
1

Promela/SPIN

Acknowledgements:

These notes used some of
the material presented by
Flavio Lerda as part of Ed
Clarke’s model-checking

course

•2

SPIN
For checking correctness of process interactions

Specified using buffered channels, shared variables or combination

Focus: asynchronous control in software systems

Promela – program-like notation for specifying design choices
Models are bounded and have countably many distinct behaviors

Generate a C program that performs an efficient
online verification of the system’s correctness
properties

Types of properties:
Deadlock, violated assertions, unreachable code

System invariants, general LTL properties

Random simulations of the system’s execution

“Proof approximation”

2

•3

Explicit State Model Checker
Represents the system as a finite state machine

Visits each reachable state (state space) explicitly
(using Nested DFS)

Performs on-the-fly computation

Uses partial order reduction

Efficient memory usage
State compression

Bit-state hashing

Version 4:
Uninterpreted C code can be used as part of Promela model

•4

High Level Organization

LTL Translator

Buchi Translator

Pan VerifierC Compiler

C Generator

Automata
Generator

Promela Parser

LTL formula Promela Model

Buchi Automaton

Abstract Syntax Tree

Automata

C Code

Verification Result

The Buchi automaton is
turned into a Promela
process and composed
with the rest of the system.

The generated verifier is
specific to the model and
property we started with.

3

•5

Promela (Process Meta Language)
Asynchronous composition of independent
processes

Communication using channels and global
variables

Non-deterministic choices and interleavings

Based on Dijkstra’s guarded command language
Every statement guarded by a condition and blocks until condition
becomes true

Example:
while (a != b)

skip /* wait for a == b */

vs
(a == b)

•6

Process Types
State of variable or message channel can only be
changed or inspected by processes (defined
using proctype)

; and -> are statement separators with same
semantics.

-> used informally to indicate causal relation between statements
Example:
byte state = 2;
proctype A()
{ (state == 1) -> state = 3
}
proctype B()
{ state = state -1
}

state here is a global variable

4

•7

Process Instantiation
Need to execute processes

proctype only defines them

How to do it?
By default, process of type init always executes
run starts processes
Alternatively, define them as active (see later)

Processes can receive parameters
all basic data types and message channels.

Data arrays and process types are not allowed.

Example:
proctype A (byte state; short foo)
{ (state == 1) -> state = foo
}
init
{ run A(1, 3)
}

•8

Example
As mentioned earlier, no distinction between a
statement and condition.

bool a, b;
proctype p1()
{
a = true;
a & b;
a = false;

}
proctype p2()
{
b = false;
a & b;
b = true;

}
init { a = false; b = false; run p1(); run p2(); }

These statements are enabled
only if both a and b are true.

In this case b is always false
and therefore there is a
deadlock.

5

•9

An Example
mtype = { NONCRITICAL, TRYING, CRITICAL };
mtype state[2];
proctype process(int id) {
beginning:
noncritical:

state[id] = NONCRITICAL;
if
:: goto noncritical;
:: true;
fi;

trying:
state[id] = TRYING;
if
:: goto trying;
:: true;
fi;

critical:
state[id] = CRITICAL;
if
:: goto critical;
:: true;
fi;
goto beginning;}

init { run process(0); run process(1) }

NC

C

T

At most one mtype can be
declared

•10

Other constructs
Do loops

do
:: count = count + 1;
:: count = count - 1;
:: (count == 0) -> break
od

6

•11

Other constructs
Do loops

Communication over channels

proctype sender(chan out)
{
int x;

if
::x=0;
::x=1;
fi

out ! x;
}

•12

Other constructs
Do loops

Communication over channels

Assertions

proctype receiver(chan in)
{
int value;
in ? value;
assert(value == 0 || value == 1)

}

7

•13

Other constructs
Do loops

Communication over channels

Assertions

Atomic Steps

int value;
proctype increment()
{ atomic
{ x = value;

x = x + 1;
value = x;

