Promela/SPIN

Acknowledgements:

These notes used some of

the material presented by

Flavio Lerda as part of Ed

Clarke’s model-checking
course

Explicit State Model Checker
o Represents the system as a finite state machine

o Visits each reachable state (state space) explicitly
(using Nested DFS)

o Performs on-the-fly computation
o Uses partial order reduction
o Efficient memory usage

& State compression
& Bit-state hashing
o> Version 4:

& Uninterpreted C code can be used as part of Promela model

SPIN

o For checking correctness of process interactions
& Specified using buffered channels, shared variables or combination
% Focus: asynchronous control in software systems
% Promela — program-like notation for specifying design choices
» Models are bounded and have countably many distinct behaviors

o Generate a C program that performs an efficient
online verification of the system’s correctness
properties

o Types of properties:

% Deadlock, violated assertions, unreachable code

& System invariants, general LTL properties
2 Random simulations of the system’s execution
o “Proof approximation” 2

High Level Organization

LTL formula Promela Model

Buchi Automaton

The Buchi automaton is
turned into a Promela

process and composed
with the rest of the system.

Abstract Syntax Tree

The generated verifier is
specific to the model and
property we started with.

C Couc

Verification Result

Promela (Process Meta Language)

o Asynchronous composition of independent
processes

2 Communication using channels and global
variables

> Non-deterministic choices and interleavings

o Based on Dijkstra’s guarded command language

% Every statement guarded by a condition and blocks until condition
becomes true

Example:
while (a '= b)

skip /* wait for a == b */
Vs

(a == b)

Process Instantiation
© Need to execute processes
& proctype only defines them

o How to do it?
% By default, process of type init always executes
G run starts processes
& Alternatively, define them as active (see later)

o Processes can receive parameters

& all basic data types and message channels.
% Data arrays and process types are not allowed.
Example:

proctype A (byte state; short foo)

{ (state == 1) -> state = foo

3

init

{ run A(1, 3)
3

Process Types

o State of variable or message channel can only be
changed or inspected by processes (defined
using proctype)

o ; and -> are statement separators with same
semantics.
& > used informally to indicate causal relation between statements

Example:
byte state = 2;

proctype AQ

{ (state == 1) -> state = 3
3

proctype BQ)

{ state = state -1

}

o state here is a global variable

Example

2 As mentioned earlier, no distinction between a

statement and condition.

bool a, b;
proctype p1()
{
a = true;
- These statements are enabled
a & b; ;
only if both a and b are true.
a = false;
3 In this case b is always false
proctype p2() and therefore there is a
deadlock.
b = false;
a & b;
b = true;
3

init { a = false; b = false; run p1(Q);

run p2Q; }
8

An Example

mtype = { NONCRITICAL, TRYING, CRITICAL }; | At most one mtype can be
mtype state[2]; declared

proctype process(int id) {

beginning:
noncritical:
state[id] = NONCRITICAL;
if
:: goto noncritical;
i true;
fi;
trying:
state[id] = TRYING;
if :)
1 goto trying;
oI otrue;
fi;
critical: O
state[id] = CRITICAL;
if
:: goto critical;
1 true;
fi;

goto beginning;}
init { run process(0); run process(1) }

Other constructs
2 Do loops
© Communication over channels
proctype sender(chan out)
{
int x;
if
1:1x=0;
1ix=1

i

out ! x;

11

Other constructs

> Do loops
do
11 count = count + 1;
I count = count - 1;
:: (count == 0) -> break
od

10

Other constructs
> Do loops
o Communication over channels
o Assertions

proctype receiver(chan in)
{
int value;
in ? value;
assert(value == 0 || value == 1)

¥

12

Other constructs
2> Do loops
o Communication over channels
o Assertions
o Atomic Steps

int value;
proctype increment()
{ atomic
{ x = value;
X =X + 1;
value = x;

