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Abstraction of Source CodeAbstraction of Source Code

(from Bandera lectures and talks)

Abstraction: the key to scaling upAbstraction: the key to scaling up

represents a 
set of states

abstraction

Safety: The set of behaviors of the abstract system over-approximates
the set of behaviors of the original system

Original
system

Original
property P

symbolic state

Abstract 
system

Abstract
property P’
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Data Abstraction Data Abstraction 

Data Abstraction
– Abstraction proceeds component-wise, 

where variables are components

x:int
Even

Odd…, -3, -1, 1, 3, …

…, -2, 0, 2, 4, …

1, 2, 3, …

…, -3, -2, -1

0

Pos

Neg

Zeroy:int

Data Type AbstractionData Type Abstraction

int x = 0;

if (x == 0)

x = x + 1;

Data domains

(n<0) : NEG
(n==0): ZERO
(n>0) : POS

Signs

NEG POSZERO

int

Code

Signs x = ZERO;

if (Signs.eq(x,ZERO))

x = Signs.add(x,POS);

Collapses data domains via abstract interpretation:
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Hypothesis Hypothesis 

Abstraction of data domains is necessary
Automated support for 

– Defining abstract domains (and operators)
– Selecting abstractions for program components
– Generating abstract program models
– Interpreting abstract counter-examples

will make it possible to
– Scale property verification to realistic systems
– Ensure the safety of the verification process

Definition of Abstractions in BASLDefinition of Abstractions in BASL
abstraction Signs abstracts int
begin
TOKENS = { NEG, ZERO, POS };

abstract(n)
begin

n  <  0   -> {NEG};
n  ==  0  -> {ZERO};
n  >  0   -> {POS};

end

operator + add
begin
(NEG , NEG)  -> {NEG}  ;
(NEG , ZERO) -> {NEG}  ;
(ZERO, NEG)  -> {NEG}  ;
(ZERO, ZERO) -> {ZERO} ;
(ZERO, POS)  -> {POS}  ;
(POS , ZERO) -> {POS}  ;
(POS , POS)  -> {POS}  ;
(_,_) -> {NEG,ZERO,POS};
/* case (POS,NEG),(NEG,POS) */
end

Automatic
Generation

Forall n1,n2: neg?(n1) and neg?(n2) implies not pos?(n1+n2)

Forall n1,n2: neg?(n1) and neg?(n2) implies not zero?(n1+n2)

Forall n1,n2: neg?(n1) and neg?(n2) implies not neg?(n1+n2)

Proof obligations submitted to PVS...

Example: Start safe, then refine: +(NEG,NEG)={NEG,ZERO,POS}
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Compiling BASL DefinitionsCompiling BASL Definitions
abstraction Signs abstracts int
begin

TOKENS = { NEG, ZERO, POS };

abstract(n)
begin

n  <  0   -> {NEG};
n  ==  0  -> {ZERO};
n  >  0   -> {POS};

end

operator + add
begin
(NEG , NEG)  -> {NEG}  ;
(NEG , ZERO) -> {NEG}  ;
(ZERO, NEG)  -> {NEG}  ;
(ZERO, ZERO) -> {ZERO} ;
(ZERO, POS)  -> {POS}  ;
(POS , ZERO) -> {POS}  ;
(POS , POS)  -> {POS}  ;
(_,_)-> {NEG, ZERO, POS};
/* case (POS,NEG), (NEG,POS) */

end

public class Signs {
public static final int NEG  = 0; // mask 1
public static final int ZERO = 1; // mask 2
public static final int POS  = 2; // mask 4

public static int abs(int n) {
if (n < 0) return NEG;
if (n == 0) return ZERO;
if (n > 0) return POS;

}

public static int add(int arg1, int arg2) {
if (arg1==NEG  && arg2==NEG)  return NEG;
if (arg1==NEG  && arg2==ZERO) return NEG;
if (arg1==ZERO && arg2==NEG)  return NEG;
if (arg1==ZERO && arg2==ZERO) return ZERO;
if (arg1==ZERO && arg2==POS)  return POS;
if (arg1==POS  && arg2==ZERO) return POS;
if (arg1==POS  && arg2==POS)  return POS;
return Bandera.choose(7);
/* case (POS,NEG), (NEG,POS) */

}

Compiled

Interpreting ResultsInterpreting Results

Example:
x = -2;     if(x + 2 == 0) then ...
x = NEG; if(Signs.eq(Signs.add(x,POS),ZERO)) then ...

{NEG,ZERO,POS}

For an abstracted program, a counter-example 
may be infeasible because:
– Over-approximation introduced by abstraction
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ChooseChoose--free state space searchfree state space search

Theorem [Saidi:SAS’00]
Every path in the abstracted program where all 
assignments are deterministic is a path in the 
concrete program.

