int temp; b=-402 (11211111111111111111111001101110)

if (@a>b) { C€=-2080380800 (10000011111111111110100010..)

temp=0 (00000000000000000000000000000000;
temp = a; a = b; b = temp; =9 4

¥ State 4 file sort.c line 10

if (b>c) { ‘$ temp=-402 (11111111111111111111111001101110)

temp = b; b = c; c = temp; - =

P P State 5 file sort.c line 11

} b=-2080380800 (10000011111111111110100010..)
if (a<b) {

temp = a; a = b; b = temp; State 6 file sort.c line 12

Cc=-402 (11111111111111111111111001101110)

}

assert (a<=b && b<=c); Failed assertion: assertion file

} sort.c line 19

Sortware tngineering Institute ‘ Carnegieneense: P—

© 2006 Carnegie Mellon University

Software Engineering Institute ‘ Carnegie Mellon © 2006 Carnegie Mellon University 17

Presentation Title 10/25/2007

Problem (1)

‘Reason: SAT solver performs DPLL backtracking search

Very first satisfying assignment that is found is reported

.Strange values artifact from bit-level encoding

-Hard to read

Would like nicer values

oftware Engineering Institute | CarnegicMellon

Problem (Il)
-Might not get shortest counterexample!

-Not all statements that are in the formula actually get
executed

.There is a variable for each statement that decides if it is
executed or not (conjunction of 1f-guards)

-Counterexample trace only contains assignments that are
actually executed

-The SAT solver picks some...

Introduction to CBMC Part 1
200

Software Engineering Institute | CarnegieMellon o

=== Software Engineering Institute ‘ Carnegie Mellon © 2006 Carnegie Mellon University 18

Presentation Title 10/25/2007

Example

void f (int a, iInt b,

int c)
{ {-1} b_1#2 == (a_1#0?b_1#1:b_1#0)
if(a) {-2} a_ 1#2 == (a_1#07a_1#l:a_1#0)
{ {-3} b 1#1 ==1

a=0- ﬁ {-4} a 1#1 == 0
b=1: {-5} \guard#l == a_1#0

{-6} \guard#0 == TRUE assign_
e e ments
{1} c_1#0

assert(c);

oduction to CBMC: Part 1
Oct 2, 20

bmmmbmwm%mmmwww‘(MmﬁMMhn , Chak

Example
void f (int a, iInt b, ////r
- State 1-3
int c)
{ a=1 (00000000000000000000000000000001)
b:0 (00000000000000000000000000000000)
If(a) C:O (00000000000000000000000000000000)
a=0- ($ State 4 file length.c line 5
b_l_ a=0 (00000000000000000000000000000000)
} State 5 file length.c line 6
b:l (00000000000000000000000000000001)
assert(c); _ _ _
Failed assertion: assertion
} file length.c line 11

Software Engineering Institute ‘ Carnegremenes T —

© 2006 Carnegie Mellon University

Software Engineering Institute ‘ Carnegie Mellon © 2006 Carnegie Mellon University 19

Presentation Title 10/25/2007

Basic Solution

Counterexample length typically considered to be most important
« e.g., SPIN iteratively searches for shorter counterexamples

Phase one: Minimize length
min Y lg - lw

l,: Truth value (0/1) of guard,
- Weight = number of assignments

Phase two: Minimize values

Software Engineering Institute | CarnegieMellon

Pseudo Boolean Solver (PBS)

Input:

» CNF constraints

- Pseudo Boolean constraints

— 2x + 3y + 62 <=7, where x, y, z are Boolean variables

« Pseudo Boolean objective function
Output:

« Decision (SAT/UNSAT)

« Optimizatioin (Minimize/Maximize an objective function)
Some implementations:

« PBS http://www.eecs.umich.edu/~faloul/Tools/pbs

« MiniSat+ (from MiniSat web page)

Introduction to CBMC: Part 1
K 2007

== Software Engineering Institute ‘ CarnegieMellon ~ curfink

© 2006 C:

Software Engineering Institute ‘ Carnegie Mellon © 2006 Carnegie Mellon University 20

