
On the design of widening operators

“If you widen without principles

you may converge without precision”

Nicolas Halbwachs

Verimag/CNRS
Grenoble

N. Halbwachs (Verimag/CNRS) On the design of widening operators 1 / 46

Introduction

Automatic verification mainly consists in computing fixpoints of
monotone functions on lattices.

Example: computation of reachable states

Reach = Init ∪ post(Reach) L = 2S

Model-checking = exact fixpoint computation, generally in finite
or finite-depth lattices.

N. Halbwachs (Verimag/CNRS) On the design of widening operators 2 / 46

Introduction

(Finite) abstraction [Cousot-Cousot, POPL’77]

Lc
α

γ

La (finite)

Let Fa = α ◦Fc ◦ γ , then lfp(Fc)v γ(lfp(Fa))

−→ fixpoint approximation, conservative verification

now routinely used in model-checking
[Clarke-Grumberg-Long, TOPLAS’94] [Graf-Loiseaux, CAV’93]

N. Halbwachs (Verimag/CNRS) On the design of widening operators 3 / 46

Introduction

S, a set of states

Example: Predicate abstraction

p2 p2

p4 p4p4 p4

p1

p1

p3

p3

p3

p3

pi : S 7→ {0,1}
P a finite set of predicates

Lc = 2S , La = 2Mon(P)

α(X) = {φ ∈Mon(P) | ∃x ∈ X ,x |= φ}
γ(Y) = {x | ∃φ ∈ Y ,x |= φ}

N. Halbwachs (Verimag/CNRS) On the design of widening operators 4 / 46

Introduction

S, a set of states

Example: Predicate abstraction p2 p2

p4 p4p4 p4

p1

p1

p3

p3

p3

p3

pi : S 7→ {0,1}
P a finite set of predicates

Lc = 2S , La = 2Mon(P)

α(X) = {φ ∈Mon(P) | ∃x ∈ X ,x |= φ}
γ(Y) = {x | ∃φ ∈ Y ,x |= φ}

N. Halbwachs (Verimag/CNRS) On the design of widening operators 4 / 46

Introduction

S, a set of states

Example: Predicate abstraction p2 p2

p4 p4p4 p4

p1

p1

p3

p3

p3

p3

pi : S 7→ {0,1}
P a finite set of predicates

Lc = 2S , La = 2Mon(P)

α(X) = {φ ∈Mon(P) | ∃x ∈ X ,x |= φ}
γ(Y) = {x | ∃φ ∈ Y ,x |= φ}

N. Halbwachs (Verimag/CNRS) On the design of widening operators 4 / 46

Introduction

S, a set of states

Example: Predicate abstraction p2 p2

p4 p4p4 p4

p1

p1

p3

p3

p3

p3

pi : S 7→ {0,1}
P a finite set of predicates

Lc = 2S , La = 2Mon(P)

α(X) = {φ ∈Mon(P) | ∃x ∈ X ,x |= φ}
γ(Y) = {x | ∃φ ∈ Y ,x |= φ}

N. Halbwachs (Verimag/CNRS) On the design of widening operators 4 / 46

Introduction

So the main remaining difference between Model-Checking and
Abstract Interpretation is the use of widening.

Widening often considered as a dirty heuristic!

Outline of the talk

Introduction

Reminders about Widening
Widening on convex polyhedra

Reminders about linear relation analysis
Classical widenings
Correct and incorrect attempts for improvement
Taking the program into account

Avoiding widening
Acceleration
Exact abstract solution
Can we combine the two?

N. Halbwachs (Verimag/CNRS) On the design of widening operators 5 / 46

Introduction

So the main remaining difference between Model-Checking and
Abstract Interpretation is the use of widening.

Widening often considered as a dirty heuristic!

Outline of the talk

Introduction

Reminders about Widening
Widening on convex polyhedra

Reminders about linear relation analysis
Classical widenings
Correct and incorrect attempts for improvement
Taking the program into account

Avoiding widening
Acceleration
Exact abstract solution
Can we combine the two?

