
1

1

Model-Checking Frameworks: Outline
Theory (Part 1)

Notion of Abstraction
Aside:  over- and under-approximation, 
simulation, bisimulation
Counter-example-based abstraction refinement

Abstraction and abstraction refinement in 
program analysis (Part 2)

Kinds of abstraction:
Data, predicate

Building abstractions
Aside:  weakest precondition

Counter-example-based abstraction refinement

2

Outline, cont’d
3-valued abstraction and abstraction-
refinement (Part 3)

3-valued logic
Theory of 3-valued abstractions:  combining over-
and under-approximation
3-valued model-checking
Building 3-valued abstractions
Counter-example-based abstraction refinement



2

3

Acknowledgements
The following materials have been used in the 

preparation of this lecture:
Edmund Clarke

“SAT-based abstraction/refinement in model-
checking”, a course lecture at CMU

Corina Pasareanu
Conference presentations at TACAS’01 and 
ICSE’01

John Hatcliff
Course materials from Specification and 
Verification in Reactive Systems

Many thanks for providing this material!

4

Model Checking

Given a:
Finite transition system M(S, s0, R, L)
A temporal property φ

The model checking problem: 
Does M satisfy φ? 

?
M ⊨ φ



3

5

Model Checking (safety)

I

Add reachable states until reaching a fixed-point

= bad state

6

Model Checking (safety)

I

Too many states to handle !
= bad state



4

7

Abstraction

α α αα α

Abstraction Function   α : S → S’

S

S’

8

Abstraction Function:  A Simple 
Example

Partition variables into visible(V) and 
invisible(I) variables.

The abstract model consists of V variables. 
I variables are made inputs.

The abstraction function maps each state to 
its projection over V.



5

9

Abstraction Function: Example

0     0 

0    0    0    0
0    0    0    1
0    0    1    0
0    0    1    1

α

x1   x2   x3   x4

x1    x2

Group concrete states with identical visible part to a 
single abstract state.

10

Computing Abstractions

S – concrete state space
S’ – abstract state space
α: S→ S’ - abstraction function 
γ: S’ → S - concretization function
Properties of α and γ:

α(γ(A)) = A, for A in S’
γ(α(C)) ⊇ C, for C in S

The above properties mean that α and γ are 
Galois-connected

S S’

γ

α



6

11

Aside:  simulations
M = (s0, S, R, L)
M’ = (t0, S’, R’, L’)
Definition:  p is a simulation between M and M’ if 
1. (s0, t0) ∈ p
2. ∀ (t, t1) ∈ R’ ∃(s, s1) ∈ R s.t. (s, t) ∈ p and 

(s1, t1) ∈ p
Intuitively, every transition in M’ corresponds to 

some transition in M

12

Aside:  bisimulation
M = (s0, S, R, L)
M’ = (t0, S’, R’, L’)
Definition:  p is a bisimulation between M and M’

if 
1. p is a simulation between M and M’ and
2. p is a simulation between M’ and M



7

13

Computing Existential Transition 
Relation

R∃∃ [Dams’97]: (t, t1) ∈ R’ iff ∃ s ∈ γ(t) s.t.    
∃ s1 ∈ γ(t1) and (s, s1) ∈ R
This ensures that M’ is the over-
approximation if M, or M’ simulates M.

14

Abstract Kripke Structure
Abstract interpretation of atomic propositions

I ’(a, p) = true      iff forall s in γ(a), I (s, p) = true
I ’(a, p) = false     iff forall s in γ(a), I (s, p) = false 

Abstract Transition Relation (2 choices)
Over-Approximation (Existential)

Make a transition from an abstract state if at least one
corresponding concrete state has the transition.

Under-Approximation (Universal)
Make a transition from an abstract state if all the 
corresponding concrete states have the transition.



8

15

Existential Abstraction (Over-
Approximation)

I

I

16

Preservation via Over-
Approximation

Let φ be a universal temporal formula (ACTL, 
LTL)
Let K’ be an over-approximating abstraction 
of K

Preservation Theorem
K’ ⊨ φ implies K ⊨ φ

Converse does not hold
K’ ⊭ φ does not imply K ⊭ φ !!!

