
1

SAT and Model Checking

Bounded Model Checking
(BMC)

• A.I. Planning problems: can we reach a
desired state in k steps?

• Verification of safety properties: can we
find a bad state in k steps?

• Verification: can we find a counterexample
in k steps ?

Biere, Cimatti, Clarke, Zhu, 1999

2

What is SAT?

SATisfying
assignment!

Given a propositional formula in CNF, find if
there exists an assignment to Boolean variables
that makes the formula true:

ω1 = (b c)

ω2 = (¬a ¬d)

ω3 = (¬b d)

ϕ = ω1 ω2 ω3

A = {a=0, b=1, c=0, d=1}

ω1 = (b c)

ω2 = (¬a ¬d)

ω3 = (¬b d)

ϕ = ω1 ω2 ω3

A = {a=0, b=1, c=0, d=1}

∧ ∧

clauses

literals

∨∨

∨

∨

BMC idea
Given: transition system M, temporal logic formula f, and

user-supplied time bound k

Construct propositional formula Ω(k) that is satisfiable iff f is valid
along a path of length k

Path of length k:)()(1,

1

00 +

−

=
∧∧ ii

k

i
ssRsI

Say f = EF p and k = 2, then

)(),(),()((2) 21021100 pppssRssRsI ∨∨∧∧∧=Ω

What if f = AG p ?

3

BMC idea (cont’d)

AG p means p must hold in every state along any path of length k

i

k

iii

k

i
pssRsIk

01,

1

00))()(()(
=+

−

=
∧∧ →∧=Ω¬

i

k

iii

k

i
pssRsIk ¬∧∧=Ω

=+

−

=
∨∧

01,

1

00)()()(

We take

So

That means we look for counterexamples

Safety-checking as BMC

p is preserved up to k-th transition iff Ω(k) is unsatisfiable:

. . .
s0 s1 s2 sk-1 sk

p p p ¬p p

pssRsIk
k

iii

k

i
¬∧∧=Ω

=+

−

=
∨∧

01,

1

00)()()(

If satisfiable, satisfying assignment gives counterexample to the
safety property.

4

Example: a two bit counter

Safety property: AG

00

01 10

11

Ω(2) is unsatisfiable. Ω(3) is satisfiable.

Initial state:

Transition:

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

∧
∨∧
∨∧

∧⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
¬=∧≠=

∧¬=∧≠=
∧¬∧¬Ω

)(
)(
)(

)(
)(

)(:)2(

22

11

00

12112

01001
00

rl
rl
rl

rrrll
rrrll

rl

:R

rlI ¬∧¬:

⎟
⎠
⎞

⎜
⎝
⎛

¬=
∧≠=

rr
rll

'
)('

)(rl ¬∨¬

Example: another counter

Liveness property: AF
00

01 10

11

Ω(2) is satisfiable

:RrlI ¬∧¬:
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

¬∧
∧=
∧=

∨⎟
⎠

⎞
⎜
⎝

⎛
¬=

∧≠=

rl
rr
ll

rr
rll

'
'

'
)('

)(rl ∧

Check: EG)(rl ¬∨¬

looprlssRsI iiiiii
∧¬∨¬∧∧=Ω

=+=
∨∧)()()()2(

2

01,

1

00

where
)(),(23130332 ssssssssRloop =∨=∨=∧=

Satisfying assignment gives counterexample to the liveness property

5

What BMC with SAT Can Do

• All LTL
• ACTL and ECTL
• In principle, all CTL and even mu-calculus

– efficient universal quantifier elimination or
fixpoint computation is an active area of
research

How big should k be?

• For every model M and LTL property ϕ
there exists k s.t.

• The minimal such k is the Completeness
Threshold (CT)

6

How big should k be?

• Diameter d = longest shortest path from an
initial state to any other reachable state.

• Recurrence Diameter rd = longest loop-free
path.

• rd ¸ d

d = 2
rd = 3

How big should k be?

• Theorem: for Gp properties CT = d

s0

¬p

Arbitrary path

7

How big should k be?

• Theorem: for Fp properties CT= rd

s0

¬p¬p¬p¬p¬p

Open Problem: The value of CT for general
Linear Temporal Logic properties is unknown

Given ϕ in CNF: (x,y,z),(-x,y),(-y,z),(-x,-y,-z)

Decide()

Deduce()

Resolve_Conflict()

-
x

x

-zz-yy

z -z y -y

() ()

(z),(-z) ()

(y),(-y,z),(-y,-z)

()

() ()

(y),(-y)

(y,z),(-y,z)

√X

X X X X

ϕ

A basic SAT solver

8

While (true)
{

if (!Decide()) return (SAT);
while (!Deduce())

if (!Resolve_Conflict()) return (UNSAT);
}

Choose the next
variable and value.
Return False if all

variables are assigned

Apply unit clause rule.
Return False if reached

a conflict

Backtrack until
no conflict.

Return False if impossible

Basic Algorithm

A = ∅

empty
clause?

y
UNSAT

conflict?
Obtain conflict

clause and
backtrack

y
n

is A
total?

y
SAT

Branch:
add some literal

to A

DPLL-style SAT solvers
SATO,GRASP,CHAFF,BERKMIN

n

9

The Implication Graph

(¬a ∨ b) ∧ (¬b ∨ c ∨ d)

a

¬c

Decisions

b

Assignment: a ∧ b ∧ ¬c ∧ d

d

Resolution

a ∨ b ∨ ¬c ¬a ∨ ¬c ∨ d

b ∨ ¬c ∨ d

When a conflict occurs, the implication graph is
used to guide the resolution of clauses, so that the
same conflict will not occur again.

10

Conflict clauses
(¬a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ ¬ d)

a

¬c

Decisions

b

Assignment: a ∧ b ∧ ¬c ∧ d

d

Conflict!

(¬b ∨ c)
resolve

Conflict!
(¬a ∨ c)

resolve

Conflict!

Conflict Clauses (cont.)

• Conflict clauses:
– Are generated by resolution
– Are implied by existing clauses
– Are in conflict with the current assignment
– Are safely added to the clause set

Many heuristics are available for determining
when to terminate the resolution process.

11

Generating refutations
• Refutation = a proof of the null clause

– Record a DAG containing all resolution steps
performed during conflict clause generation.

– When null clause is generated, we can extract a
proof of the null clause as a resolution DAG.

Original clauses

Derived clauses

Null clause

Unbounded Model Checking
• A variety of methods to exploit SAT and

BMC for unbounded model checking:
– Completeness Threshold
– k - induction
– Abstraction (refutation proofs useful here)
– Exact and over-approximate image

computations (refutation proofs useful here)
– Use of Craig approximation

12

Conclusions: BDDs vs. SAT
• Many models that cannot be solved by BDD

symbolic model checkers, can be solved
with an optimized SAT Bounded Model
Checker.

• The reverse is true as well.
• BMC with SAT is faster at finding shallow

errors and giving short counterexamples.
• BDD-based procedures are better at proving

absence of errors.

Acknowledgements

“Exploiting SAT Solvers in Unbounded Model Checking” by
K. McMillan, tutorial presented at CAV’03

“Tuning SAT-checkers for Bounded Model Checking” and
“Heuristics for Efficient SAT solving” by O. Strichman