N. Halbwachs (Verimag/CNRS) On the design of widening operators 5 / 46

Reminders about widening

Widening: basic idea

[Cousot-Cousot, POPL’77]:

stay in an infinite lattice

iterative computations of lfp(F) =
⊔

n∈N
F n(⊥) may be infinite

try to guess the limit from its first terms
(X0 =⊥,X1 = F (X0),X2 = F (X1) . . .)

this guess is made through the computation of

Y0 = X0, Yn+1 = Yn∇F (Yn)

where ∇ is a widening operator.

N. Halbwachs (Verimag/CNRS) On the design of widening operators 6 / 46

Reminders about widening

Widening: definition

(L,v,u,t,⊥,>) a complete lattice.

∇ : L×L 7→ L is a widening iff

∀x ,y ∈ L, x ty v x∇y

[chain condition]
for all increasing chain x0 v x1 v . . .v xn . . . in L,
the increasing chain y0 = x0, . . .yn+1 = yn∇xn+1, . . .
is not strictly increasing (i.e., stabilizes after a finite number
of terms)

N. Halbwachs (Verimag/CNRS) On the design of widening operators 7 / 46

Reminders about widening

Widening: use

Instead of computing the (infinite) sequence

X0 =⊥,Xn+1 = F (Xn)

compute the finite sequence

Y0 = X0,Yn+1 = Yn∇F (Yn)

which limit is greater than lfp(F)

N. Halbwachs (Verimag/CNRS) On the design of widening operators 8 / 46

Reminders about widening

Basic example: intervals (1)

[Cousot-Cousot, ISP’76]

x := 0

x<100 do

while

end

x := x+1

X1

X2

X3

X4

X5

X0

= [−∞,+∞]

= X0[x := 0]

= X1tX4

= X2u [−∞,99]

= X3[x := x +1]

= X2u [100,+∞]

X2 = [0,0]t ((X2∩ [∞,99]) [x := x +1])

N. Halbwachs (Verimag/CNRS) On the design of widening operators 9 / 46

Reminders about widening

Basic example: intervals (1)

[Cousot-Cousot, ISP’76]

x := 0

x<100 do

while

end

x := x+1

X1

X2

X3

X4

X5

X0 = [−∞,+∞]

= X0[x := 0]

= X1tX4

= X2u [−∞,99]

= X3[x := x +1]

= X2u [100,+∞]

X2 = [0,0]t ((X2∩ [∞,99]) [x := x +1])

N. Halbwachs (Verimag/CNRS) On the design of widening operators 9 / 46

Reminders about widening

Basic example: intervals (1)

[Cousot-Cousot, ISP’76]

x := 0

x<100 do

while

end

x := x+1

X1

X2

X3

X4

X5

X0 = [−∞,+∞]

= X0[x := 0]

= X1tX4

= X2u [−∞,99]

= X3[x := x +1]

= X2u [100,+∞]

X2 = [0,0]t ((X2∩ [∞,99]) [x := x +1])

N. Halbwachs (Verimag/CNRS) On the design of widening operators 9 / 46

Reminders about widening

Basic example: intervals (2)

X2 = [0,0]t
(

(X2∩ [−∞,99]) [x := x +1
)

Exact computation

X (0)
2 = ⊥

X (1)
2 = [0,0]t⊥

= [0,0]

X (2)
2 = [0,0]t [1,1]

= [0,1]

X (3)
2 = [0,0]t [1,2]

= [0,2]
. . .

With widening

X (0)
2 = ⊥

X (1)
2 = ⊥∇ ([0,0]t⊥)

= ⊥∇ [0,0]
= [0,0]

X (2)
2 = [0,0]∇ ([0,0]t [1,1])

= [0,0]∇ [0,1]
= [0,∞]

convergence!

N. Halbwachs (Verimag/CNRS) On the design of widening operators 10 / 46

Reminders about widening

Basic example: intervals (2)

X2 = [0,0]t
(

(X2∩ [−∞,99]) [x := x +1
)

Exact computation

X (0)
2 = ⊥

X (1)
2 = [0,0]t⊥

= [0,0]

X (2)
2 = [0,0]t [1,1]

= [0,1]

X (3)
2 = [0,0]t [1,2]

= [0,2]
. . .

