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Software  Model Checking

Yes/No 
Answer

Yes/No 
Answer

Program
(in C or Java)

Program
(in C or Java)

Correctness
property

Correctness
propertyModel of

the program

Model of
the program

Model 
Extraction

Model 
Extraction

Model 
Checker 
Model 

Checker 

1: int x = 2;
int y = 2;

2: while (y <= 2)
3:   y = y – 1;
4: if (x == 2)
5:     ERROR:;
6:

EF (pc = 5)
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From Programs to Kripke Structures

1: int x = 2;
int y = 2;

2: while (y <= 2)
3:   y = y – 1;
4: if (x == 2)
5:     ERROR:;
6:

Program

…313

…yxpc

State

…212

…yxpc

Step

Property: EF (pc = 5)
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In Our Programming Language…
All variables are global
Functions are in-lined
int is integer 

i.e., no overflow

Special statements:

x gets an arbitrary valuex=nodet()

non-deterministically go to L1 or L2goto L1,L2

x, y are assigned e1,e2 in parallelx,y=e1,e2
if e then skip else abortassume(e)
do nothingskip
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Programs as Control Flow Graphs

1: int x = 2;
int y = 2;

2: while (y <= 2)
3:   y = y – 1;
4: if (x == 2)
5:     ERROR:;
6:

Program Labeled CFG

Semantics S

1:

2:

3:4:

5:

6:

x,y=2,2

y<=2
y>2

x==2

x!=2

y=y-1
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Model Checking Software
Programs are not finite state

integer variables
recursion 
unbounded data structures
dynamic memory allocation 
dynamic thread creation 
pointers 
…

ProgramProgram

Model Checker
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Model Checking Software
Programs are not finite state

integer variables
recursion 
unbounded data structures
dynamic memory allocation 
dynamic thread creation 
pointers 
…

ProgramProgram

Model Checker

Build a finite abstraction 
… small enough to analyze
… rich enough to give 
conclusive results

Abstraction
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Software Model Checking and Abstraction

Program
P 

Boolean 
Program

BP 

Kripke
Structure

K

Abstract
Kripke

K’

Semantics

Abstraction Abstract
Semantics

Soundness of Abstraction:

BP abstracts P implies that K’ approximates K

8

CounterExample Guided Abstraction 
Refinement (CEGAR)

Abstract

Model Check Counterexample
Valid?

Refine

Is Safe?
(Is ERROR 
unreachable)

Yes Yes

No

ProgramProgram

Predicates

No + Abstract 
Counterexample

[ClGJLV00], [BR01]

Over-
Approximate

Boolean
Program

Boolean
Model
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Outline
Programming Language

syntax and semantics

Predicate Abstraction for Programs
Boolean Programs as intermediate representation
Automatic computation of abstraction

Three abstract semantics of Boolean Programs
over-, under-, and Belnap abstractions

Discovering the “right” abstraction automatically
Counterexample-guided abstraction refinement 
Finding a place to refine

counterexample- and proof-guided approaches

Discovering new predicates

Overview of state-of-the-art software MCs

10

The Running Example

1: int x = 2;
int y = 2;

2: while (y <= 2)
3:   y = y – 1;
4: if (x == 2)
5:     ERROR:;
6:

EF (pc = 5)

Program Property Expected
Answer

EG (pc ≠ 4)
(loop does not terminate)

False

True
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Boolean (Predicate) Programs (BP)
Variables correspond to predicates
Usual control flow statements
while, if-then-else, goto

Expressions
usual Boolean expressions

*

ch(a,b)

Parallel Assignment
p1 = ch(a1,b1),   p2 = ch(a2,b2),    ...

b1 = ch(b1,¬b1),  b2 = ch(b1⋁b2, f), b3=ch(f,f)

unknown if a then 
true 

else 
if b then 
false 

else *

12

An Example Abstraction

1: int x = 2;
int y = 2;

2: while (y <= 2)
3:   y = y – 1;
4: if (x == 2)
5:     ERROR:;
6:

bool b is (y <= 2)
1: b = T;

