1. Let the following two expressions be given:

\[
\begin{align*}
 x_1 &\Rightarrow (x_2 \land (x_3 \lor x_4)) \quad (\text{exp}_1) \\
 (x_2 \lor \neg x_3) \land (x_1 \land x_4) &\quad (\text{exp}_2)
\end{align*}
\]

Let the order of variables \(x_1 < x_2 < x_3 < x_4 \) be given.

(a) Build BDDs for the two expressions, referring to them as \(BDD_1 \) and \(BDD_2 \).

(b) Compute Apply(\(\land \), \(BDD_1 \), \(BDD_2 \)). You may compare your answers with computing \(\text{exp}_1 \land \text{exp}_2 \) and building a BDD from it (this is not part of the assignment – it is for your benefit only).

(c) Compute Apply(\(\lor \), \(BDD_1 \), \(BDD_2 \)).
2. Prove the duality

$$\mu Z. f(Z) = \nu Z. \neg f(\neg Z)$$

Proof sketch: Assume that \(f : 2^S \to 2^S \) is a monotone function over subsets of a finite set \(S \). In this case, negation is set complement. Let \(g(Z) = \neg f(\neg Z) \), show by induction that \(g^i(S) = \neg f^i(\emptyset) \). The rest follows from the fact that fixpoint computation must converge after finitely many iterations.

3. Prove that \(AF \varphi = \mu Z. \varphi \lor AX Z \), i.e., prove

(a) \(\varphi \lor AX AF \varphi = AF \varphi \)

Need to show that for any state \(s \), \(\llbracket \varphi \lor AX AF \varphi \rrbracket(s) \Leftrightarrow \llbracket AF \varphi \rrbracket(s) \), which follows directly from the definition of \(AF \).

(b) \(\forall Y \cdot (Y = \varphi \lor AX Y) \Rightarrow (Y \supseteq AF \varphi) \)

Let \(F(Z) = \varphi \lor AX Z \). Note that if \(s \in \llbracket AF \varphi \rrbracket \) then there exists a bound \(k \) such that along every path from \(s \), a state in \(\llbracket \varphi \rrbracket \) is reached in at most \(k \) steps. Let \(s \) be such that \(s \in \llbracket AF \varphi \rrbracket \) and \(s \not\in Y \). Show by induction that \(s \in F^k(Y) = Y \).

4. Consider this model:

(a) Compute the transition relation \(R \) for this model.
\[R = (x \land \neg y \land \neg x' \land \neg y') \lor (\neg x \land \neg y \land x' \land y') \lor \]
\[(\neg x \land \neg y \land y' \land x') \lor (x \land y \land x' \land y') \]

(b) Symbolically, compute the value of \(AG EF y \). Check that the computation is correct by executing the explicit-state model-checking algorithm.

We make use of the following laws
\[
\exists x \cdot f \lor g = (\exists x \cdot f) \lor (\exists x \cdot g)
\]
\[
\exists x \cdot f \land x = f
\]

First step is to compute \(EF y = \mu Z \cdot y \lor EX Z \)

\[
EF_0 y = y \lor EX \bot
\]
\[
EF_1 y = y \lor \exists x', y' \cdot R \land y'
\]
\[
EF_2 y = y \lor \exists x', y' \cdot (\neg x \land \neg y \land x' \land y') \lor (x \land y \land x' \land y')
\]
\[
EF_3 y = y \lor (\neg x \land \neg y)
\]

Now we need to compute \(AG(EF y) = AG \top = \nu Z \land AX Z \)

\[
AG_0 \top = \top \land AX \top
\]
\[
= \top \land \forall x', y' \cdot \neg R \lor \top
\]
\[
= \top \land \forall x', y' \cdot \top
\]
\[
= \top
\]
(c) Symbolically, compute EGy.

We need to compute $EGy = \nu Z \cdot y \land EXZ$

\[
EG_{0y} \\
= y \land EX \top \\
= y \land \exists x', y' \cdot R \land \top \\
= y \land \exists x', y' \cdot R \\
= y \land (x \land y) \\
= y \land x
\]

\[
EG_{1y} \\
= y \land EX EG_{1y} \\
= y \land EX (x \land y) \\
= y \land \exists x', y' \cdot R \land (x' \land y') \\
= y \land ((\neg x \land \neg y) \lor (x \land y)) \\
= y \land x
\]