Bias the model checker
– to look only at paths that do not include 

instructions that introduce non-determinism
JPF model checker modified
– to detect non-deterministic choice (i.e. calls to 

Bandera.choose()); backtrack from those 
points

ChoiceChoice--bounded Searchbounded Search

choose()

X X

Detectable ViolationUndetectable Violatio
n State space searched
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CounterCounter--example guided simulationexample guided simulation

Use abstract counter-example to 
guide simulation of concrete 
program
Why it works:
– Correspondence between concrete and 

abstracted program
– Unique initial concrete state

Nondeterminism!

Java Program:

class App{
public static void main(…) {

[1]  new AThread().start(); 
…

[2]  int i=0;
[3]  while(i<2) {

…
[4]    assert(!Global.done);
[5]    i++;

}}}

class Athread extends Thread {
public void run() { 
…

[6]  Global.done=true;
}}

Example of Abstracted CodeExample of Abstracted Code

Choose-free counter-example: 1 - 2 - 6 - 3 - 4

i=zero

Abstracted Program:

class App{
public static void main(…) {

[1]  new AThread().start(); 
…

[2]  int i=Signs.ZERO;
[3]  while(Signs.lt(i,signs.POS)){

…
[4]    assert(!Global.done);
[5]    i=Signs.add(i,Signs.POS);

}}}

class Athread extends Thread {
public void run() { 
…

[6]  Global.done=true;
}}
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Example of Abstracted CodeExample of Abstracted Code

Abstract counter-example: 1 - 2 - 3 - 4 - 5 - 3 - 4 - 5 - 3 - 6 - 4

Mismatch

i=zeroi=0
i=zeroi=0

i=zeroi=0
i=posi=1

i=posi=1

i=posi=1
i=posi=2

i=posi=2

Java Program:

class App{
public static void main(…) {

[1]  new AThread().start(); 
…

[2]  int i=0;
[3]  while(i<2) {

…
[4]    assert(!Global.done);
[5]    i++;

}}}

class Athread extends Thread {
public void run() { 
…

[6]  Global.done=true;
}}

Abstracted Program:

class App{
public static void main(…) {

[1]  new AThread().start(); 
…

[2]  int i=Signs.ZERO;
[3]  while(Signs.lt(i,signs.POS)){

…
[4]    assert(!Global.done);
[5]    i=Signs.add(i,Signs.POS);

}}}

class Athread extends Thread {
public void run() { 
…

[6]  Global.done=true;
}}

Hybrid ApproachHybrid Approach

Choose-free      

Model Check

Abstraction 

Program & Property

Model Check

Abstract Program 

& Property

Property true!
Property false!

(counter-example)

Guided Simulation

Abstra
ct 

counter-e
xample

Refine selections
Mismatch
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Property AbstractionProperty Abstraction

System Model Property

Program Abstraction
(over-approximation)

Property Abstraction
(under-approximation)

If the abstract property holds on the abstract system, then
the original property holds on the original system

Property AbstractionProperty Abstraction

Properties are temporal logic formulas, written in 
negational normal form.

Abstract propositions under-approximate the truth of 
concrete propositions.

Examples:
– Invariance property: 
– Abstracted to: 

– Invariance property: 
– Abstracted to:

G (x > -1)

G ((x == zero) ∨ (x==pos))

G (x > -2)

G ((x == zero) ∨ (x==pos))
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Predicate Abstraction Predicate Abstraction 

Predicate Abstraction
– Use a boolean variable to hold the value of 

an associated predicate that expresses a 
relationship between variables

predicate: x == y
true

false(1, 2)

(0, 0)

(1, 1)
(-1, -1)

(-1, 3)

(3, 2)

…

…

int * int

An ExampleAn Example
Init:

x := 0;  y := 0;  z := 1;

goto Body;

Body:

assert (z == 1);

x := (x + 1);

y := (y + 1);

if (x == y) then Z1 else Z0;

Z1:  z := 1;

goto Body;

Z0:  z := 0;

goto Body;

• x and y are unbounded
• Data abstraction does not 

work in this case ---
abstracting component-
wise (per variable) cannot 
maintain the relationship
between x and y

• We will use predicate 
abstraction in this example
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Predicate Abstraction ProcessPredicate Abstraction Process

Add boolean variables to your program to 
represent current state of particular predicates
– E.g., add a boolean variable [x=y] to represent 

whether the condition x==y holds or not
These boolean variables are updated whenever 
program statements update variables 
mentioned in predicates
– E.g., add updates to [x=y] whenever x or y or 

assigned 

An ExampleAn Example
Init:

x := 0;  y := 0;  z := 1;

goto Body;

Body:

assert (z = 1);

x := (x + 1);

y := (y + 1);

if (x = y) then Z1 else Z0;

Z1:  z := 1;

goto Body;

Z0:  z := 0;

goto Body;

• We will use the predicates listed 
below, and remove variables x
and y since they are unbounded.