}
}

•14

Message Passing
chan qname = [16] of {short}

qname!expr – writing (appending) to channel

qname?expr – reading (from head) of the channel

qname??expr – “peaking” (without removing content)

qname!!expr – checking if there is room to write

can declare channel for exclusive read or write:

chan in, out; xr in; xs out;

qname!exp1, exp2, exp3 – writing several vars

qname!expr1(expr2, expr3) – type and params

qname?vari(var2, var3)

qname?cons1, var2, cons2 – can send constants

Less parameters sent than received – others are undefined

More parameters sent – remaining values are lost

Constants sent must match with constants received

8

•15

Message Passing Example
proctype A(chan q1)

{ chan q2;

q1?q2;

q2!123

}

proctype B(chan qforb)

{ int x;

qforb?x;

print(“x=%d\n”, x)

}

init {

chan qname = [1] of {chan };

chan qforb = [1] of {int };

run A(gname);

run B(qforb);

qname!qforb

} Prints: 123

•16

Randez-vous Communications
Buffer of size 0 – can pass but not store
messages

Message interactions by definition synchronous

Example:
#define msgtype 33

chan name = [0] of { byte, byte };

proctype A()

{ name!msgtype(123);

name!msgtype(121); /* non-executable */

}

proctype B()

{ byte state;

name?msgtype(state)

}

init

{ atomic { run A(); run B() }

}

9

•17

Randez-Vous Communications (Cont’d)
If channel name has zero buffer capacity:

Handshake on message msgtype and transfer of value 123 to
variable state.
The second statement will not be executable since no matching
receive operation in B

If channel name has size 1:
Process A can complete its first send but blocks on the second
since channel is filled.
B can retrieve this message and complete.
Then A completes, leaving the last message in the channel

If channel name has size 2 or more:
A can finish its execution before B even starts

•18

Example – protocol
Channels Ain and Bin

to be filled with token messages of type next and arbitrary values
(ASCII chars)…

by unspecified background processes: the users of the transfer
service

These users can also read received data from the
channels Aout and Bout

The channels are initialized in a single atomic
statement…

And started with the dummy err message.

10

•19

Example Cont’d
mtype = {ack, nak, err, next, accept};

proctype transfer (chan in, out, chin, chout)

{ byte o, I;

in?next(o);

do

:: chin?nak(I) ->

out!accept(I);

chout!ack(o)

:: chin?ack(I) ->

out!accept(I);

in?next(o);

chout!ack(o)

:: chin?err(I) ->

chout!nak(o)

od

}

•20

Example (Cont’d)
init

{ chan AtoB = [1] of { mtype, byte };

chan BtoA = [1] of { mtype, byte };

chan Ain = [2] of { mtype, byte };

chan Bin = [2] of { mtype, byte };

chan Aout = [2] of { mtype, byte };

chan Bout = [2] of { mtype, byte };

atomic {

run transfer (Ain, Aout, AtoB, BtoA);

run transfer (Bin, Bout, BtoA, AtoB);

}

Ain!next(0);

AtoB!err(0)

11

•21

Mutual Exclusion
Peterson’s solution to the mutual exclusion
problem

flag0=1

turn=0

flag1 == 0 || turn == 1

flag1 != 0 && turn != 1

flag0=0

Critical
Section

•22

Mutual Exclusion in SPIN

flag0=1

turn=1

flag1 == 0 || turn == 0

flag1 != 0 && turn != 0

flag0=0

Critical
Section

bool turn;

bool flag[2];

proctype mutex0() {

again:

flag[0] = 1;

turn = 1;

(flag[1] == 0 || turn == 0);

/* critical section */

flag[0] = 0;

goto again;

}

12

•23

Mutual Exclusion in SPIN

bool turn, flag[2];

active [2] proctype user()

{

assert(_pid == 0 || __pid == 1);

again:

flag[_pid] = 1;

turn = 1 - _pid;

(flag[1 - _pid] == 0 || turn == _pid);

/* critical section */

flag[_pid] = 0;

goto again;

}

_pid:
Identifier of the process

assert:
Checks that there are only
at most two instances with
identifiers 0 and 1