With widening

X (0)
2 = ⊥

X (1)
2 = ⊥∇ ([0,0]t⊥)

= ⊥∇ [0,0]
= [0,0]

X (2)
2 = [0,0]∇ ([0,0]t [1,1])

= [0,0]∇ [0,1]
= [0,∞]

convergence!

N. Halbwachs (Verimag/CNRS) On the design of widening operators 10 / 46

Reminders about widening

Basic example: intervals (2)

X2 = [0,0]t
(

(X2∩ [−∞,99]) [x := x +1
)

Exact computation

X (0)
2 = ⊥

X (1)
2 = [0,0]t⊥

= [0,0]

X (2)
2 = [0,0]t [1,1]

= [0,1]

X (3)
2 = [0,0]t [1,2]

= [0,2]
. . .

With widening

X (0)
2 = ⊥

X (1)
2 = ⊥∇ ([0,0]t⊥)

= ⊥∇ [0,0]
= [0,0]

X (2)
2 = [0,0]∇ ([0,0]t [1,1])

= [0,0]∇ [0,1]
= [0,∞]

convergence!

N. Halbwachs (Verimag/CNRS) On the design of widening operators 10 / 46

Reminders about widening

Basic example: intervals (2)

X2 = [0,0]t
(

(X2∩ [−∞,99]) [x := x +1
)

Exact computation

X (0)
2 = ⊥

X (1)
2 = [0,0]t⊥

= [0,0]

X (2)
2 = [0,0]t [1,1]

= [0,1]

X (3)
2 = [0,0]t [1,2]

= [0,2]
. . .

With widening

X (0)
2 = ⊥

X (1)
2 = ⊥∇ ([0,0]t⊥)

= ⊥∇ [0,0]
= [0,0]

X (2)
2 = [0,0]∇ ([0,0]t [1,1])

= [0,0]∇ [0,1]
= [0,∞]

convergence!

N. Halbwachs (Verimag/CNRS) On the design of widening operators 10 / 46

Reminders about widening

Basic example: intervals (2)

X2 = [0,0]t
(

(X2∩ [−∞,99]) [x := x +1
)

Exact computation

X (0)
2 = ⊥

X (1)
2 = [0,0]t⊥

= [0,0]

X (2)
2 = [0,0]t [1,1]

= [0,1]

X (3)
2 = [0,0]t [1,2]

= [0,2]

. . .

With widening

X (0)
2 = ⊥

X (1)
2 = ⊥∇ ([0,0]t⊥)

= ⊥∇ [0,0]
= [0,0]

X (2)
2 = [0,0]∇ ([0,0]t [1,1])

= [0,0]∇ [0,1]
= [0,∞]

convergence!

N. Halbwachs (Verimag/CNRS) On the design of widening operators 10 / 46

Reminders about widening

Basic example: intervals (2)

X2 = [0,0]t
(

(X2∩ [−∞,99]) [x := x +1
)

Exact computation

X (0)
2 = ⊥

X (1)
2 = [0,0]t⊥

= [0,0]

X (2)
2 = [0,0]t [1,1]

= [0,1]

X (3)
2 = [0,0]t [1,2]

= [0,2]
. . .

With widening

X (0)
2 = ⊥

X (1)
2 = ⊥∇ ([0,0]t⊥)

= ⊥∇ [0,0]
= [0,0]

X (2)
2 = [0,0]∇ ([0,0]t [1,1])

= [0,0]∇ [0,1]
= [0,∞]

convergence!

N. Halbwachs (Verimag/CNRS) On the design of widening operators 10 / 46

Reminders about widening

Basic example: intervals (2)

X2 = [0,0]t
(

(X2∩ [−∞,99]) [x := x +1
)

Exact computation

X (0)
2 = ⊥

X (1)
2 = [0,0]t⊥

= [0,0]

X (2)
2 = [0,0]t [1,1]

= [0,1]

X (3)
2 = [0,0]t [1,2]

= [0,2]
. . .