• Don’t worry too much yet about 
how we arrive at this particular 
set of predicates; we will talk a 
little bit about that later

p1: (x = 0)

p2: (y = 0)

p3: (x = (y + 1))

p4: (x = y)

b1:  [(x = 0)]

b2:  [(y = 0)]

b3:  [(x = (y + 1))]

b4:  [(x = y)]

Predicates Boolean Variables

This is our new syntax for representing boolean
variables that helps make the correspondence to 
the predicates clear
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Transforming ProgramsTransforming Programs

[(x = 0)]

[(y = 0)]

[(x = (y + 1))]

[(x = y)]

x := 0;

An example of how to transform an assignment statement

Predicates Assignment 
Statement

[(x=0)] := true;

[(x=(y+1))]  := if [$(y=0)] then false
else top;

[(x=y)]          := if [$(y = 0)] then true
else

if ![$(y=0)] then false
else top;

Where:
[$P] = prev. value of [P]
top is a non-deterministic 
choice between true and 
false

The statement to the left is 
replaced the statements 
below

[(x=0)] := true;

[(x= (y+1))]  :=H(false, [$(y=0)]);

[(x=y)]  := H([$(y=0)], ![$(y=0)]); 

Where:
true, if e1

H (e, e2) =        false, if e2
top, otherwise{

Make a more compact representation using a 
helper function H (following SLAM notation)

State SimulationState Simulation
Given a program abstracted by predicates E1, …, En, an abstract state 
simulates a concrete state if Ei holds on the concrete state iff the boolean
variable [Ei] is true and remaining concrete vars and control points agree. 

(n2,[ [x=0]  = False,
[y=0]  = False,
[x=(y+1)]  = False,
[x=y]  = True, z = 0])

Concrete Abstract

(n2,[x= 2, y =2, z =0])
simulates

(n2,[x =3, y = 3, z = 0])

(n2,[ [x=0]  ! False,
[y=0]  ! True,
[x=(y+1)]  ! True,
[x=y]  ! False, z ! 1])

(n2,[x =1, y = 0, z = 1])
simulates

(n2,[x = 3, y = 3, z = 1])

does not 
simulate
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Computing Abstracted ProgramsComputing Abstracted Programs

For each statement s in the original program, we need to compute a 
new statement that describes how the given predicates change in value 
due to the effects of s.
To do this for a given predicate Pi, we need to know if we should set [Pi] 
to true or false in the abstract target state.
Thus, we need to know the conditions at (n1, σ1) that guarantee that [Pi] 
will be true in the target state and the conditions that guarantee that [Pi] 
will be false in the target state.  These conditions will be used in the 
helper function H.

(n1,σ1)

(n2,σ2)

(n1, [[P1], [P2], …, [Pn]])

(n2, [[P1]’, [P2]’, …, [Pn]’])

Truth values of 
predicates on σ1.

Truth values of 
predicates on σ2.

simulates

simulates

true, if e1
[P_i] := H (e, e2) =       false, if e2

top, otherwise{
Conditions that 
make [Pi] true.

Conditions that 
make [Pi] false.

Computing Abstracted ProgramsComputing Abstracted Programs

What conditions have to hold before a is executed to 
guarantee that x=y is true (false) after a is executed?
– Note: we want the least restrictive conditions

The technical term for what we want is the “weakest 
pre-condition of a with respect to x=y”

Example

(n1,σ1)

(n2,σ2)

a:      x := 0; [x=y] := H(…?…, …?…)

(n1, [[P1], [P2], …, [Pn]])

(n2, [[P1]’, [P2]’, …, [Pn]’])

Let’s take a little detour to learn about weakest 
preconditions.
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FloydFloyd--Hoare TriplesHoare Triples

{F1} C {F2}
Command

Pre-condition
(boolean formula)

Post-condition
(boolean formula)

For all states s that satisfy F1 (i.e., s ⊧ F1), if executing C on s 
terminates with a state s’, then s’ ⊧ F2.

A triple is a logical judgement that holds when the following condition is met:

Weaker/Stronger FormulasWeaker/Stronger Formulas

If F’ ⇒ F (F’ implies F), we say that F is weaker than F’.
Intuitively, F’ contains as least as much information as 
F because whatever F says about the world can be 
derived from F’.
Intuitively, stronger formulas impose more restrictions 
on states.