•24

Mutual Exclusion in SPIN
bool turn, flag[2];

byte ncrit;

active [2] proctype user()

{

assert(_pid == 0 || __pid == 1);

again:

flag[_pid] = 1;

turn = 1 - _pid;

(flag[1 - _pid] == 0 || turn == _pid);

ncrit++;

assert(ncrit == 1); /* critical section */

ncrit--;

flag[_pid] = 0;

goto again;

}

ncrit:
Counts the number of
processes in the critical section

assert:
Checks that there is always
at most one process in the
critical section

13

•25

Verification

Generate, compile and run the verifier
to check for deadlocks and other major problems:

$ spin –a mutex
$ cc –O pan pan.c
$ pan
full statespace search for:
assertion violations and invalid endstates
vector 20 bytes, depth reached 19, errors: 0
79 states, stored
0 states, linked
38 states, matched total: 117
hash conflicts: 4 (resolved)
(size s^18 states, stack frames: 3/0)
unreached code _init (proc 0);
reached all 3 states

unreached code P (proc 1):
reached all 12 states

•26

Mutual Exclusion
Verifier: Assertion can be violated

Can use -t -p to find out the trace

Or use XSpin

Another way of catching the error
Have another monitor process ran in parallel

Allows all possible relative timings of the processes

Elegant way to check validity of system invariant

14

•27

Mutual Exclusion in SPIN
bool turn, flag[2];
byte ncrit;

active [2] proctype user()
{
assert(_pid == 0 || __pid == 1);

again:
flag[_pid] = 1;
turn = 1 - _pid;
(flag[1 - _pid] == 0 || turn ==_pid);

ncrit++;
/* critical section */
ncrit--;

flag[_pid] = 0;
goto again;

}

active proctype monitor()
{ assert (ncrit == 0 || ncrit == 1) }

•28

Finally,
Can specify an LTL formula and run the model-
checker

Example:
#define p count <= 1

LTL claim: [] p

Note: all variables in LTL claims have to be global!

LTL claim gets translated into NEVER claim and
stored either in .ltl file or at the end of model file

Only one LTL property can be verified at a time

Parameters can be set using XSpin
Depth of search, available memory, etc.

15

•29

Mutual Exclusion in SPIN
bool turn, flag[2];
bool critical[2];

active [2] proctype user()
{
assert(_pid == 0 || __pid == 1);

again:
flag[_pid] = 1;
turn = 1 - _pid;
(flag[1 - _pid] == 0 ||turn == _pid);

critical[_pid] = 1;
/* critical section */
critical[_pid] = 0;

flag[_pid] = 0;
goto again;

}

LTL Properties:

[] (critial[0] || critical[1])

[] <> (critical[0])
[] <> (critical[1])

[] (critical[0] ->
(critial[0] U

(!critical[0] &&
((!critical[0] &&

!critical[1]) U critical[1]))))

[] (critical[1] ->
(critial[1] U

(!critical[1] &&
((!critical[1] &&

!critical[0]) U critical[0]))))

Note: critical[] is a global var!

•30

Alternatively,
#define p ncrit <= 1
#define q ncrit = 0
bool turn, flag[2];
byte ncrit;

active [2] proctype user()
{
assert(_pid == 0 || __pid == 1);

again:
flag[_pid] = 1;
turn = 1 - _pid;
(flag[1 - _pid] == 0 || turn == _pid);

ncrit++;
/* critical section */
ncrit--;

flag[_pid] = 0;
goto again;

}

LTL Properties:

[] (p)
[]<> (!q)

16

•31

Command Line Tools
Spin

Generates the Promela code for the LTL formula
$ spin –f “[]<>p”

The proposition in the formula must correspond to #defines

Generates the C source code
$ spin –a source.pro

The property must be included in the source

Pan
Performs the verification

Has many compile time options to enable different features

Optimized for performance

•32

Xspin

GUI for Spin

17

•33

Simulator
Spin can also be used as a simulator

Simulated the Promela program

It is used as a simulator when a counterexample is
generated

Steps through the trace

The trace itself is not “readable”