Message Passing Example

proctype A(chan ql)
{ chan q2;
q1?q2;
q21123
b
proctype B(chan gforb)
{ int x;
qforb?x;
print(“x=%d\n”, x)
3
init {
chan gname = [1] of {chan };
chan gforb = [1] of {int };
run A(gname);
run B(gforb);
gname!qgforb

} Prints: 123
15

Message Passing
chan gname = [16] of {short}

gnamelexpr —writing (appending) to channel
gname?expr —reading (from head) of the channe
gname??expr — “peaking” (without removing content)
gname!lexpr - checking if there is room to write
can declare channel for exclusive read or write:
chan in, out; Xr in; Xs out;
gnamelexpl, exp2, exp3 —writing several vars
gnamelexprl(expr2, expr3) —type and params
gname?vari(var2, var3)
gname?consl, var2, cons2 - can send constants
& Less parameters sent than received — others are undefined
% More parameters sent — remaining values are lost

& Constants sent must match with constants received 14

Randez-vous Communications

o Buffer of size 0 — can pass but not store
messages

% Message interactions by definition synchronous

Example:
#define msgtype 33
chan name = [0] of { byte, byte };
proctype AQ
{ name Imsgtype(123);
name!msgtype(121); /* non-executable */
}
proctype BQ
{ byte state;

name?msgtype(state)
}
init
{ atomic { run AQ; run BQ }

1 16

Randez-Vous Communications (Cont’d)

o If channel name has zero buffer capacity:

% Handshake on message msgtype and transfer of value 123 to
variable state.

% The second statement will not be executable since no matching
receive operation in B
© If channel name has size 1:

% Process A can complete its first send but blocks on the second
since channel is filled.

% B can retrieve this message and complete.
& Then A completes, leaving the last message in the channel

o If channel name has size 2 or more:
& A can finish its execution before B even starts

Example Cont’d

mtype = {ack, nak, err, next, accept};
proctype transfer (chan in, out, chin, chout)
{ byte o, 1;
in?next(0);
do
: chin?nak(l) ->
outlaccept(l);
choutlack(o)
:: chin?ack(l) ->
outlaccept(l);
in?next(o);
chout!ack(o)
: chin?err(l) —->
chout!nak(o)

Example — protocol
2 Channels Ain and Bin

% to be filled with token messages of type next and arbitrary values
(ASCII chars)...

% by unspecified background processes: the users of the transfer
service

o These users can also read received data from the
channels Aout and Bout

o The channels are initialized in a single atomic
statement...

% And started with the dummy err message.

18

od
3 19
Example (Cont’d)
init
{ chan AtoB = [1] of { mtype, byte };
chan BtoA = [1] of { mtype, byte };
chan Ain = [2] of { mtype, byte };
chan Bin = [2] of { mtype, byte };
chan Aout = [2] of { mtype, byte };
chan Bout = [2] of { mtype, byte };
atomic {
run transfer (Ain, Aout, AtoB, BtoA);
run transfer (Bin, Bout, BtoA, AtoB);
}
Ain!next(0);
AtoB!err(0) 20

10

Mutual Exclusion

o Peterson’s solution to the mutual exclusion
problem

flag,=0

flag, == 0 || turn == 1|

flag, I=0 && turn =1

Critical
Section

21
Mutual Exclusion in SPIN

bool turn;
bool flag[2];
proctype mutex0() {
again:

flag[0] = 1;

turn = 1;

(flag[1] == 0 || turn == 0);

flag,=0

/* critical section */ ~
flag[0] = O; flag, == 0| turn == 0\‘ ’
goto again; flag, =0 && turn =0

22

Critical
Section

11

Mutual Exclusion in SPIN

_pid:
bool turn, flag[2]; Identifier of the process
active [2] proctype user() assert:
< Checks that there are only

at most two instances with
assert(_pid == 0 || _pid == 1); identifiers 0 and 1
again:
flag[_pid] = 1;
turn = 1 - _pid;
(flag[1l - _pid] == Il turn == _pid);

/* critical section */

flag[_pid] = 0;
goto again;