2: while (b)
3:   b = ch(b,f);
4: if (*)
5:     ERROR:;
6:

Program Abstraction
(with y<=2)
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Boolean Program Abstraction
Update p = ch(a, b) is an approximation of a 
concrete statement S iff {a}S{p} and {b}S{¬p} are 
valid

i.e., y = y – 1 is approximated by
(x == 2) = ch(x ==2, x!=2), and

(y <= 2) = ch(y<=2,false)

Parallel assignment approximates a concrete 
statement S iff all of its updates approximate S

i.e., y = y – 1 is approximated by
(x == 2) = ch(x ==2, x!=2) 

(y <= 2) = ch(y<=2,false)

A Boolean program approximates a concrete 
program iff all of its statements approximate 
corresponding concrete statements

14

Computing An Abstract Update
// pre-condition: P.contains (t)

// S a statement under abstraction

// P a list of predicates used for abstraction

// t a target predicate for the update

absUpdate (Statement S, List<Predicates> P, Predicate t) {

resT, resF = false, false;

foreach m : mono(P) {

if (tpQ(“m ⇒ WP(S,t)”) resT = resT ⋁ m;

if (tpQ(“m ⇒ WP(S,¬t)”) resF = resF ⋁ m;

}

return “t = ch(resT, resF)”

}
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Example Computation

y = y - 1; 

(y<=2) = ch (y<=2,f) 

P is  {y <= 2}

t is  (y <= 2)

Theorem Prover Queries:
(y<=2) ⇒ (y – 1) <= 2
(y>2)  ⇒ (y – 1) <= 2
(y<=2) ⇒ (y – 1) >  2
(y>2)  ⇒ (y – 1) >  2

Aside:
y>2 is ¬(y<=2)

absUpdate

✔
✘
✘
✘

16

Over-Approximating Semantics of BP
State: boolean valuations to all predicates

i.e., b1⋀b2, ¬b1⋀b2, b2⋀¬b1, ¬b1⋀¬b2
Semantics of an update

O(p = ch(q, r)) (s,v) = (v=t and s ⊭ r) or                         
(v=f and s ⊭ q)

Semantics of a parallel assignment
O({Ui}) (s,t) = ⋀i={1..n} O(Ui) (s,t(bi))

y = y - 1 b1=ch(b1,f),
b2=ch(b2,!b2)

b1 is y<=2
b2 is x==2

b1
b2

b2

Program BP

O(BP)
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Under-Approximating Semantics of BP
State: boolean valuations to some predicates

i.e., b1, ¬b1, b2⋀¬b1, ¬b1⋀¬b2, etc. 

Semantics of an update
U(p = ch(q, r)) (s,v) = (v = t and a ⊨ q) or 

(v = f and a ⊨ r) or (v = ⊥)

Semantics of a parallel assignment
conjunction as before

y = y - 1 b1=ch(b1,f),
b2=ch(b2,!b2)

b1 is y<=2
b2 is x==2

Program BP

U(BP)

b1
b2

b2
b1? 
b2

b1
b2?
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Belnap (Exact) Semantics of BP
State: boolean valuations to some predicates

i.e., b1, ¬b1, b2⋀¬b1, ¬b1⋀¬b2, etc. 

Semantics of an update
E(p=ch(q,r))(s,v) = (v=t ⋀ s ⊨3 ch(q,r)) or

(v=f ⋀ s ⊨3 ¬ch(q,r)) or (v=⊥ ⋀ ⊤)

Semantics of a parallel assignment
conjunction as before

y = y - 1 b1=ch(b1,f),
b2=ch(b2,!b2)

b1 is y<=2
b2 is x==2

Program BP

E(BP)

b1
b2

b2
b1?
b2

b1
b2?
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Summary: The Three Semantics

b1 = ch(b1,f);
b2 = ch(b2,¬b2)

b1
b2

b2

t

f

⊥ ⊤
Abstract

Over-Approx Belnap (Exact) Under-Approx

y = y - 1; 