Can be used for random and manually guided
simulation as well

A few examples

Alternating Bit Protocol

Leader Election

18

•35

Alternating Bit Protocol
Two processes want to communicate

They want acknowledgement of received
messages

Sending window of one message

Each message is identified by one bit

Alternating values of the identifier

•36

Alternating Bit Protocol

Sender Receiver

msg0

ack0

msg1

ack1

msg0

ack0

msg1

19

•37

Alternating Bit Protocol

Sender Receiver

msg0

ack1

msg0

ack0

•38

Alternating Bit Protocol

Sender Receiver

msg0

ack0

msg1

ack1

msg0

20

•39

Sender Process
active proctype Sender()

{

do

::

if

:: receiver!msg0;

:: skip

fi;

do

:: sender?ack0 -> break

:: sender?ack1

:: timeout ->

if

:: receiver!msg0;

:: skip

fi;

od;

::

if

:: receiver!msg1;

:: skip

fi;

do

:: sender?ack1 -> break

:: sender?ack0

:: timeout ->

if

:: receiver!msg1;

:: skip

fi;

od;

od;

}

•40

Receiver Process
active proctype Receiver()
{
do
::
do
:: receiver?msg0 ->

sender!ack0; break;
:: receiver?msg1 ->

server!ack1
od

do
:: receiver?msg1 ->

sender!ack1; break;
:: receiver?msg0 ->

server!ack0
od

od
}

mtype = { msg0, msg1, ack0, ack1 }

chan sender = [1] of { mtype };

chan receiver = [1] of { mtype };

21

•41

Leader Election
Elect leader in unidirectional ring.

All processes participate in election
Cannot join after the execution started

Global property:
It should not be possible for more than one process to declare to be
the leader of the ring

LTL: [] (nr_leaders <= 1)
Use assertion (line 57)
assert (nr_leaders == 1)
this is much more efficient!

Eventually a leader is elected
<> [] (nr_leaders == 1)

•42

Verification of Leader Election
1 #define N 5 /* nr of processes */
2 #define I 3 /* node given the smallest number */
3 #define L 10 /* size of buffer (>= 2*N) */
4
5 mtype = {one, two, winner}; /* symb. message names */
6 chan q[N] = [L] of {mtype, byte} /* asynch channel */
7
8 byte nr_leaders = 0; /* count the number of processes
9 that think they are leader of the ring */
10 proctype node (chan in, out; byte mynumber)
11 { bit Active = 1, know_winner = 0;
12 byte nr, maximum = mynumber, neighbour;
13
14 xr in; /* claim exclusive recv access to in */
15 xs out; /* claims exclusive send access to out */
16
17 printf (“MSC: %d\n”, mynumber);
18 out!one(mynumber) /* send msg of type one */
19 one: do
20 :: in?one(nr) -> /* receive msg of type one */

22

•43

Verification of Leader Election
21 if
22 :: Active ->
23 if
24 :: nr != maximum -> out!two(nr); neighbour = nr;
25 :: else ->
26 /* max is the greatest number */
27 assert (nr == N);
28 know_winner = 1;
29 out!winner(nr);
30 fi
33 :: else ->
34 out!one(nr)
35 fi
36

37 :: in?two(nr) ->
38 if
39 :: Active ->
40 if

•44

Verification of Leader Election
41 :: neighbour > nr && neighbour > maximum
42 maximum = neighbour;
43 out!one(neighbour)
44 :: else ->
45 Active = 0
46 fi
47 :: else -> out!two (nr)
48 fi
49 :: in?winner(nr) ->
50 if
51 :: nr != mynumber -> printf (“LOST\n”);
52 :: else ->
53 printf (“Leader \n”);
54 nr_leaders++;
55 assert(nr_leaders == 1);
56 fi
57 if
58 :: know_winner
59 :: else ->
60 out!winner(nr)