With widening

X (0)
2 = ⊥

X (1)
2 = ⊥∇ ([0,0]t⊥)

= ⊥∇ [0,0]
= [0,0]

X (2)
2 = [0,0]∇ ([0,0]t [1,1])

= [0,0]∇ [0,1]
= [0,∞]

convergence!

N. Halbwachs (Verimag/CNRS) On the design of widening operators 10 / 46

Reminders about widening

Basic example: intervals (2)

X2 = [0,0]t
(

(X2∩ [−∞,99]) [x := x +1
)

Exact computation

X (0)
2 = ⊥

X (1)
2 = [0,0]t⊥

= [0,0]

X (2)
2 = [0,0]t [1,1]

= [0,1]

X (3)
2 = [0,0]t [1,2]

= [0,2]
. . .

With widening

X (0)
2 = ⊥

X (1)
2 = ⊥∇ ([0,0]t⊥)

= ⊥∇ [0,0]
= [0,0]

X (2)
2 = [0,0]∇ ([0,0]t [1,1])

= [0,0]∇ [0,1]
= [0,∞]

convergence!

N. Halbwachs (Verimag/CNRS) On the design of widening operators 10 / 46

Reminders about widening

Basic example: intervals (2)

X2 = [0,0]t
(

(X2∩ [−∞,99]) [x := x +1
)

Exact computation

X (0)
2 = ⊥

X (1)
2 = [0,0]t⊥

= [0,0]

X (2)
2 = [0,0]t [1,1]

= [0,1]

X (3)
2 = [0,0]t [1,2]

= [0,2]
. . .

With widening

X (0)
2 = ⊥

X (1)
2 = ⊥∇ ([0,0]t⊥)

= ⊥∇ [0,0]
= [0,0]

X (2)
2 = [0,0]∇ ([0,0]t [1,1])

= [0,0]∇ [0,1]
= [0,∞]

convergence!

N. Halbwachs (Verimag/CNRS) On the design of widening operators 10 / 46

Reminders about widening

Basic example: intervals (3)

Widening on intervals:

⊥ ∇ I = I

[a,b] ∇ [c,d] =
[
if c < a then −∞ else a , if d > b then ∞ else b

]
So,

⊥∇[0,0] = [0,0]

and
[0,0]∇[0,1] = [0,∞]

N. Halbwachs (Verimag/CNRS) On the design of widening operators 11 / 46

Reminders about widening

Descending sequence
>

⊥

postfp(F) = {x w F (x)}

fp(F) = {x = F (x)}

lfp(F)

prefp(F) = {x v F (x)}exact
increasing

sequence

sequence
widened

sequence
decreasing
exact

N. Halbwachs (Verimag/CNRS) On the design of widening operators 12 / 46

Reminders about widening

Descending sequence
>

⊥

postfp(F) = {x w F (x)}

fp(F) = {x = F (x)}

lfp(F)

prefp(F) = {x v F (x)}

exact
increasing

sequence

sequence
widened

sequence
decreasing
exact

N. Halbwachs (Verimag/CNRS) On the design of widening operators 12 / 46

Reminders about widening

Descending sequence
>

⊥

postfp(F) = {x w F (x)}

fp(F) = {x = F (x)}

lfp(F)

prefp(F) = {x v F (x)}exact
increasing

sequence

sequence
widened

sequence
decreasing
exact

N. Halbwachs (Verimag/CNRS) On the design of widening operators 12 / 46

Reminders about widening

Descending sequence
>

⊥

postfp(F) = {x w F (x)}

fp(F) = {x = F (x)}

lfp(F)

prefp(F) = {x v F (x)}exact
increasing

sequence

sequence
widened

sequence
decreasing
exact

N. Halbwachs (Verimag/CNRS) On the design of widening operators 12 / 46

Reminders about widening

Descending sequence
>

⊥

postfp(F) = {x w F (x)}

fp(F) = {x = F (x)}

lfp(F)

prefp(F) = {x v F (x)}exact
increasing

sequence

sequence
widened

sequence
decreasing
exact

N. Halbwachs (Verimag/CNRS) On the design of widening operators 12 / 46

Reminders about widening

Descending sequence: intervals

The widened sequence converged at X (2)
2 = [0,∞]

