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SAT and Model Checking

Bounded Model Checking 
(BMC)

• A.I. Planning problems: can we reach a 
desired state in k steps?

• Verification of safety properties: can we 
find a bad state in k steps?

• Verification: can we find a counterexample 
in k steps ?

Biere, Cimatti, Clarke, Zhu, 1999
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What is SAT?

SATisfying 
assignment!

Given a propositional formula in CNF, find if 
there exists an assignment to Boolean variables 
that makes the formula true:

ω1 = (b c) 

ω2 = (¬a ¬d)

ω3 = (¬b d)

ϕ = ω1 ω2 ω3

A = {a=0, b=1, c=0, d=1}

ω1 = (b c) 

ω2 = (¬a ¬d)

ω3 = (¬b d)

ϕ = ω1 ω2 ω3

A = {a=0, b=1, c=0, d=1}
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BMC idea
Given: transition system M, temporal logic formula f, and 

user-supplied time bound k

Construct propositional formula Ω(k) that is satisfiable iff f is valid
along a path of length k
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Say   f = EF p and   k = 2, then
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What if    f = AG p   ? 
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BMC idea (cont’d)

AG p means p must hold in every state along any path of length k
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We take

So

That means we look for counterexamples

Safety-checking as BMC

p is preserved up to k-th transition iff Ω(k) is unsatisfiable: 
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If satisfiable, satisfying assignment gives counterexample to the 
safety property.
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Example: a two bit counter

Safety property: AG
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Ω(2) is unsatisfiable. Ω(3) is satisfiable.

Initial state:

Transition:
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Example: another counter

Liveness property: AF
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Ω(2) is satisfiable
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Satisfying assignment gives counterexample to the liveness property
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What BMC with SAT Can Do

• All LTL
• ACTL and ECTL
• In principle, all CTL and even mu-calculus

– efficient universal quantifier elimination or 
fixpoint computation is an active area of 
research

How big should k be?

• For every model M and LTL property ϕ
there exists k s.t.

• The minimal such k is the Completeness 
Threshold (CT)
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How big should k be?

• Diameter d = longest shortest path from an 
initial state to any other reachable state. 

• Recurrence Diameter rd = longest loop-free 
path.

• rd ¸ d

d = 2
rd = 3

How big should k be?

• Theorem: for Gp properties CT = d

s0

¬p

Arbitrary path
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How big should k be?

• Theorem: for Fp properties CT= rd

s0

¬p¬p¬p¬p¬p

Open Problem: The value of CT for general 
Linear Temporal Logic properties is unknown

Given ϕ in CNF: (x,y,z),(-x,y),(-y,z),(-x,-y,-z)

Decide()

Deduce()

Resolve_Conflict()

-
x

x

-zz-yy

z -z y -y

() ()

(z),(-z) ()

(y),(-y,z),(-y,-z)

()

() ()

(y),(-y)

(y,z),(-y,z)

√X

X X X X

ϕ

A basic SAT solver 
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While (true)
{

if (!Decide()) return (SAT); 
while (!Deduce())

if (!Resolve_Conflict()) return (UNSAT);
}

Choose the next 
variable and value.
Return False if all 

variables are assigned

Apply unit clause rule.
Return False if reached 

a conflict

Backtrack until 
no conflict.

Return False if impossible

Basic Algorithm

A = ∅

empty
clause?

y
UNSAT

conflict?
Obtain conflict

clause and
backtrack

y
n

is A
total?

y
SAT

Branch:
add some literal

to A

DPLL-style SAT solvers
SATO,GRASP,CHAFF,BERKMIN

n
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The Implication Graph 

(¬a ∨ b) ∧ (¬b ∨ c ∨ d)

a

¬c

Decisions

b

Assignment: a ∧ b ∧ ¬c ∧ d

d

Resolution

a ∨ b ∨ ¬c ¬a ∨ ¬c ∨ d

b ∨ ¬c ∨ d

When a conflict occurs, the implication graph is
used to guide the resolution of clauses, so that the
same conflict will not occur again.
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Conflict clauses
(¬a ∨ b) ∧ (¬b ∨ c ∨ d) ∧ (¬b ∨ ¬ d)

a

¬c

Decisions

b

Assignment: a ∧ b ∧ ¬c ∧ d

d

Conflict!

(¬b ∨ c )
resolve

Conflict!
(¬a ∨ c)

resolve

Conflict!

Conflict Clauses (cont.)

• Conflict clauses:
– Are generated by resolution
– Are implied by existing clauses
– Are in conflict with the current assignment
– Are safely added to the clause set

Many heuristics are available for determining
when to terminate the resolution process.
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Generating refutations
• Refutation = a proof of the null clause

– Record a DAG containing all resolution steps 
performed during conflict clause generation.

– When null clause is generated, we can extract a 
proof of the null clause as a resolution DAG.

Original clauses

Derived clauses

Null clause

Unbounded Model Checking
• A variety of methods to exploit SAT and 

BMC for unbounded model checking:
– Completeness Threshold
– k - induction
– Abstraction (refutation proofs useful here)
– Exact and over-approximate image 

computations (refutation proofs useful here)
– Use of Craig approximation
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Conclusions: BDDs vs. SAT
• Many models that cannot be solved by BDD 

symbolic model checkers, can be solved 
with an optimized SAT Bounded Model 
Checker. 

• The reverse is true as well.
• BMC with SAT is faster at finding shallow 

errors and giving short counterexamples. 
• BDD-based procedures are better at proving 

absence of errors. 
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