3
23
Mutual Exclusion in SPIN
bool turn, flag[2];
byte ncrit;
ncrit:
~ Counts the number of

active [2] proctype user() processes in the critical section
{

assert(_pid == 0 || _pid == 1);
again:

flag[_pid] = 1;

turn = 1 - _pid;

(flag[1l - _pid] == 0 || turn == _pid);

ncrit++;

assert(ncﬂw —

ncrit--; Checks that there is always

at most one process in the

flag[_pid] = 0; critical section

goto again;
N 24

12

Verification

o Generate, compile and run the verifier
% to check for deadlocks and other major problems:

$ spin —a mutex
$ cc -0 pan pan.c
$ pan
full statespace search for:
assertion violations and invalid endstates
vector 20 bytes, depth reached 19, errors: 0
79 states, stored
0 states, linked
38 states, matched total: 117
hash conflicts: 4 (resolved)
(size s™18 states, stack frames: 3/0)
unreached code _init (proc 0);

reached all 3 states
unreached code P (proc 1):

reached all 12 states

25

Mutual Exclusion
o Verifier: Assertion can be violated
% Can use -t -p to find out the trace
» Or use XSpin
o Another way of catching the error
% Have another monitor process ran in parallel
% Allows all possible relative timings of the processes

% Elegant way to check validity of system invariant

26

13

Mutual Exclusion in SPIN
bool turn, flag[2];
byte ncrit;

active [2] proctype user()

assert(_pid == 0 || __pid == 1);
again:
flag[_pid] = 1;
turn = 1 - d;
(flag[1l - _pi

]’== 0 || turn ==_pid);

ncrit++;

/* critical section */
ncrit--;

flag[_pid] = 0;

goto again;

¥

active proctype monitor()
{ assert (ncrit == 0 || ncrit == 1) }

27

Finally,

o Can specify an LTL formula and run the model-
checker

Example:
#define p count <= 1
SLTL claim: [] p
o> Note: all variables in LTL claims have to be global!

SLTL claim gets translated into NEVER claim and
stored either in .Itl file or at the end of model file

% Only one LTL property can be verified at a time
o Parameters can be set using XSpin

% Depth of search, available memory, etc.

28

14

Mutual Exclusion in SPIN

bool turn, flag[2];
bool critical[2];

active [2] proctype user()

{
assert(_pid == 0 || __pid == 1);

again:
flag[_pi
turn =1 - p

(flag[1l - _pid] == 0 ||turn == _pid);

critical[_pid] = 1;
/* critical section */
critical[_pid] = 0;

flag[_pid] = 0;
goto again;

LTL Properties:
[(critial[0] || critical[1])

[l <> (critical[0])
[l <> (critical[1])

[] (critical[0] ->
(critial[0] U
(Icritical[0] &&
(('critical[0] &&
Ieritical[1]) U critical[1]))))

[l (critical[1] ->
(critial[1] U
(‘critical[1] &&
((fcritical[1] &&
Icritical[0]) U critical[0]))))

Note: critical[] is a global var!

Alterna

#define p ncrit <= 1
#define gq ncrit = 0
bool turn, flag[2];
byte ncrit;

active [2] proctype user()

{

assert(_pid == 0 || __pid == 1);
again:

flag[_pid] = 1;

turn = 1 - id;

(flag[1l - _pid] == 0 || turn ==

ncrit++;
/* critical section */
ncrit--;

flag[_pid] = 0;
goto again;

tively,

LTL Properties:

0 (p)
{I<> (‘a)

_pid);

30

15

Command Line Tools

2 Spin
% Generates the Promela code for the LTL formula
$spin —f “[J<>p”
» The proposition in the formula must correspond to #defines
% Generates the C source code
$spin —a source.pro
» The property must be included in the source

2 Pan

% Performs the verification
» Has many compile time options to enable different features
» Optimized for performance