Descending sequence:

X (3)
2 = [0,0]t

((
X (2)

2 ∩ [−∞,99]
)

[x := x +1]
)

= [0,0]t ([0,99][x := x +1])
= [0,0]t [1,100]
= [0,100]

X (4)
2 = [0,0]t

((
X (3)

2 ∩ [−∞,99]
)

[x := x +1]
)

= X (3)
2 Fixpoint!

N. Halbwachs (Verimag/CNRS) On the design of widening operators 13 / 46

Reminders about widening

Another old example: Karp & Miller

[Karp-Miller, J. Comput. Syst. Sci. 69] Boundedness of Petri nets

A Petri net with p places. Markings = Np

Order on markings: M �M ′⇔∀i = 1..p,Mi ≤M ′
i

Obvious property: a set of mutually incomparable markings
cannot be infinite

Enumerate the reachable markings, and whenever some
marking M leads to a strictly greater marking M ′, replace M ′ by
M∇M ′:

(
M∇M ′)

i =

{
Mi if Mi = M ′

i
∞ if Mi < M ′

i

N. Halbwachs (Verimag/CNRS) On the design of widening operators 14 / 46

Reminders about widening

Karp & Miller: example

(1,0,0,0)

(0,1,1,1)

(1,0,0,1)
(1,0,0,∞)

(0,1,1,∞)

(0,1,∞,∞)

(1,0,∞,∞)

N. Halbwachs (Verimag/CNRS) On the design of widening operators 15 / 46

Reminders about widening

Karp & Miller: example

(1,0,0,0)

(0,1,1,1)

(1,0,0,1)
(1,0,0,∞)

(0,1,1,∞)

(0,1,∞,∞)

(1,0,∞,∞)

N. Halbwachs (Verimag/CNRS) On the design of widening operators 15 / 46

Reminders about widening

Karp & Miller: example

(1,0,0,0)

(0,1,1,1)

(1,0,0,1)

(1,0,0,∞)

(0,1,1,∞)

(0,1,∞,∞)

(1,0,∞,∞)

N. Halbwachs (Verimag/CNRS) On the design of widening operators 15 / 46

Reminders about widening

Karp & Miller: example

(1,0,0,0)

(0,1,1,1)

(1,0,0,1)
(1,0,0,∞)

(0,1,1,∞)

(0,1,∞,∞)

(1,0,∞,∞)

N. Halbwachs (Verimag/CNRS) On the design of widening operators 15 / 46

Reminders about widening

Karp & Miller: example

(1,0,0,0)

(0,1,1,1)

(1,0,0,1)
(1,0,0,∞)

(0,1,1,∞)

(0,1,∞,∞)

(1,0,∞,∞)

N. Halbwachs (Verimag/CNRS) On the design of widening operators 15 / 46

Reminders about widening

Karp & Miller: example

(1,0,0,0)

(0,1,1,1)

(1,0,0,1)
(1,0,0,∞)

(0,1,1,∞)

(0,1,∞,∞)

(1,0,∞,∞)

N. Halbwachs (Verimag/CNRS) On the design of widening operators 15 / 46

Reminders about widening

Karp & Miller: example

(1,0,0,0)

(0,1,1,1)

(1,0,0,1)
(1,0,0,∞)

(0,1,1,∞)

(0,1,∞,∞)

(1,0,∞,∞)

N. Halbwachs (Verimag/CNRS) On the design of widening operators 15 / 46

Reminders about widening

A more general definition

[Ball-Podelski-Rajamani, TACAS’02]

Infinite states, infinite set of atomic predicates ϕ

Abstract values = predicates in DNF:
∨
i∈I

∧
j∈Ji

ϕi j

Widening (hint): keep in X∇Y only the conjuncts of X which
are still in Y :∨

i∈I

∧
j∈Ji

ϕi j

 ∇

∨
i∈I

∧
j∈J ′i

ϕi j

 =

∨
i∈I

∧
j∈Ji∩J ′i

ϕi j


Obvious need of canonical form.