Concrete
b1 is (y <= 2)
b2 is (x == 2)

b1
b2

b2
b1?
b2

b1
b2?

b1
b2

b2
b1? 
b2

b1
b2?
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Summary: Program Abstraction

1. Abstract a program P by a boolean program BP
2. Pick an abstract semantics for this BP:

1. Over-approximating 
2. Under-approximating
3. Belnap (Exact)

3. Yield relationship between K and K’:
1. Over-approximation 
2. Under-approximation 
3. Belnap abstraction

Program
P 

Boolean 
Program

BP 

Kripke
Structure

K 

Abstract
Kripke
K’

Semantics

Abstraction Abstract
Semantics
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Outline
Programming Language

syntax and semantics

Predicate Abstraction for Programs
Boolean Programs as intermediate representation
Automatic computation of abstraction

Three abstract semantics of Boolean Programs
over-, under-, and Belnap abstractions

Discovering the “right” abstraction automatically
Counterexample-guided abstraction refinement 
Finding a place to refine

counterexample- and proof-guided approaches

Discovering new predicates

Overview of state-of-the-art software MCs
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CounterExample Guided Abstraction 
Refinement (CEGAR)

Abstract

Model Check Counterexample
Valid?

Refine

Is Safe?
(Is ERROR 
unreachable)

Yes Yes

No

ProgramProgram

Predicates

No + Abstract 
Counterexample

[CGJLV00], [BR01]

Abstract
Semantics

Abstract
Program

Model
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Example: Is ERROR Unreachable?

1: int x = 2;
int y = 2;

2: while (y <= 2)
3:     y = y – 1;
4: if (x == 2)
5:     ERROR:;
6:

1: ;

2: while (*)
3:     ;
4: if (*)
5:     ERROR:;
6:

1:

2:

3:4:

5:

6:

Need This!

Program Abstraction Over-
Approximation

Abstract Translate Check Validate

CEGAR steps

Repeat
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Example: Is ERROR Unreachable?

1: int x = 2;
int y = 2;

2: while (y <= 2)
3:   y = y – 1;
4: if (x == 2)
5:     ERROR:;
6:

bool b is (y <= 2)
1: b = T;

2: while (b)
3:   b = b ? T : *;
4: if (*)
5:     ERROR:;
6:

Program Abstraction
(with y<=2)

Over-
Approximation

1:

2:b=T

3:b=T4:b=F

5:b=F

6:b=F

2:b=F

UNREACHABLE

Abstract Translate Check NO ERROR

CEGAR steps
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Using Cex for Refinement

s0

s1

s2s3

ERROR

s5 s4

MCIs ERROR Reachable?
EF (ERROR)

UNKNOWN

Counterexample

s0

s1

s2

ERROR

s4
t

f

⊥ ⊤

26

can stop here

cause

Using Proofs for Refinement

EF (ERROR) (s0) = ⊥
∃n EFn (ERROR)(s0) = ⊥

EF4 (ERROR)(s0) = ⊥
s0→s1 EF3(ERROR)(s1) = ⊥

s1→s2 EF2(ERROR)(s2) = t
s0

s1

s2s3

ERROR

s5 s4

MCIs ERROR Reachable?
EF (ERROR)

UNKNOWN

Why?

Refine
HERE

t

f

⊥ ⊤
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can stop here

cause

Using Proofs for Refinement

EF (ERROR) (s0) = ⊥
∃n EFn (ERROR)(s0) = ⊥

EF4 (ERROR)(s0) = ⊥
s0→s1 EF3(ERROR)(s1) = ⊥

s1→s2 EF2(ERROR)(s2) = t
s0

s1

s2s3

ERROR

s5 s4

MCIs ERROR Reachable?
EF (ERROR)

UNKNOWN

Why?

Refine
HERE

t

f

⊥ ⊤

When proofs are used to guide the 
refinement

only a part of the proof must be 
generated
no need to validate the counterexample

… unknown steps are already marked in the 
proof

Refinement is not limited to finite 
linear explanations!

