
1

1

Abstraction (Cont’d)
Defining an Abstract Domain

variable elimination, data abstraction, predicate
abstraction

Abstraction for Universal/Existential Properties
over- and under-approximations

Abstraction for Mixed Properties
3-valued abstraction

Overlapping Abstract Domains
Belnap (4-valued) abstraction

2

Recall: Defining an Abstract Domain

α α αα α

Abstraction α : S→S’

S

S’

γ γ γ γγ

Concretization γ : S’→2S

2

3

Abstract Kripke Structure
Abstract interpretation of atomic propositions

I ’(a, p) = true iff forall s in γ(a), I (s, p) = true
I ’(a, p) = false iff forall s in γ(a), I (s, p) = false

Abstract Transition Relation (2 choices)
Over-Approximation (Existential)

Make a transition from an abstract state if at least one
corresponding concrete state has the transition.

Under-Approximation (Universal)
Make a transition from an abstract state if all the corresponding
concrete states have the transition.

4

Which abstraction to use?

Under-TrueExistential
(ECTL) Over-False

Under-False
Over-TrueUniversal

(ACTL, LTL)

Abstraction
to use

Expected
Result

Property
Type

But what about mixed properties?!

3

5

3-Valued Kleene Logic
Information Ordering

⊥

f t
true

false

unknown

t ⋀ ⊥ = ⊥
t ⋁⊥ = t

¬t = f
¬⊥ = ⊥

Truth Ordering

⊥
f

t

6

3-Valued Kripke Structures

p = t
q = f

p = f
q = f

p = t
q = ⊥

t

f

⊥
Kripke structures extended to 3-
valued logic
Propositions can be

True, False, or Unknown

Transitions
possible: ⊥
necessary and possible: t
impossible: f

s0

s2

s1

⊥
t

⊥

4

7

3-Valued Abstraction

p

p
q

t

f

⊥p

p
q

over-approximation

under-approximation

p

p
q

3-Valued Abstraction

8

Example Revisited (3-Val Abstraction)

I

I

⊥

⊥

⊥

⊥
⊥
⊥

t
t

tt

5

9

Model-Checking with 3 Values

Usual semantics of temporal
operators
BUT connectives ⋀ ⋁ ¬ are
interpreted in 3-Valued
Logic

t

f

⊥

(EX ¬p)(s0) = t
(EX q)(s0) = ⊥
(EX ¬p⋀q)(s0) = f

Examples

s0

s2

s1

p

p
q

(EX p)(s) = ⋁t R(s,t) ⋀ p(t)

10

Preservation via 3-Valued Abstraction
Let φ be a temporal formula (CTL)
Let K’ be a 3-valued abstraction of K
Preservation Theorem

K ⊨ φ or K ⊨ ¬φMaybe

K ⊨ ¬φFalse

K ⊨ φTrue

Concrete
InformationAbstract MC Result

Preserves truth and falsity of arbitrary properties!

no
information

6

11

Abstraction (Outline)
Defining an Abstract Domain

variable elimination, data abstraction, predicate
abstraction

Abstraction for Universal/Existential Properties
over- and under-approximations

Abstraction for Mixed Properties
3-valued abstraction

Overlapping Abstract Domains
Belnap (4-valued) abstraction

12

Example: Coarse Abstract Domain

s0

s1

s2

p
q

q s3

a0 a1

Over-Approximation Under-Approximation

p?
qa0 a1

p?
q

a0 a1

AX (p ⋁ ¬p) is
inconclusive

EX (q) is
true

Goal: make AX conclusive as well, via domain refinement

7

13

Example: Refined Abstract Domain

s0

s1

s2

p
q

q s3

a0

Over-Approximation Under-Approximation

AX (p ⋁ ¬p) is
true

EX (q) is
inconclusive

a2

a3

p
q

a0

a2

q a3

p
q

a0

a2

q a3

Partitioned domain does not work!
Need an overlapping abstract domain!!!