N. Halbwachs (Verimag/CNRS) On the design of widening operators 16 / 46

Reminders about widening

Is widening useful?

[Hankin-Hunt, ESOP’92]: All results that you get with widening
can also be obtained by computing in a suitable finite lattice.

[Cousot-Cousot, PLILP’92]:
For each program, there exists a finite lattice which can be
used for this program to obtain results equivalent to those
obtained using widening;
No such finite lattice will do for all programs;
For a particular program, it is not possible to infer the set of
needed abstract values by a simple inspection of the text of
the program.

N. Halbwachs (Verimag/CNRS) On the design of widening operators 17 / 46

Reminders about widening

Is widening useful?

[Hankin-Hunt, ESOP’92]: All results that you get with widening
can also be obtained by computing in a suitable finite lattice.
[Cousot-Cousot, PLILP’92]:

For each program, there exists a finite lattice which can be
used for this program to obtain results equivalent to those
obtained using widening;
No such finite lattice will do for all programs;
For a particular program, it is not possible to infer the set of
needed abstract values by a simple inspection of the text of
the program.

N. Halbwachs (Verimag/CNRS) On the design of widening operators 17 / 46

Widening on convex polyhedra

The case of convex polyhedra

Linear relation analysis: compute, in each point of a program, a
set of linear inequalities invariantly satisfied by the numerical
variables.
Example: a speedometer (speed limit: 4m/s)

t := d := s := 0

second?
t := t +1;s := 0

meter and s ≤ 3?
d := d +1;s := s +1

meter and s > 3?

0≤ t , 0≤ s ≤ 4

0≤ d ≤ 4t +s

N. Halbwachs (Verimag/CNRS) On the design of widening operators 18 / 46

Widening on convex polyhedra

The case of convex polyhedra

Linear relation analysis: compute, in each point of a program, a
set of linear inequalities invariantly satisfied by the numerical
variables.
Example: a speedometer (speed limit: 4m/s)

t := d := s := 0

second?
t := t +1;s := 0

meter and s ≤ 3?
d := d +1;s := s +1

meter and s > 3?

0≤ t , 0≤ s ≤ 4

0≤ d ≤ 4t +s

N. Halbwachs (Verimag/CNRS) On the design of widening operators 18 / 46

Widening on convex polyhedra

Computing over convex polyhedra (1/2)
The double representation

y

x

P

1

3

3

P = {(x ,y) |
1≤ y ≤ x +1∧x +y ≥ 3}

= C (AX ≤ b)

v1

v2

r1

r2 P = {λv1 +(1−λ)v2 + µ1r1 + µ2r2 |
λ ∈ [0,1], µ1,µ2 ≥ 0}

= S (V ,R)}

N. Halbwachs (Verimag/CNRS) On the design of widening operators 19 / 46

Widening on convex polyhedra

Computing over convex polyhedra (1/2)
The double representation

y

x

P

1

3

3

P = {(x ,y) |
1≤ y ≤ x +1∧x +y ≥ 3}

= C (AX ≤ b)

v1

v2

r1

r2 P = {λv1 +(1−λ)v2 + µ1r1 + µ2r2 |
λ ∈ [0,1], µ1,µ2 ≥ 0}

= S (V ,R)}

N. Halbwachs (Verimag/CNRS) On the design of widening operators 19 / 46

Widening on convex polyhedra

Computing over convex polyhedra (1/2)
The double representation

y

x

P

1

3

3

P = {(x ,y) |
1≤ y ≤ x +1∧x +y ≥ 3}

= C (AX ≤ b)

v1

v2

r1

r2 P = {λv1 +(1−λ)v2 + µ1r1 + µ2r2 |
λ ∈ [0,1], µ1,µ2 ≥ 0}

= S (V ,R)}

N. Halbwachs (Verimag/CNRS) On the design of widening operators 19 / 46

Widening on convex polyhedra

Computing over convex polyhedra (2/2)

