
1

1

Software Model Checking

Yes/No
Answer

Yes/No
Answer

Program
(in C or Java)

Program
(in C or Java)

Correctness
property

Correctness
propertyModel of

the program

Model of
the program

Model
Extraction

Model
Extraction

Model
Checker
Model

Checker

1: int x = 2;
int y = 2;

2: while (y <= 2)
3: y = y – 1;
4: if (x == 2)
5: ERROR:;
6:

EF (pc = 5)

2

From Programs to Kripke Structures

1: int x = 2;
int y = 2;

2: while (y <= 2)
3: y = y – 1;
4: if (x == 2)
5: ERROR:;
6:

Program

…313

…yxpc

State

…212

…yxpc

Step

Property: EF (pc = 5)

2

3

In Our Programming Language…
All variables are global
Functions are in-lined
int is integer

i.e., no overflow

Special statements:

x gets an arbitrary valuex=nodet()

non-deterministically go to L1 or L2goto L1,L2

x, y are assigned e1,e2 in parallelx,y=e1,e2
if e then skip else abortassume(e)
do nothingskip

4

Programs as Control Flow Graphs

1: int x = 2;
int y = 2;

2: while (y <= 2)
3: y = y – 1;
4: if (x == 2)
5: ERROR:;
6:

Program Labeled CFG

Semantics S

1:

2:

3:4:

5:

6:

x,y=2,2

y<=2
y>2

x==2

x!=2

y=y-1

3

5

Model Checking Software
Programs are not finite state

integer variables
recursion
unbounded data structures
dynamic memory allocation
dynamic thread creation
pointers
…

ProgramProgram

Model Checker

6

Model Checking Software
Programs are not finite state

integer variables
recursion
unbounded data structures
dynamic memory allocation
dynamic thread creation
pointers
…

ProgramProgram

Model Checker

Build a finite abstraction
… small enough to analyze
… rich enough to give
conclusive results

Abstraction

4

7

Software Model Checking and Abstraction

Program
P

Boolean
Program

BP

Kripke
Structure

K

Abstract
Kripke

K’

Semantics

Abstraction Abstract
Semantics

Soundness of Abstraction:

BP abstracts P implies that K’ approximates K

8

CounterExample Guided Abstraction
Refinement (CEGAR)

Abstract

Model Check Counterexample
Valid?

Refine

Is Safe?
(Is ERROR
unreachable)

Yes Yes

No

ProgramProgram

Predicates

No + Abstract
Counterexample

[ClGJLV00], [BR01]

Over-
Approximate

Boolean
Program

Boolean
Model

5

9

Outline
Programming Language

syntax and semantics

Predicate Abstraction for Programs
Boolean Programs as intermediate representation
Automatic computation of abstraction

Three abstract semantics of Boolean Programs
over-, under-, and Belnap abstractions

Discovering the “right” abstraction automatically
Counterexample-guided abstraction refinement
Finding a place to refine

counterexample- and proof-guided approaches

Discovering new predicates

Overview of state-of-the-art software MCs

10

The Running Example

1: int x = 2;
int y = 2;

2: while (y <= 2)
3: y = y – 1;
4: if (x == 2)
5: ERROR:;
6:

EF (pc = 5)

Program Property Expected
Answer

EG (pc ≠ 4)
(loop does not terminate)

False

True

6

11

Boolean (Predicate) Programs (BP)
Variables correspond to predicates
Usual control flow statements
while, if-then-else, goto

Expressions
usual Boolean expressions

*

ch(a,b)

Parallel Assignment
p1 = ch(a1,b1), p2 = ch(a2,b2), ...

b1 = ch(b1,¬b1), b2 = ch(b1⋁b2, f), b3=ch(f,f)

unknown if a then
true

else
if b then
false

else *

12

An Example Abstraction

1: int x = 2;
int y = 2;

2: while (y <= 2)
3: y = y – 1;
4: if (x == 2)
5: ERROR:;
6:

bool b is (y <= 2)
1: b = T;

2: while (b)
3: b = ch(b,f);
4: if (*)
5: ERROR:;
6:

Program Abstraction
(with y<=2)