23

•45

Verification of Leader Election
62 fi;
63 break
64 od
65 }
66
67 init {
68 byte proc;
69 atomic { /* activate N copies of proc template */
70 proc = 1;
71 do
72 :: proc <= N ->
73 run node (q[proc-1], q[proc%N],
74 (N+I-proc)% N+1);
75 proc++
76 :: proc > N -> break
77 od
78 }
79 }

•46

Summary
Distinction between behavior and requirements on
behavior

Which are checked for their internal and mutual consistency

After verification, can refine decisions towards a
full system implementation

Promela is not a full programming language

Can simulate the design before verification starts

24

•47

Comments
DFS does not necessarily find the shortest
counterexample

There might be a very short counterexample but the verification
might go out of memory

If we don’t finish, we might still have some sort of a result
(coverage metrics)

•48

On-The-Fly
System is the asynchronous composition of
processes

The global transition relation is never build

For each state the successor states are
enumerated using the transition relation of each
process

25

•49

Visited Set
Hash table

Efficient for testing even if the number of elements in it is very big
(≥ 106)

Reduce memory usage
Compress each state

Reduce the number of states
Partial Order Reduction

When a transition is executed only a
limited part of the state is modified

•50

SPIN and Bit-state Hashing
Command line:

cc –DBITSTATE –o run pan.c

Can specify amount of available (non-virtual)
memory directly…

using –w N option, e.g., -w 7 means 128 Mb of memory

$ run
assertion violated …
pan aborted
…
hash factor: 67650.064516
(size 2^22 states, stack frames: 0/5)

Hash factor:
max number of states / actual number

Maximum number is 222 or about 32 million
Hash factor > 100 – coverage around 100%
Hash factor = 1 – coverage approaches 0%

26

•51

State Representation
Global variables

Processes and local variables

Queues

Global Variables Processes Queues

•52

Compression
Each transition changes only a small part of the
state

Assign a code to each element dynamically

Encoded states + basic elements use considerably
less spaces than the uncompressed states

27

•53

Compression

i=0 j=0
P0
x=0

P0
x=0

P0
x=1

Q0
{1}

P1
y=0

i=0 j=0
P0
x=0

P0
x=1

Q0
{1}

P1
y=0

0

3

2

1

0

3

2

1

3

2

1

0 0 1 0 0 2

0

•54

0 0

P0
x=0

Q0
{1}

Compression

i=0 j=0
P0
x=0

P0
x=1

P0
x=1

Q0
{}

P1
y=0

i=0 j=0
P0
x=0

P0
x=1

Q0
{1}

P1
y=0

0

3

2

1

0

3

2

1

3

2

1

0 0 1 2

0

Q0
{}

1 1

q ? x

28

•55

Hash Compaction
Uses a hashing function to store each state using
only 2 bits

There is a non-zero probability that two states are
mapped into the same bits

If the number of states is much smaller than the
number of bits available there is a pretty good
chance of not having conflicts

The result is not (always) 100% correct!

•56

Minimized Automata Reduction
Turns the state into a sequence of integers

Constructs an automaton which accepts the states
in the visited set

Works like a BDD but on non-binary variables
(MDD)

The variables are the components of the state

The automaton is minimal

The automaton is updated efficiently

29

•57

Partial Order Reduction
Optimal partial order reduction is as difficult as
model checking!

Compute an approximation based on syntactical
information

Independent

Invisible

Check (at run-time) for actions postponed at infinitum

Access to local variables
Receive on exclusive receive-access queues

Send on exclusive send-access queues

Not mentioned in the property

So called stack proviso

•58

References
http://spinroot.com/

Design and Validation of Computer Protocols by Gerard
Holzmann

The Spin Model Checker by Gerard Holzmann

An automata-theoretic approach to automatic program
verification, by Moshe Y. Vardi, and Pierre Wolper

An analysis of bitstate hashing, by G.J. Holzmann

An Improvement in Formal Verification, by G.J. Holzmann and
D. Peled

Simple on-the-fly automatic verification of linear temporal logic,
by Rob Gerth, Doron Peled, Moshe Vardi, and Pierre
Wolper

A Minimized automaton representation of reachable states, by
A. Puri and G.J. Holzmann