Presentation Title 10/25/2007

Example
void f (int a, int b, int c) State 1-3 \
{ a=0 (00000000000000000000000000000000)
int temp; b=0 (00000000000000000000000000000000)
if (@a>b){ c=-1 (11111111111111111111111111111111)
temp = a; a = b; b = temp; temp=0 (00000000000000000000000000000000)
¥ State 4 file sort.c line 10
if (b>c) { temp=0 (00000000000000000000000000000000)
R = L W) = s @ S ik State 5 file sort.c line 11
3 b=-1 (11111111111111111111111111111111)
if (a<b) {

temp = a; a = b; b = temp; State 6 file sort.c line 12

c=0 (00000000000000000000000000000000)

}

assert (a<=b && b<=c);

assertion file

Failed assertion:

sort.c line 19

SoTtware Engineering instwte ‘ Carnegicrenen —

gie Mellon University

Modeling with CBMC (1)

CBMC provides 2 modeling (not in ANSI-C) primitives

xxx nondet_xxx
Returns a non-deterministic value of type xxx

int nondet_int (); char nondet_char ();

Useful for modeling external input, unknown environment,
library functions, etc.

Introduction to CBMC: Part 1

Software Engineering Institute | CarnegieMellon Gurfinkel, Chaki, oct2, 2007

© 2006 Carnegie Mellon University

Software Engineering Institute ‘ Carnegie Mellon © 2006 Carnegie Mellon University 21

Presentation Title 10/25/2007

Using nondet for modeling

Library spec:
“foo is given non-deterministically, but is taken until returned”
CMBC stub:
int nondet_int ; int return_foo O
int is_foo_taken = 0; { is_foo _taken = 0; }

int grab foo) {
if (lis_foo_ taken)

is_foo taken = nondet_int ();

L

return is_foo taken; }

oftware Engineering Institute ‘ CarnegicMellon

Modeling with CBMC (2)

The other modeling primitive

__CPROVER_assume (expr)

If the expr is fasle abort the program, otherwise continue
executing

___CPROVER _assume (x>0 && y <= 10);

Introduction to CBMC Part 1
200

Software Engineering Institute | CarnegieMellon o

=== Software Engineering Institute ‘ Carnegie Mellon © 2006 Carnegie Mellon University 22

Presentation Title 10/25/2007

Assume-Guarantee Reasoning (1)

Is foo correct? int foo (int* p) { .. }
void main(void) {
Check by splitting

on the argument of foo(x);
foo

foo(y);

duction to CB

Software Engineering Institute | CarnegieMellon

Assume-Guarantee Reasoning (2)

(A) Is Foo correct assuming p is not NULL?

‘int foo (int* p) { _ CPROVER_assume(p!=NULL); .. } AJ

(G)Is foo guaranteed to be called with a non-NULL argument?

void main(void) {

assert (x!=NULL);// foo(X);

assert (y!=NULL); //foo(y);
-}

=

Introduction to CBMC: Part 1
Gurfinkel, Chaki, Oct 2, 2007

Software Engineering Institute ‘ Carnegie Mellon

© 2006 Carnegie Mellon University

23

=== Software Engineering Institute ‘ Carnegie Mellon © 2006 Carnegie Mellon University

Presentation Title 10/25/2007

Dangers of unrestricted assumptions

Assumptions can lead to vacuous satisfaction

if (x>0) {
__CPROVER_assume (x < 0);

This program is passed by CMBMC! assert (0); }

Assume must either be checked with assert or used as an idiom:

nondet_int ();
nondet_int ();
CPROVER_assume (X < y);

<
I

oftware Engineering Institute ‘ CarnegicMellon

Checking user-specified claims

Assert, assume, and non-determinism + Programming can be used to
specify many interesting claims

dir=1;
whille (x>0)
How to use CBMC to check whether |[{ x = x + dir;
the loop if (x>10) dir = -1*dir;

has an infinite execution? if (x<5) dir = -1*dir;

Introduction to CBMC Part 1
200

Software Engineering Institute | CarnegieMellon o

=== Software Engineering Institute ‘ Carnegie Mellon © 2006 Carnegie Mellon University 24

Presentation Title 10/25/2007

—= Software Engineering Institute | Carnegie Mellon

Software Engineering Institute | CarnegieMellon

—== Software Engineering Institute | CarnegieMellon © 2006 Carnegie Mellon University 25