7

13

Boolean Program Abstraction
Update p = ch(a, b) is an approximation of a
concrete statement S iff {a}S{p} and {b}S{¬p} are
valid

i.e., y = y – 1 is approximated by
(x == 2) = ch(x ==2, x!=2), and

(y <= 2) = ch(y<=2,false)

Parallel assignment approximates a concrete
statement S iff all of its updates approximate S

i.e., y = y – 1 is approximated by
(x == 2) = ch(x ==2, x!=2)

(y <= 2) = ch(y<=2,false)

A Boolean program approximates a concrete
program iff all of its statements approximate
corresponding concrete statements

14

Computing An Abstract Update
// pre-condition: P.contains (t)

// S a statement under abstraction

// P a list of predicates used for abstraction

// t a target predicate for the update

absUpdate (Statement S, List<Predicates> P, Predicate t) {

resT, resF = false, false;

foreach m : mono(P) {

if (tpQ(“m ⇒ WP(S,t)”) resT = resT ⋁ m;

if (tpQ(“m ⇒ WP(S,¬t)”) resF = resF ⋁ m;

}

return “t = ch(resT, resF)”

}

8

15

Example Computation

y = y - 1;

(y<=2) = ch (y<=2,f)

P is {y <= 2}

t is (y <= 2)

Theorem Prover Queries:
(y<=2) ⇒ (y – 1) <= 2
(y>2) ⇒ (y – 1) <= 2
(y<=2) ⇒ (y – 1) > 2
(y>2) ⇒ (y – 1) > 2

Aside:
y>2 is ¬(y<=2)

absUpdate

✔
✘
✘
✘

16

Over-Approximating Semantics of BP
State: boolean valuations to all predicates

i.e., b1⋀b2, ¬b1⋀b2, b2⋀¬b1, ¬b1⋀¬b2
Semantics of an update

O(p = ch(q, r)) (s,v) = (v=t and s ⊭ r) or
(v=f and s ⊭ q)

Semantics of a parallel assignment
O({Ui}) (s,t) = ⋀i={1..n} O(Ui) (s,t(bi))

y = y - 1 b1=ch(b1,f),
b2=ch(b2,!b2)

b1 is y<=2
b2 is x==2

b1
b2

b2

Program BP

O(BP)

9

17

Under-Approximating Semantics of BP
State: boolean valuations to some predicates

i.e., b1, ¬b1, b2⋀¬b1, ¬b1⋀¬b2, etc.

Semantics of an update
U(p = ch(q, r)) (s,v) = (v = t and a ⊨ q) or

(v = f and a ⊨ r) or (v = ⊥)

Semantics of a parallel assignment
conjunction as before

y = y - 1 b1=ch(b1,f),
b2=ch(b2,!b2)

b1 is y<=2
b2 is x==2

Program BP

U(BP)

b1
b2

b2
b1?
b2

b1
b2?

18

Belnap (Exact) Semantics of BP
State: boolean valuations to some predicates

i.e., b1, ¬b1, b2⋀¬b1, ¬b1⋀¬b2, etc.

Semantics of an update
E(p=ch(q,r))(s,v) = (v=t ⋀ s ⊨3 ch(q,r)) or

(v=f ⋀ s ⊨3 ¬ch(q,r)) or (v=⊥ ⋀ ⊤)

Semantics of a parallel assignment
conjunction as before

y = y - 1 b1=ch(b1,f),
b2=ch(b2,!b2)

b1 is y<=2
b2 is x==2

Program BP

E(BP)

b1
b2

b2
b1?
b2

b1
b2?

10

19

Summary: The Three Semantics

b1 = ch(b1,f);
b2 = ch(b2,¬b2)

b1
b2

b2

t

f

⊥ ⊤
Abstract

Over-Approx Belnap (Exact) Under-Approx

y = y - 1;

Concrete
b1 is (y <= 2)
b2 is (x == 2)

b1
b2

b2
b1?
b2

b1
b2?

b1
b2

b2
b1?
b2

b1
b2?

