

Abstract Kripke Structure

Construct interpretation of atomic propositions

 $\forall I'(a, p) = \text{true}$ iff forall $s \text{ in } \gamma(a), I(s, p) = \text{true}$ $\forall I'(a, p) = \text{false}$ iff forall $s \text{ in } \gamma(a), I(s, p) = \text{false}$

Choices)

Solution (Existential)

- Make a transition from an abstract state if at least one corresponding concrete state has the transition.
- **Under-Approximation (Universal)**
 - Make a transition from an abstract state if *all* the corresponding concrete states have the transition.

Type Result	1
1	to use
Universal True	Over-
ACTL, LTL) False	Under-
Existential True	Under-
(ECTL) False	Over-

3

Preservation via Belnap Abstraction

 \Rightarrow Let φ be a temporal formula (CTL)

 \Rightarrow Let K' be a Belnap abstraction of K

Preservation Theorem

Abstract MC Result		ract MC Result	Concrete Information	
		True	$K \vDash \varphi$	
Not po	ssible	False	K ⊨ ¬ $φ$	
abstra	ction	\bot	$K \vDash \varphi$ or $K \vDash \neg \varphi$	
		T	K⊨ φ and K⊨ ¬φ	
Preserves truth and falsity of arbitrary properties!				21

Summary					
Abstraction is the key to scaling up					
1. Choose an abstract domain					
♦ Variable elimination, data abstraction, predicate abstraction, …					
2. Choose a type of abstraction					
🏷 Over-, Under-, 3Val, Belnap					
3. Build an abstract model (\$\$\$\$)					
4. Model-check the property on the abstract model					
5. If the result is conclusive, STOP					
6. Otherwise, pick a new abstract domain, REPEAT					
22					

References

 DGG97] D. Dams, R. Gerth, and O. Grumberg, "Abstract Interpretation of Reactive Systems". In TOPLAS, No. 19, Vol. 2, pp. 253-291, 1997.

CDEG03] M. Chechik, B. Devereux, S. Easterbrook, and A. Gurfinkel, "Multi-Valued Symbolic Model-Checking". In TOSEM, No. 4, Vol. 12, pp. 1-38, 2003.

23

Acknowledgements

These slides are based on the tutorial "Model-Checking: From Software to Hardware" given by Marsha Chechik and Arie Gurfinkel at Formal Methods 2006.

24