SF’ = {s | s ⊧ F’}
SF = {s | s ⊧ F} Let

Thinking in terms of sets of states…

Note that SF’ ⊆ SF since F’ imposes more 
restrictions than F

Question: what formula is the weakest of all? (In other words, what formula describes the largest 
set of states? What formula imposes the least restrictions?)
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Weakest PreconditionsWeakest Preconditions
The weakest precondition of C with respect to F2

(denoted WP(C,F2)) is a formula F1 such that 
{F1} C {F2} 

and for all other F’1 such that {F’1} C {F2}, 
F’1 ⇒ F1 (F1 is weaker then F’1).

This notion is useful because it answers the question: “what 
formula F1 captures the fewest restrictions that I can impose on a 
state s so that when s’ = [[C]]s then s’ ⊧ F2?”
WP is interesting for us when calculating predicate abstractions
because for a given command C and boolean variable [Pi], we 
want to know the least restrictive conditions that have to hold 
before C so that we can conclude that Pi is definitely true (false) 
after executing C.

Calculating Weakest Calculating Weakest 
PreconditionsPreconditions

Intuition: x is going to get a new value 
from e, so if F has to hold after x := e, 
then F[x ← e] is required to hold before x 
:= e is executed.

Calculating WP for assignments is easy:

WP(x := e, F)

Examples

WP(x := 0, x = y) =     (0 = y) =     (x = y)[x ← 0]

WP(x := 0, x = y + 1) =    (x = y + 1)[x ← 0] =     (0 = y + 1) 

=   F[x ← e ]

WP(x := x+1, x = y + 1) =    (x = y + 1)[x ← x + 1] =     (x + 1 = y + 1) 
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Calculating Weakest Calculating Weakest 
PreconditionsPreconditions

Calculating WP for other commands (state transformers):

WP(skip, F) =   F

WP(assert e, F) =   e ⇒ F   (¬ e ∨ F)

WP(assume e, F) =   e ⇒ F   (¬ e ∨ F)

Skip: since the store is not modified, then F will hold afterward iff it 
holds before.
Assert and Assume: even though we have a different operational 
interpretation of assert and assume in the verifier, the definition of WP 
of these relies on the fact that we assume that if an assertion or 
assume condition is violated, it’s the same as the command “not 
completing”.  Note that if e is false, then the triple {(¬ e ∨ F)} assert e {F}
always holds since the command never completes for any state.

AssessmentAssessment
Intuition:

Source Program

atomic {

}

Abstracted Program

Assignment 
statement C

Assignment to each boolean variable [Pi] 
where each assignment has the form

[Pi] := H(WP(C,Pi),WP(C,!Pi)).

Transformed

But what’s wrong with this?

Answer: the predicates Pi refer to concrete variables, and the entire purpose of 
the abstraction  process is to remove those from the program.  The point is 
that the conditions in the ‘H’ function should be stated in terms of the boolean
variables [Pi] instead of the predicates Pi.  
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AssessmentAssessment

[(x=y)] := H([$(y = 0)],![$(y=0)]);

WP(x := 0, x=y)   =    (0=y)
WP(x := 0, !x=y)  =   !(0=y)

In the case of x := 0 and the predicate x = y, 
we have 

In this case, the information in the predicate 
variables is enough to decide whether 0=y 
holds or not.  That is, we can simply generate 
the assignment statement

AssessmentAssessment

WP(x := 0, (x=y+1))   =    (0=y+1)
WP(x := 0, !(x=y+1))  =   !(0=y+1)

In the case of x := 0 and the predicate x = (y+1), we have 

In this case, we don’t have a predicate variable [0=y+1].
We must consider combinations of our existing predicate 
variables that imply the conditions above.  That is, we 
consider stronger (more restrictive, less desirable but still 
useful) conditions formed using the predicate variables 
that we have.
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What Are Appropriate Predicates?What Are Appropriate Predicates?

In general, a difficult question, and subject of much research
Research focuses on automatic discovery of predicates by 
processing (infeasible) counterexamples
If a counterexample is infeasible, add predicates that allow 
infeasible branches to be avoided

counterexample

Infeasible 
branch taken

feasible branch

If x > y …

Add the predicate x > y so that  
we have enough information to 
avoid the infeasible branch.

What Are Appropriate Predicates?What Are Appropriate Predicates?

Use the predicates A mentioned in property P, if 
variables mentioned in predicates are being removed 
by abstraction
– At least, we want to tell if our property predicates are true or

not
Use predicates that appear in conditionals along 
“important paths”
– E.g., (x=y)

Predicates that allow predicates above to be decided
– E.g., (x=0), (y=0), (x = (y + 1))

Some general heuristics that we will follow