20

Summary: Program Abstraction

1. Abstract a program P by a boolean program BP
2. Pick an abstract semantics for this BP:

1. Over-approximating
2. Under-approximating
3. Belnap (Exact)

3. Yield relationship between K and K’:
1. Over-approximation
2. Under-approximation
3. Belnap abstraction

Program
P

Boolean
Program

BP

Kripke
Structure

K

Abstract
Kripke
K’

Semantics

Abstraction Abstract
Semantics

11

21

Outline
Programming Language

syntax and semantics

Predicate Abstraction for Programs
Boolean Programs as intermediate representation
Automatic computation of abstraction

Three abstract semantics of Boolean Programs
over-, under-, and Belnap abstractions

Discovering the “right” abstraction automatically
Counterexample-guided abstraction refinement
Finding a place to refine

counterexample- and proof-guided approaches

Discovering new predicates

Overview of state-of-the-art software MCs

22

CounterExample Guided Abstraction
Refinement (CEGAR)

Abstract

Model Check Counterexample
Valid?

Refine

Is Safe?
(Is ERROR
unreachable)

Yes Yes

No

ProgramProgram

Predicates

No + Abstract
Counterexample

[CGJLV00], [BR01]

Abstract
Semantics

Abstract
Program

Model

12

23

Example: Is ERROR Unreachable?

1: int x = 2;
int y = 2;

2: while (y <= 2)
3: y = y – 1;
4: if (x == 2)
5: ERROR:;
6:

1: ;

2: while (*)
3: ;
4: if (*)
5: ERROR:;
6:

1:

2:

3:4:

5:

6:

Need This!

Program Abstraction Over-
Approximation

Abstract Translate Check Validate

CEGAR steps

Repeat

24

Example: Is ERROR Unreachable?

1: int x = 2;
int y = 2;

2: while (y <= 2)
3: y = y – 1;
4: if (x == 2)
5: ERROR:;
6:

bool b is (y <= 2)
1: b = T;

2: while (b)
3: b = b ? T : *;
4: if (*)
5: ERROR:;
6:

Program Abstraction
(with y<=2)

Over-
Approximation

1:

2:b=T

3:b=T4:b=F

5:b=F

6:b=F

2:b=F

UNREACHABLE

Abstract Translate Check NO ERROR

CEGAR steps

13

25

Using Cex for Refinement

s0

s1

s2s3

ERROR

s5 s4

MCIs ERROR Reachable?
EF (ERROR)

UNKNOWN

Counterexample

s0

s1

s2

ERROR

s4
t

f

⊥ ⊤

26

can stop here

cause

Using Proofs for Refinement

EF (ERROR) (s0) = ⊥
∃n EFn (ERROR)(s0) = ⊥

EF4 (ERROR)(s0) = ⊥
s0→s1 EF3(ERROR)(s1) = ⊥

s1→s2 EF2(ERROR)(s2) = t
s0

s1

s2s3

ERROR

s5 s4

MCIs ERROR Reachable?
EF (ERROR)

UNKNOWN

Why?

Refine
HERE

t

f

⊥ ⊤

14

27

can stop here

cause

Using Proofs for Refinement

EF (ERROR) (s0) = ⊥
∃n EFn (ERROR)(s0) = ⊥

EF4 (ERROR)(s0) = ⊥
s0→s1 EF3(ERROR)(s1) = ⊥

s1→s2 EF2(ERROR)(s2) = t
s0

s1

s2s3

ERROR

s5 s4

MCIs ERROR Reachable?
EF (ERROR)

UNKNOWN

Why?

Refine
HERE

t

f

⊥ ⊤

When proofs are used to guide the
refinement

only a part of the proof must be
generated
no need to validate the counterexample

… unknown steps are already marked in the
proof

Refinement is not limited to finite
linear explanations!

28

Finding Refinement Predicates
Recall

each abstract state is a conjunction of predicates
i.e., y<=2⋀x==2 y>2 ⋀ x!=2 etc.

each abstract transition corresponds to a program
statement

Result from
a partial proof

Unknown transition
s1→s2

MC needs to know
validity of

{s1} C {s2}

C is the statement
corresponding to

the transition

15

29

Refinement via Weakest Precondition
If s1→s2 corresponds to a conditional statement

refine by adding the condition as a new predicate

If s1→s2 corresponds to a statement C
Find a predicate p in s2 with uncertain value

i.e., {s1}C{p} is not valid

refine by adding WP(C,p)

An Example
s1 is y>2⋀x==2 {s1}C{x==2} is valid
s2 is y>2⋀x==2 {s1}C{y>2} is not valid
C is y = y-1 add WP(C,y>2) = y>3