K’

K



9

17

Computing Transition Relation

R∀∃ [Dams’97]: (t, t1) ∈ R’ iff ∀ s ∈ γ(t)         
∃ s1 ∈ γ(t’) and (s, s1) ∈ R
This ensures that M’ is the under-
approximation if M, or M simulates M’.

18

Universal Abstraction (Under-
Approximation)

I

I



10

19

Preservation via Under-
Approximation

Let φ be an existential temporal formula 
(ECTL)
Let K’ be an under-approximating abstraction 
of K

Preservation Theorem
K’ ⊨ φ implies K ⊨ φ

Converse does not hold
K’ ⊭ φ does not imply K ⊭ φ !!!

K

K’

20

Which abstraction to use?

Under-TrueExistential
(ECTL) Over-False

Under-False
Over-TrueUniversal

(ACTL, LTL)

Abstraction 
to use

Expected 

Result

Property
Type

But what about mixed properties?!



11

21

Our specific problem

Preservation Theorem
M’ ⊨ φ → M ⊨ φ

The counterexample may be spurious

Converse does not hold
M’ ⊭ φ → M ⊭ φ

Let φ be a universally-quantified property (i.e., 
expressed in LTL or ACTL) and M’ simulates M

22

Checking the Counterexample

Counterexample : (c1, …,cm)
Each ci is an assignment to V.

Simulate the counterexample on the  
concrete model.



12

23

Checking the Counterexample
Concrete traces corresponding to the 
counterexample:

(Initial State <- s0 in our case)

(Unrolled Transition 
Relation)

(Restriction of V to 
Counterexample)

24

Abstraction-Refinement Loop

Check 
CounterexampleRefine

Model CheckAbstract
M’, φM, φ, α

No Bug
Pass

Fail

Bug
RealSpurious

α’



13

25

Refinement methods…

φFrontier

Inputs

Invisible

Visible

(R. Kurshan, 80’s)
Localization

26

Simulate counterexample on concrete model with SAT

If the instance is unsatisfiable, analyze conflict

Make visible one of the variables in the clauses that lead to the 

conflict

(Chauhan, Clarke, Kukula, Sapra, Veith, Wang, FMCAD 2002) 
Abstraction/refinement with conflict analysis

Refinement methods…



14

27

Why spurious counterexample?

I

I

Deadend
states

Bad 
States Failure 

State

f

28

Refinement

Problem: Deadend and Bad States are in the 
same abstract state.
Solution: Refine abstraction function.
The sets of Deadend and Bad states should 
be separated into different  abstract states.



15

29

Refinement

α’ α’ α’α’ α’

Refinement : α’

α’α’

30

Refinement
Deadend
States



16

31

Refinement
Deadend
States

Bad 
States

32

Refinement as Separation

0     1    0    1 0    1    0

0     0    1    0 0    1    0

0     1    1    1 0    1    0

d1

b1

b2

I

V

0

1

1

1

0

1

Refinement : Find subset U of I that separates between all pairs of 
deadend and bad states. Make them visible.

Keep U small !



17

33

Refinement as Separation

0     1    0    1 0    1    0

0     0    1    0 0    1    0

0     1    1    1 0    1    0

d1

b1

b2

0

1

1

I

V

Refinement : Find subset U of I that separates between all pairs of 
deadend and bad states. Make them visible.

Keep U small !

34

Refinement as Separation

The state separation problem
Input: Sets D, B
Output: Minimal  U ∈ I s.t.: 

∀ d ∈D, ∀ b ∈B, ∃u∈ U. d(u) ≠ b(u)

The refinement α’ is obtained by adding U to V.



18

35

Two separation methods

ILP-based separation
Minimal separating set.
Computationally expensive.

Decision Tree Learning based separation.
Not optimal.
Polynomial.

We will not talk about these in class