31

2 GUI for Spin

Ve, Do | T Help SPIN DESIGN VERNICATION [T Tr Vst

16

Simulator
2 Spin can also be used as a simulator
% Simulated the Promela program

oltis used as a simulator when a counterexample is
generated

U Steps through the trace

% The trace itself is not “readable”

oCan be used for random and manually guided
simulation as well

33

A few examples

SAlternating Bit Protocol
oLeader Election

17

Alternating Bit Protocol
2 Two processes want to communicate

©They want acknowledgement of received
messages

2 Sending window of one message
o Each message is identified by one bit
o Alternating values of the identifier

35

Alternating Bit Protocol

msg0

ack0

\ 4

msgl

ackl

Y

A

msg0

ack0

msgl

Y

36

18

Alternating Bit Protocol Sender Process
active proctype Sender()
{ T
do if)
R o receiver!msgl;
T = skip
msgo it } fi;
receiver!msgO; do
« ackl o1 skip :: sender?ackl -> break
msg0 R fi; :: sender?ack0
g do :: timeout ->
ack0 :: sender?ack0 -> break if
-- sender?ackl : receiver!msgl;
: timeout -> : skip
if fi:
- od;
:: receiver!msgO; od:
oz skip }
Ti;
37 od; 39
Alternating Bit Protocol Receiver Process
active proctype Receiver() mtype = { msg0, msgl, ackO, ackl }
{ d chan sender = [1] of { mtype };
c: chan receiver = [1] of { mtype };
do
msgo oI receiver?msg0 ->
sender'ackO; break;
msg0 _ :: receiver?msgl ->
v server!tackl
ack0 od
msgl > do
ackl oI receiver?msgl ->
< senderlackl; break;
oI receiver?msg0 ->
server!lack0
od
od
3
38 40
19

Leader Election

o Elect leader in unidirectional ring.

% All processes participate in election
& Cannot join after the execution started

o Global property:

%1t should not be possible for more than one process to declare to be
the leader of the ring
LTL: [1 (nr_leaders <= 1)
Use assertion (line 57)
assert (nr_leaders == 1)
this is much more efficient!

% Eventually a leader is elected
»<> [1 (nr_leaders == 1)

41

© 0N AWNRP

10
11
12
13
14
15
16
17
18
19
20

Verification of Leader Election
#define N 5 /* nr of processes */
#define 1 3 /* node given the smallest number */
#define L 10 /* size of buffer (>= 2*N) */

mtype = {one, two, winner}; /* symb. message names */
chan q[N] = [L] of {mtype, byte} /* asynch channel */

byte nr_leaders = 0; /* count the number of processes
that think they are leader of the ring */

proctype node (chan in, out; byte mynumber)

{ bit Active = 1, know_winner = 0;
byte nr, maximum = mynumber, neighbour;

xr in; /* claim exclusive recv access to in */
xs out; /* claims exclusive send access to out */

printf (“MSC: %d\n”, mynumber);
out!one(mynumber) /* send msg of type one */
one: do
in?one(nr) -> /* receive msg of type one */ 42

21

_Verification of Leader Election

21 if
22 : Active ->
23 if
24 I nr = maximum -> out!two(nr); neighbour = nr;
25 : else >
26 /* max is the greatest number */
27 assert (nr == N);
28 know_winner = 1;
29 out!winner(nr);
30 fi
33 :: else ->
34 outlone(nr)
35 fi
36
37 in?two(nr) ->
38 if
39 1o Active ->
40 if
43
Verification of Leader Election
41 :: neighbour > nr && neighbour > maximum
42 maximum = neighbour;
43 out!one(neighbour)
44 iz else —>
45 Active = 0
46 fi
47 :: else -> out!two (nr)
48 fi
49 in?winner(nr) ->
50 if
51 :: nr 1= mynumber -> printf (“LOST\n™);
52 :: else ->
53 printf (“Leader \n”);
54 nr_leaders++;
55 assert(nr_leaders == 1);
56 fi
57 if
58 :: know_winner
59 :: else ->
60 out!winner(nr)
44