30

Summary: Software Model Checking
SoftMC is an effective technique for analyzing
behavioral properties of software systems

Based on a combination of static analysis and
traditional model-checking techniques

Abstraction is essential for scalability
Boolean programs are used as an intermediate step
Different abstract semantics lead to different abs.

over-, under-, Belnap

Automatic abstraction refinement enables to find
the “right” abstraction incrementally

16

31

Overview of Software Model Checkers
Tools:

YASM
SLAM
BLAST
CBMC
MAGIC
Java PathFinder

Comparison parameters
Properties
Types of abstraction
Model-checking engine
How refinement is done

32

YASM
http://www.cs.toronto.edu/~arie/yasm
Properties: CTL
Abstraction: Predicate Over- and Under-
MC Engine: Symbolic BDD-based
Refinement: CTL Proof-based + WP

17

33

YASM: System Architecture

Parser

Abstractor Refiner Predicate
generator

XChek

Answer
foo.c

Parse tree

Predicates

Partial
proof

Abstract model

Control-flow
graph

Initial predicates

Temporal Property

CUDD

CIL

CVCLite

~ 30K Java

34

Main Features of YASM
Checks real C programs

Not biased towards verification or refutation

Sound for both True and False answers

Can check arbitrary CTL property
… including liveness!

Handles recursive programs

18

35

Current Applications
BLAST Benchmarks [GC06]

Device drivers (4K-6K LOC)
Parts of OpenSSH (2K-3K LOC)

Split OpenSSH (100K LOC)
with UofT Security Group

Detecting setuid/seteuid security flaws
with UofT Security Group, in progress

Concurrent “Toy” Programs
Lamport’s Bakery Mutual Exclusion
Error detection in NASA RAX [PPV05]

Finding livelock bugs
“Can a library routine get stuck?”
with B. Cook at Microsoft Research, in progress

36

SLAM
Part of Windows DDK Static Driver Verifier
Properties: Reachability
Abstraction: Predicate over-approximation
MC Engine: Symbolic BDD-based
Refinement: Symbolic simulation of cexs
Key Features: robust, support for recursion,
(almost) in production use

19

37

BLAST
http://embedded.eecs.berkeley.edu/blast/
Properties: Reachability
Abstraction: Predicate over-approximation
MC Engine: Symbolic BDD-based

MC and abstraction are interleaved

Refinement: Predicates from a proof of
impossibility of a counter-example

38

SATABS & CBMC
http://www.inf.ethz.ch/personal/daniekro/satabs/
Properties: Bounded reachability
Abstraction: Predicate over-approximation
MC Engine: Symbolic SAT-based
Refinment: Symbolic simulation of cex +
UNASTCORE
Key Features: supports precise machine arithmetic
including bit-level operations

20

39

MAGIC
http://www.cs.cmu.edu/~chaki/magic/
Properties: Automata Simulation
Abstraction: Predicate over-approximation
MC Engine: SAT-based
Refinement: Symbolic simulation of cex
Key Features: support for concurrent C modules

40

Java PathFinder
http://javapathfinder.sourceforge.net/
Properties: Reachability
Abstraction: user-provided data abstraction
MC Engine: Explicit state with symbolic execution
Refinement: None
Key Features: support for Java including Objects
and Threads

21

41

References
[BR01] T. Ball, S. Rajamani. “The SLAM Toolkit”. In

CAV’01.
[CGJLV00] E. Clarke, O. Grumberg, S. Jha, Y. Lu, H.

Veith. “Counterexample-Guided Abstraction
Refinement”. In CAV’00.

[GC06] A. Gurfinkel, M. Chechik. “Why Waste a
Perfectly Good Abstraction”. In TACAS’06.

[PPV05] C. Pasareanu, R. Pelanek, W. Visser.
“Concrete Search with Abstract Matching and
Refinement”. In CAV’05.

42

Acknowledgements
We thank the model-checking group at CMU (Ed

Clarke) and the BANDERA project (Matt Dwyer,
Corina Pasarenau) for the source of and the
inspiration for some of our slides.

These slides were originally created for a model-
checking tutorial at Formal Methods ’06.
Presenters: Marsha Chechik & Arie Gurfinkel