14

Example: Overlapping Abstract Domain

s0

s1

s2

p
q

q s3

a0

Over-Approximation Under-Approximation

AX (p ⋁ ¬p) is
true

EX (q) is
true

a2

a3
a1

p
q

a0

a2

q a3

p?
q a1

p
q

a0

a2

q a3

p?
q a1

8

15

Supporting Overlapping Abstract Domains
Goal

as before, want to combine over- and under-
approximations to support analysis of mixed
properties

Problem
3-valued logic is no longer sufficient
need to deal with 4 types of transitions

over-, under-, both over- and under-, and neither

i.e., under-approx is no longer a subset of over-approx

Solution
use 4-valued Belnap logic

16

Belnap Logic
Information Ordering

⊤

⊥

f t
true

false

unknown

inconsistent

t ⋀ ⊥ = ⊥
t ⋁⊥ = t

¬t = f
¬⊥ = ⊥

Truth Ordering

⊤⊥
f

t

9

17

Belnap Kripke Structures

f

⊥ ⊤
Kripke structures extended to
Belnap logic
Propositions

True, False, or Unknown

Transitions
only under-approximation: ⊤
only over-approximation: ⊥
both over- and under-: t
neither: f

p = t
q = f

p = f
q = f

p = t
q = ⊥

p = t
q = t

t
⊥

⊥ ⊤

18

Belnap Kripke Structures

p

p
q?

p
q

t

f

⊥ ⊤p

p
q

p

p
q?

Over-approximation

Under-approximation

10

19

Overview of Model Checking

Yes/No
Answer

Yes/No
Answer

SW/HW
artifact

SW/HW
artifact

Correctness
properties

Correctness
properties

Temporal
logic

Temporal
logic

Model of
System

Model of
System

Model
Extraction

Model
Extraction TranslationTranslation

Model
Checker
Model

Checker

Correct?

[CDEG03]

20

Yes/No
Answer

Yes/No
Answer

SW/HW
artifact

SW/HW
artifact

Correctness
properties

Correctness
properties

Temporal
logic

Temporal
logic

Model of
System

Model of
System

Model
Extraction

Model
Extraction TranslationTranslation

Model
Checker
Model

Checker

MV-LogicMV-Logic

MV-Logic
Answer

MV-Logic
Answer

MV-Model
Checker

MV-Model
Checker

How correct?

[CDEG03]

Overview of MV-Model Checking

11

21

Preservation via Belnap Abstraction
Let φ be a temporal formula (CTL)
Let K’ be a Belnap abstraction of K
Preservation Theorem

K ⊨ φ or K ⊨ ¬φ⊥
K ⊨ φ and K ⊨ ¬φ⊤

K ⊨ ¬φFalse

K ⊨ φTrue

Concrete
InformationAbstract MC Result

Preserves truth and falsity of arbitrary properties!

Not possible
for a sound
abstraction

22

Summary
Abstraction is the key to scaling up

1. Choose an abstract domain
Variable elimination, data abstraction, predicate abstraction, …

2. Choose a type of abstraction
Over-, Under-, 3Val, Belnap

3. Build an abstract model ($$$$$)
4. Model-check the property on the abstract model
5. If the result is conclusive, STOP
6. Otherwise, pick a new abstract domain, REPEAT

12

23

References
[DGG97] D. Dams, R. Gerth, and O. Grumberg,
“Abstract Interpretation of Reactive Systems”. In
TOPLAS, No. 19, Vol. 2, pp. 253-291, 1997.
[CDEG03] M. Chechik, B. Devereux, S.
Easterbrook, and A. Gurfinkel, “Multi-Valued
Symbolic Model-Checking”. In TOSEM, No. 4, Vol.
12, pp. 1-38, 2003.

24

Acknowledgements
These slides are based on the tutorial “Model-

Checking: From Software to Hardware” given by
Marsha Chechik and Arie Gurfinkel at Formal
Methods 2006.