22

Verification of Leader Election
62 fi;
63 break
64 od
65 }
66
67 init {
68 byte proc;
69 atomic { /* activate N copies of proc template */
70 proc = 1;
71 do
72 oz proc <= N ->
73 run node (q[proc-1], q[proc%N],
74 (N+1-proc)% N+1);
75 proc++
76 :: proc > N -> break
7 od
78 3
79 %}

45

Summary

o Distinction between behavior and requirements on
behavior

% Which are checked for their internal and mutual consistency

o After verification, can refine decisions towards a
full system implementation
% Promela is not a full programming language

o Can simulate the design before verification starts

46

23

Comments

©DFS does not necessarily find the shortest
counterexample

% There might be a very short counterexample but the verification
might go out of memory

& If we don’t finish, we might still have some sort of a result
(coverage metrics)

47

On-The-Fly

o System is the asynchronous composition of
processes

©The global transition relation is never build

oFor each state the successor states are
enumerated using the transition relation of each
process

48

24

Visited Set
2 Hash table

oReduce memory usage

% Compress each state

o Reduce the number of states
% Partial Order Reduction

U Efficient for testing even if the number of elements in it is very big
(=10

When a transition is executed only a
limited part of the state is modified

49

SPIN and Bit-state Hashing
2 Command line:
%cc -DBITSTATE —0 run pan.c
o Can specify amount of available (non-virtual)
memory directly...
& using —w N option, e.g., -W 7 means 128 Mb of memory
$ run
assertion violated
pan aborted

hash factor: 67650.064516

(size 2722 states, stack frames: 0/5)
o Hash factor:

% max number of states / actual number

& Maximum number is 222 or about 32 million

& Hash factor > 100 — coverage around 100%
% Hash factor = 1 — coverage annroaches 0%

50

25

State Representation
>Global variables

oProcesses and local variables
2 Queues

Global Variables Processes

Queues

51

Compression
o Each transition changes only a small part of the
state
oAssign a code to each element dynamically

oEncoded states + basic elements use considerably
less spaces than the uncompressed states

52

26

Compression

=0 j=0

PO PO | QO
x=0 x=1 | {1}

|

3 3 \/L 3
1 1 /%i/ 1
]] PO/ 74 Qo0
0 i=0 j=0 0 %=0 0 @
53
Compression
i=0 j=0 f:%
3 3
2 2
L L Y:
1 1 x=1
i=0j=0

{1}

54

27

Hash Compaction

2 Uses a hashing function to store each state using
only 2 bits

oThere is a non-zero probability that two states are
mapped into the same bits

oIf the number of states is much smaller than the
number of bits available there is a pretty good
chance of not having conflicts

o The result is not (always) 100% correct!

55

Minimized Automata Reduction
oTurns the state into a sequence of integers

o Constructs an automaton which accepts the states
in the visited set

o> Works like a BDD but on non-binary variables
(MDD)

& The variables are the components of the state
% The automaton is minimal

& The automaton is updated efficiently

56

28

Partial Order Reduction

2 Optimal partial order reduction is as difficult as
model checking!

o Compute an approximation based on syntactical

information
> Access to local variables

I
% Independent Receive on exclusive receive-access queues

. s Send on exclusive send-access queues
% Invisible

& Check (at run-time) for acti ostponed at infinitum

‘ Not mentioned in the property ‘

‘ So called stack proviso ‘

57

References

Design and Validation of Computer Protocols by Gerard
Holzmann

o The Spin Model Checker by Gerard Holzmann

> An automata-theoretic approach to automatic program
verification, by Moshe Y. Vardi, and Pierre Wolper

> An analysis of bitstate hashing, by G.J. Holzmann

2 An Improvement in Formal Verification, by G.J. Holzmann and
D. Peled

o Simple on-the-fly automatic verification of linear temporal logic,
by Rob Gerth, Doron Peled, Moshe Vardi, and Pierre
Wolper

2 A Minimized automaton representation of reachable states, by
A. Puri and G.J. Holzmann

(U

58

29

