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A.l. Planning problems: can we reach a
desired state in k steps?

Verification of safety properties: can we
find a bad state in k steps?

Verification: can we find a counterexample
in k steps ?




What is SAT?

Given a propositional formula in CNF, find if
there exists an assignment to Boolean variables
that makes the formula true:
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BMC idea

Given: transition system M, temporal logic formula f, and
user-supplied time bound k

Construct propositional formula Q(K) that is satisfiable iff f is valid
along a path of length k
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Say f=EFp and k=2, then
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Whatif f=AGp ?




BMC idea (cont’d)

AG p means p must hold in every state along any path of length k
We take
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That means we look for counterexamples

Safety-checking as BMC

p is preserved up to k-th transition iff Q(k) is unsatisfiable:
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If satisfiable, satisfying assignment gives counterexample to the
safety property.




Example: a two bit counter
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Q(2) is unsatisfiable. €2(3) is satisfiable.

Example: another counter
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where
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Q(2) is satisfiable

Satisfying assignment gives counterexample to the liveness property




What BMC with SAT Can Do

« AIILTL
« ACTL and ECTL

* In principle, all CTL and even mu-calculus

— efficient universal quantifier elimination or
fixpoint computation is an active area of
research

How big should k be?

» For every model M and LTL property ¢
there exists k s.t.

MEge—>MEy

e The minimal such k is the Completeness
Threshold (CT)




How big should k be?

» Diameter d = longest shortest path from an
initial state to any other reachable state.

» Recurrence Diameter rd = longest loop-free
path.
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How big should k be?

» Theorem: for Gp properties CT = d
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How big should k be?

» Theorem: for Fp properties CT= rd

P —-p =P =P P
So

¢ Open Problem: The value of CT for general
Linear Temporal Logic properties is unknown

A basic SAT solver

Given @ in CNF: (x,y,2),(-x,y),(-Y,2),(-X,-Y,-2)

— Decide()

Deduce()

Resolve_Conflict()




Basic Algorithm

Choose the next
variable and value.

. Return False if all
While (true) variables are assigned

{

if (IDecide()) return (SAT);
while (IDeduce())
if (IResolve_Conflict()) return (UNSAT);

Backtrack until
no conflict.
Return False if impossible

Apply unit clause rule.
Return False if reached
a conflict

DPLL-style SAT solvers
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The Implication Graph
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Decisions

Assignment:aAb A —-cAad

Resolution
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When a conflict occurs, the implication graph is
used to guide the resolution of clauses, so that the
same conflict will not occur again.




Conflict clauses
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Conflict Clauses (cont.)

 Conflict clauses:
— Are generated by resolution
— Are implied by existing clauses
— Are in conflict with the current assignment
— Are safely added to the clause set

Many heuristics are available for determining
when to terminate the resolution process.
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Generating refutations

» Refutation = a proof of the null clause

— Record a DAG containing all resolution steps
performed during conflict clause generation.

— When null clause is generated, we can extract a
proof of the null clause as a resolution DAG.

Ori?inal clauses \/‘ \/\ /.
Derived clauses \ / @

Null clause @

Unbounded Model Checking

A variety of methods to exploit SAT and
BMC for unbounded model checking:
— Completeness Threshold
— k - induction
— Abstraction (refutation proofs useful here)

— Exact and over-approximate image
computations (refutation proofs useful here)

— Use of Craig approximation
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Conclusions: BDDs vs. SAT

« Many models that cannot be solved by BDD
symbolic model checkers, can be solved
with an optimized SAT Bounded Model
Checker.

e The reverse is true as well.

 BMC with SAT is faster at finding shallow
errors and giving short counterexamples.

» BDD-based procedures are better at proving
absence of errors.
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