28

Finding Refinement Predicates
Recall

each abstract state is a conjunction of predicates
i.e.,  y<=2⋀x==2     y>2 ⋀ x!=2    etc.

each abstract transition corresponds to a program 
statement

Result from 
a partial proof

Unknown transition
s1→s2

MC needs to know
validity of 

{s1} C {s2}

C is the statement
corresponding to 

the transition
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Refinement via Weakest Precondition
If s1→s2 corresponds to a conditional statement

refine by adding the condition as a new predicate

If s1→s2 corresponds to a statement C
Find a predicate p in s2 with uncertain value

i.e., {s1}C{p} is not valid

refine by adding WP(C,p)

An Example
s1 is y>2⋀x==2 {s1}C{x==2} is valid
s2 is y>2⋀x==2 {s1}C{y>2}   is not valid
C   is y = y-1 add WP(C,y>2) = y>3

30

Summary: Software Model Checking
SoftMC is an effective technique for analyzing 
behavioral properties of software systems

Based on a combination of  static analysis and 
traditional model-checking techniques

Abstraction is essential for scalability
Boolean programs are used as an intermediate step
Different abstract semantics lead to different abs.

over-, under-, Belnap

Automatic abstraction refinement enables to find 
the “right” abstraction incrementally
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Overview of Software Model Checkers
Tools:

YASM
SLAM
BLAST
CBMC 
MAGIC
Java PathFinder

Comparison parameters
Properties
Types of abstraction
Model-checking engine
How refinement is done

32

YASM
http://www.cs.toronto.edu/~arie/yasm
Properties: CTL
Abstraction: Predicate Over- and Under-
MC Engine: Symbolic BDD-based
Refinement: CTL Proof-based + WP
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YASM: System Architecture

Parser

Abstractor Refiner Predicate
generator

XChek

Answer
foo.c

Parse tree

Predicates

Partial
proof

Abstract model

Control-flow
graph

Initial predicates

Temporal Property

CUDD

CIL

CVCLite

~ 30K Java

34

Main Features of YASM
Checks real C programs

Not biased towards verification or refutation

Sound for both True and False answers 

Can check arbitrary CTL property
… including liveness!

Handles recursive programs
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Current Applications
BLAST Benchmarks [GC06]

Device drivers (4K-6K LOC)
Parts of OpenSSH (2K-3K LOC)

Split OpenSSH (100K LOC)
with UofT Security Group 

Detecting setuid/seteuid security flaws
with UofT Security Group, in progress

Concurrent “Toy” Programs
Lamport’s Bakery Mutual Exclusion
Error detection in NASA RAX [PPV05]

Finding livelock bugs
“Can a library routine get stuck?”
with B. Cook at Microsoft Research, in progress

36

SLAM
Part of Windows DDK Static Driver Verifier
Properties: Reachability
Abstraction: Predicate over-approximation
MC Engine: Symbolic BDD-based
Refinement: Symbolic simulation of cexs
Key Features: robust, support for recursion, 
(almost) in production use
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BLAST
http://embedded.eecs.berkeley.edu/blast/
Properties: Reachability
Abstraction: Predicate over-approximation
MC Engine: Symbolic BDD-based 

MC and abstraction are interleaved

Refinement: Predicates from a proof of 
impossibility of a counter-example

38

SATABS & CBMC
http://www.inf.ethz.ch/personal/daniekro/satabs/
Properties: Bounded reachability
Abstraction: Predicate over-approximation
MC Engine: Symbolic SAT-based
Refinment: Symbolic simulation of cex + 
UNASTCORE
Key Features: supports precise machine arithmetic 
including bit-level operations
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MAGIC
http://www.cs.cmu.edu/~chaki/magic/
Properties: Automata Simulation
Abstraction: Predicate over-approximation
MC Engine: SAT-based
Refinement: Symbolic simulation of cex
Key Features: support for concurrent C modules

40

Java PathFinder
http://javapathfinder.sourceforge.net/
Properties: Reachability
Abstraction: user-provided data abstraction
MC Engine: Explicit state with symbolic execution
Refinement: None
Key Features: support for Java including Objects 
and Threads
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