SAT and Model Checking

Bounded Model Checking
(BMC)

Biere, Cimatti, Clarke, Zhu, 1999

A.l. Planning problems: can we reach a
desired state in k steps?

Verification of safety properties: can we
find a bad state in k steps?

Verification: can we find a counterexample
in k steps ?

What is SAT?

Given a propositional formula in CNF, find if
there exists an assignment to Boolean variables
that makes the formula true:

literals

0 = (bvc{/

cIauses<w2:(_,av_'d)
=(=bv d
=0V d) SATisfying

P= O N0y Ny assignment!
A = {a=0, b=1, c=0, d=1} |

BMC idea

Given: transition system M, temporal logic formula f, and
user-supplied time bound k

Construct propositional formula Q(K) that is satisfiable iff f is valid
along a path of length k

k-1
Path of length k: 1(sy) A 2 R(s;S..1)
4 ,

Say f=EFp and k=2, then

Q(2) = 1(sy)) AR(S;:8,) AR(S,,8,) A(Py v Py v P,)

Whatif f=AGp ?

BMC idea (cont’d)

AG p means p must hold in every state along any path of length k
We take
k-1 k
—Q(k) = (I(s,) A ./>) R(s;S:.1) = ./}) P;
1= ! i=
So k-1 k
Q(k) =1(sy) A i/:\O R(Si,si+1) A i\:/o_'pi

That means we look for counterexamples

Safety-checking as BMC

p is preserved up to k-th transition iff Q(k) is unsatisfiable:

k-1 K
Qk) = 1(sy) A Q) R(Si,si+1) A '\—/o_'p

P p p —P p
O O e ... @ O
So S1) Sk-1 Sk

If satisfiable, satisfying assignment gives counterexample to the
safety property.

Example: a two bit counter

Initial state: | : =l A—=r

l
0e——ell |'=(|¢r)A)

l T Transition: R:[fe

e—>010
o1 Safety property: AG (=l v —r)

| =(l, £1,) AT, =—r (o Ato)v
Q(Z):(—JO/\—'rO)/\(l__O o) 1‘;“% (I, AE) v
=0 #n) At =-n [(I, AT,) }

Q(2) is unsatisfiable. €2(3) is satisfiable.

Example: another counter

ol I'=1A

=l A—r R:(_$ ir)/\]v r'=ra

W0y ol r=r | A—r
l T Liveness property: AF (I Ar)

010%&10 Check: EG (—l v —r)

1 2
Q(2) =1(s,) A /_}) R(S; S;.1) A __/O(ﬁli v =) Aloop

where
loop=R(S,,S;) A(S; =S, VS, =S, VS, =S,)

Q(2) is satisfiable

Satisfying assignment gives counterexample to the liveness property

What BMC with SAT Can Do

« AIILTL
« ACTL and ECTL

* In principle, all CTL and even mu-calculus

— efficient universal quantifier elimination or
fixpoint computation is an active area of
research

How big should k be?

» For every model M and LTL property ¢
there exists k s.t.

MEge—>MEy

e The minimal such k is the Completeness
Threshold (CT)

How big should k be?

» Diameter d = longest shortest path from an
initial state to any other reachable state.

» Recurrence Diameter rd = longest loop-free
path.

erd,d

d=2 I I

I’d=3 /.

How big should k be?

» Theorem: for Gp properties CT = d

—p
@ ~—~_—0
So Arbitrary path

How big should k be?

» Theorem: for Fp properties CT= rd

P —-p =P =P P
So

¢ Open Problem: The value of CT for general
Linear Temporal Logic properties is unknown

A basic SAT solver

Given @ in CNF: (x,y,2),(-x,y),(-Y,2),(-X,-Y,-2)

— Decide()

Deduce()

Resolve_Conflict()

Basic Algorithm

Choose the next
variable and value.

. Return False if all
While (true) variables are assigned

{

if (IDecide()) return (SAT);
while (IDeduce())
if (IResolve_Conflict()) return (UNSAT);

Backtrack until
no conflict.
Return False if impossible

Apply unit clause rule.
Return False if reached
a conflict

DPLL-style SAT solvers

SATO,GRASP CHAFF,BERKMIN
g s
vy N

The Implication Graph

(-avb)Aa(=bvcvd)

.
SN
FASRRN
fa\——Db
; \

\

\

!
™

' :
\]
v —C
\
\ /
\ /
.
,

Decisions

Assignment:aAb A —-cAad

Resolution

avbv-—c —av-—-cvd

~

bV—|CVd

When a conflict occurs, the implication graph is
used to guide the resolution of clauses, so that the
same conflict will not occur again.

Conflict clauses

(-avb)a(=bvcvd)a(-bv-d)

resolve

"""""

a ‘L‘)’_’.L'?\ b
'\‘,'"—.c — ~~—>d (—avc)
Conflict!
Decisions

Assignment:aAb A —-cAad

Conflict Clauses (cont.)

 Conflict clauses:
— Are generated by resolution
— Are implied by existing clauses
— Are in conflict with the current assignment
— Are safely added to the clause set

Many heuristics are available for determining
when to terminate the resolution process.

10

Generating refutations

» Refutation = a proof of the null clause

— Record a DAG containing all resolution steps
performed during conflict clause generation.

— When null clause is generated, we can extract a
proof of the null clause as a resolution DAG.

Ori?inal clauses \/‘ \/\ /.
Derived clauses \ / @

Null clause @

Unbounded Model Checking

A variety of methods to exploit SAT and
BMC for unbounded model checking:
— Completeness Threshold
— k - induction
— Abstraction (refutation proofs useful here)

— Exact and over-approximate image
computations (refutation proofs useful here)

— Use of Craig approximation

11

Conclusions: BDDs vs. SAT

« Many models that cannot be solved by BDD
symbolic model checkers, can be solved
with an optimized SAT Bounded Model
Checker.

e The reverse is true as well.

 BMC with SAT is faster at finding shallow
errors and giving short counterexamples.

» BDD-based procedures are better at proving
absence of errors.

Acknowledgements

“Exploiting SAT Solvers in Unbounded Model Checking” by
K. McMiillan, tutorial presented at CAV’03

“Tuning SAT-checkers for Bounded Model Checking” and
“Heuristics for Efficient SAT solving” by O. Strichman

12

