Model-Checking Frameworks: Outline

& Theory (Part 1)
= Notion of Abstraction

= Aside: over- and under-approximation,
simulation, bisimulation

= Counter-example-based abstraction refinement
& Abstraction and abstraction refinement in
program analysis (Part 2)
= Kinds of abstraction:
+ Data, predicate
= Building abstractions
+ Aside: weakest precondition
= Counter-example-based abstraction refinement

QOutline, cont'd

& 3-valued abstraction and abstraction-
refinement (Part 3)
= 3-valued logic

Theory of 3-valued abstractions: combining over-
and under-approximation

3-valued model-checking
Building 3-valued abstractions
Counter-example-based abstraction refinement
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Model Checking

& Given a:
= Finite transition system M(S, s,, R, L)
= A temporal property ¢

& The model checking problem:
= Does M satisfy ¢?

?
M= ¢




Model Checking (safety)

Add reachable states until reaching a fixed-point

@ — bad state

Model Checking (safety)

Too many states to handle !

@ = bad state




Abstraction
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Abstraction Function o :S — §

Abstraction Function: A Simple
Example

& Partition variables into visible(V) and
invisible(Z) variables.

@® The abstract model consists of V variables.
7 variables are made inputs.

@® The abstraction function maps each state to
its projection over ).




Abstraction Function: Example
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Group concrete states with identical visible part to a
single abstract state.

Computing Abstractions

a
& S — concrete state space
& S’ - abstract state space %

& o: S— S - abstraction function
&®y: S — S - concretization function

& Properties of a and y:
= a(y(A)) = A, forAin S
s Y(a(C)) 2 C,forCinS

& The above properties mean that o and y are
Galois-connected
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Aside: simulations

M= (sy S, R, L)

M= (t,, S, R, L)

Definition: pis a simulation between Mand M’ if

1. (5o ty) e p

2. ¥V (t,t) e R3(s,s)) e Rs.t. (s, t) € p and
(S, ) ep

Intuitively, every transition in M’ corresponds to
some transition in M
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Aside: bisimulation

M= (sy, S, R, L)

M= (t,, S, R, L)

Definition: pis a bisimulation between /7 and M’
if

1. pis a simulation between M and M’ and

Z. pis a simulation between M’and M
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Computing Existential Transition
Relation

@& R33 [Dams’97]: (t, t,) € R iff 3 s € y(t) s.t.
is, ey()and(s,s;) €R

& This ensures that /7’ is the over-
approximation if M, or M’ simulates M.
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~Abstract Kripke Structure

@® Abstract interpretation of atomic propositions
/’'(a, p) = true iff forall s iny(a), /(s, p) = true
I /'(a, p) = false iff forall s invy(a), /(s, p) = false

@® Abstract Transition Relation (2 choices)
= Over-Approximation (Existential)

+ Make a transition from an abstract state if af least one
corresponding concrete state has the transition.

= Under-Approximation (Universal)

+ Make a transition from an abstract state if a//the
corresponding concrete states have the transition.
14




Existential Abstraction (Over-
~ Approximation)

15

Preservation via Over-
Approximation

& Let @ be a universal temporal formula (ACTL,
LTL)

& Let A be an over-approximating abstraction
of K

& Preservation Theorem
» K" E ¢ implies K = ¢

& Converse does not hold
m K" # ¢ does notimply K ¢ 1 16




- Computing Transition Relation

&R [Dams’'97]: (t, t)) € R iff V s € y(t)
ds, ey(t)and(s,s;) €R

& This ensures that M’is the under-
approximation if M, or M simulates M.
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Universal Abstraction (Under-
Approximation)
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Preservation via Under-
_Approximation

& Let ¢ be an existential temporal formula
(ECTL)

@ Let K be an under-approximating abstraction
of K

& Preservation Theorem
n K" E ¢ implies K = ¢

& Converse does not hold
s K ¥ ¢ does notimply K ¢ 1!l
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Which abstraction to use?

Property Expected Abstraction
Type Result to use
Universal True Over-
(ACTL, LTL) False Under-
Existential True Under-
(ECTL) False Over-

But what about mixed properties?!

20
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~ Our specific problem

expressed in LTL or ACTL) and M’ simulates M

& Preservation Theorem
M=o > MEgp

® Converse does not hold
Mg o b Mg

@® The counterexample may be spurious

&® Let ¢ be a universally-quantified property (i.e.,
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Checking the Counterexample

& Counterexample : (c,, ...,C.,)
= Each c; is an assignment to V.

& Simulate the counterexample on the
concrete model.

22
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 Checking the Counterexample

Concrete traces corresponding to the
counterexample:

¢ = I(s1) A (initial State <- s, in our case)
m—1 (Unrolled Transition

/\z'=1 R(s;, Sz'—l—l) A Relation)

/\%n:l visible(SZ‘) = ¢ (Restriction of V to

Counterexample)
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Abstraction-Refinement Loop

Pass

s M, @
= ——>( Model Check ) =—> No Bug

S
R

24

12



Refinement methods...

Localization
(R. Kurshan, 80’s)

Frontier

Visible

_____ . Invisible
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Refinement methods...

Abstraction/refinement with conflict analysis
(Chauhan, Clarke, Kukula, Sapra, Veith, Wang, FMCAD 2002)

& Simulate counterexample on concrete model with SAT

& If the instance is unsatisfiable, analyze conflict

® Make visible one of the variables in the clauses that lead to the

conflict

26
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~Why spurious counterexample?

Deadend
states
A

O | 7 |
Bad )
Failure
States State
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Refinement

& Problem: Deadend and Bad States are in the
same abstract state.

& Solution: Refine abstraction function.

@ The sets of Deadend and Bad states should
be separated into different abstract states.

28
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Refinement
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Refinement : o’ ;
TRefinement
A

f-1

f
op =1(s1) A /\ R(s;, 8541) A /\ visible(s;) = ¢;
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Refinement

Deadend
States

e
—_—
e —

[\ Y

.

-0/-0—0

¢p = R(sf,8p41) A
ViSib'@(Sf) =Cy /\ViSib|e(8f_|_1) = Cf41
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Refinement as Separation
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Refinement : Find subset ¢/ of T that separates between all pairs of
deadend and bad states. Make them visible.

Keep U small !

32
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Refinement as Separation
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Refinement : Find subset U/ of Z that separates between all pairs of
deadend and bad states. Make them visible.

Keep U small !
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Refinement as Separation

The state separation problem

Input: Sets D, B

Output: Minimal U e Z s.t.:
VdeD,VbeB,Jue . d(u)+bu

The refinement o’ is obtained by adding i to V.

34
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~Two separation methods

& |LP-based separation
= Minimal separating set.
= Computationally expensive.

& Decision Tree Learning based separation.

= Not optimal.
= Polynomial.

We will not talk about these in class
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