Model-Checking Frameworks: Outline

& Theory (Part 1)
= Notion of Abstraction

= Aside: over- and under-approximation,
simulation, bisimulation

= Counter-example-based abstraction refinement
& Abstraction and abstraction refinement in
program analysis (Part 2)
= Kinds of abstraction:
+ Data, predicate
= Building abstractions
+ Aside: weakest precondition
= Counter-example-based abstraction refinement

QOutline, cont'd

& 3-valued abstraction and abstraction-
refinement (Part 3)
= 3-valued logic

Theory of 3-valued abstractions: combining over-
and under-approximation

3-valued model-checking
Building 3-valued abstractions
Counter-example-based abstraction refinement

_Acknowledgements

The following materials have been used in the
preparation of this lecture:

& Edmund Clarke

s “SAT-based abstraction/refinement in model-
checking”, a course lecture at CMU

& Corina Pasareanu

= Conference presentations at TACAS'01 and
ICSE'01

& John Hatcliff

= Course materials from Specification and
Verification in Reactive Systems

Many thanks for providing this material!

Model Checking

& Given a:
= Finite transition system M(S, s,, R, L)
= A temporal property ¢

& The model checking problem:
= Does M satisfy ¢?

?
M= ¢

Model Checking (safety)

Add reachable states until reaching a fixed-point

@ — bad state

Model Checking (safety)

Too many states to handle !

@ = bad state

Abstraction

© 06 O e O
© 0 O @ O s
© 06 OO0 e O
O EE E T
O O 0 m O s

Abstraction Function o :S — §

Abstraction Function: A Simple
Example

& Partition variables into visible(V) and
invisible(Z) variables.

@® The abstract model consists of V variables.
7 variables are made inputs.

@® The abstraction function maps each state to
its projection over).

Abstraction Function: Example

xl x2 x3 x4

gF [0y (6) (8 1 x2
g e (ot a
O L D
0]

Group concrete states with identical visible part to a
single abstract state.

Computing Abstractions

a
& S — concrete state space
& S’ - abstract state space %

& o: S— S - abstraction function
&®y: S — S - concretization function

& Properties of a and y:
= a(y(A)) = A, forAin S
s Y(a(C)) 2 C,forCinS

& The above properties mean that o and y are
Galois-connected

10

Aside: simulations

M= (sy S, R, L)

M= (t,, S, R, L)

Definition: pis a simulation between Mand M’ if

1. (5o ty) e p

2. ¥V (t,t) e R3(s,s)) e Rs.t. (s, t) € p and
(S,) ep

Intuitively, every transition in M’ corresponds to
some transition in M

11

Aside: bisimulation

M= (sy, S, R, L)

M= (t,, S, R, L)

Definition: pis a bisimulation between /7 and M’
if

1. pis a simulation between M and M’ and

Z. pis a simulation between M’and M

12

Computing Existential Transition
Relation

@& R33 [Dams’97]: (t, t,) € R iff 3 s € y(t) s.t.
is, ey()and(s,s;) €R

& This ensures that /7’ is the over-
approximation if M, or M’ simulates M.

13

~Abstract Kripke Structure

@® Abstract interpretation of atomic propositions
/’'(a, p) = true iff forall s iny(a), /(s, p) = true
I /'(a, p) = false iff forall s invy(a), /(s, p) = false

@® Abstract Transition Relation (2 choices)
= Over-Approximation (Existential)

+ Make a transition from an abstract state if af least one
corresponding concrete state has the transition.

= Under-Approximation (Universal)

+ Make a transition from an abstract state if a//the
corresponding concrete states have the transition.
14

Existential Abstraction (Over-
~ Approximation)

15

Preservation via Over-
Approximation

& Let @ be a universal temporal formula (ACTL,
LTL)

& Let A be an over-approximating abstraction
of K

& Preservation Theorem
» K" E ¢ implies K = ¢

& Converse does not hold
m K" # ¢ does notimply K ¢ 1 16

- Computing Transition Relation

&R [Dams’'97]: (t, t)) € R iff V s € y(t)
ds, ey(t)and(s,s;) €R

& This ensures that M’is the under-
approximation if M, or M simulates M.

17

Universal Abstraction (Under-
Approximation)

18

Preservation via Under-
_Approximation

& Let ¢ be an existential temporal formula
(ECTL)

@ Let K be an under-approximating abstraction
of K

& Preservation Theorem
n K" E ¢ implies K = ¢

& Converse does not hold
s K ¥ ¢ does notimply K ¢ 1!l

19

Which abstraction to use?

Property Expected Abstraction
Type Result to use
Universal True Over-
(ACTL, LTL) False Under-
Existential True Under-
(ECTL) False Over-

But what about mixed properties?!

20

10

~ Our specific problem

expressed in LTL or ACTL) and M’ simulates M

& Preservation Theorem
M=o > MEgp

® Converse does not hold
Mg o b Mg

@® The counterexample may be spurious

&® Let ¢ be a universally-quantified property (i.e.,

21

Checking the Counterexample

& Counterexample : (c,, ...,C.,)
= Each c; is an assignment to V.

& Simulate the counterexample on the
concrete model.

22

11

 Checking the Counterexample

Concrete traces corresponding to the
counterexample:

¢ = I(s1) A (initial State <- s, in our case)
m—1 (Unrolled Transition

/\z'=1 R(s;, Sz'—l—l) A Relation)

/\%n:l visible(SZ‘) = ¢ (Restriction of V to

Counterexample)

23

Abstraction-Refinement Loop

Pass

s M, @
= ——>(Model Check) =—> No Bug

S
R

24

12

Refinement methods...

Localization
(R. Kurshan, 80’s)

Frontier

Visible

_____ . Invisible

25

Refinement methods...

Abstraction/refinement with conflict analysis
(Chauhan, Clarke, Kukula, Sapra, Veith, Wang, FMCAD 2002)

& Simulate counterexample on concrete model with SAT

& If the instance is unsatisfiable, analyze conflict

® Make visible one of the variables in the clauses that lead to the

conflict

26

13

~Why spurious counterexample?

Deadend
states
A

O | 7 |
Bad)
Failure
States State

27

Refinement

& Problem: Deadend and Bad States are in the
same abstract state.

& Solution: Refine abstraction function.

@ The sets of Deadend and Bad states should
be separated into different abstract states.

28

14

Refinement

©, 0 O O O
|| O | O O O
|| O | O O O
000 8 E]
Refinement : o’ ;
TRefinement
A

f-1

f
op =1(s1) A /\ R(s;, 8541) A /\ visible(s;) = ¢;

30

15

Refinement

Deadend
States

e
—_—
e —

[\ Y

.

-0/-0—0

¢p = R(sf,8p41) A
ViSib'@(Sf) =Cy /\ViSib|e(8f_|_1) = Cf41

31

Refinement as Separation

b, IEEEEY o B1H o

7z

Refinement : Find subset ¢/ of T that separates between all pairs of
deadend and bad states. Make them visible.

Keep U small !

32

16

Refinement as Separation

o I [:

T

b1000.
y

o, [N o t l

Refinement : Find subset U/ of Z that separates between all pairs of
deadend and bad states. Make them visible.

Keep U small !

33

Refinement as Separation

The state separation problem

Input: Sets D, B

Output: Minimal U e Z s.t.:
VdeD,VbeB,Jue . d(u)+bu

The refinement o’ is obtained by adding i to V.

34

17

~Two separation methods

& |LP-based separation
= Minimal separating set.
= Computationally expensive.

& Decision Tree Learning based separation.

= Not optimal.
= Polynomial.

We will not talk about these in class

35

18