Common operations:

intersection:
C (AX ≤ B)∩C (A′X ≤ B′) = C (AX ≤ B∧A′X ≤ B′)

convex hull (approximation of union):
S (V ,R)tS (V ′,R′) = S (V ∪V ′,R∪R′)

affine transformation: CP +D = {CX +D | X ∈ P}
S (CS (V ,R)+D) = {Cv +D | v ∈ V},{Cr | r ∈ R}
test for inclusion:
S (V ,R)⊆ C (AX ≤ B) iff Av ≤ B,∀v ∈ V and Ar ≤ 0,∀r ∈ R

test for emptyness: S (V ,R) = /0 iff V = /0

N. Halbwachs (Verimag/CNRS) On the design of widening operators 20 / 46

Widening on convex polyhedra

Standard widening (1/3)

[Cousot-Halbwachs, POPL’78]
Basic idea: keep for P∇Q the constraints of P which are still
satisfied by Q

P = C (0≤ y ≤ x ≤ 1)

Q = C (0≤ y ≤ x ≤ 2)

P∇Q = C (0≤ y ≤ x)

N. Halbwachs (Verimag/CNRS) On the design of widening operators 21 / 46

Widening on convex polyhedra

Standard widening (1/3)

[Cousot-Halbwachs, POPL’78]
Basic idea: keep for P∇Q the constraints of P which are still
satisfied by Q

P = C (0≤ y ≤ x ≤ 1)

Q = C (0≤ y ≤ x ≤ 2)

P∇Q = C (0≤ y ≤ x)

N. Halbwachs (Verimag/CNRS) On the design of widening operators 21 / 46

Widening on convex polyhedra

Standard widening (1/3)

[Cousot-Halbwachs, POPL’78]
Basic idea: keep for P∇Q the constraints of P which are still
satisfied by Q

P = C (0≤ y ≤ x ≤ 1)

Q = C (0≤ y ≤ x ≤ 2)

P∇Q = C (0≤ y ≤ x)

N. Halbwachs (Verimag/CNRS) On the design of widening operators 21 / 46

Widening on convex polyhedra

Standard widening (2/3)

Problem: None of the representations is canonical

P = C (y = 0 , 0≤ x ≤ 1)

Q = C (0≤ y ≤ x ≤ 2)

P∇Q = C (0≤ y , 0≤ x)

C (0≤ y ≤ x ≤ 1 , y ≤ 0)

C (0≤ y ≤ x)

N. Halbwachs (Verimag/CNRS) On the design of widening operators 22 / 46

Widening on convex polyhedra

Standard widening (2/3)

Problem: None of the representations is canonical

P = C (y = 0 , 0≤ x ≤ 1)

Q = C (0≤ y ≤ x ≤ 2)

P∇Q = C (0≤ y , 0≤ x)

C (0≤ y ≤ x ≤ 1 , y ≤ 0)

C (0≤ y ≤ x)

N. Halbwachs (Verimag/CNRS) On the design of widening operators 22 / 46

Widening on convex polyhedra

Standard widening (2/3)

Problem: None of the representations is canonical

P = C (y = 0 , 0≤ x ≤ 1)

Q = C (0≤ y ≤ x ≤ 2)

P∇Q = C (0≤ y , 0≤ x)

C (0≤ y ≤ x ≤ 1 , y ≤ 0)

C (0≤ y ≤ x)

N. Halbwachs (Verimag/CNRS) On the design of widening operators 22 / 46

Widening on convex polyhedra

Standard widening (2/3)

Problem: None of the representations is canonical

P = C (y = 0 , 0≤ x ≤ 1)

Q = C (0≤ y ≤ x ≤ 2)

P∇Q = C (0≤ y , 0≤ x)

C (0≤ y ≤ x ≤ 1 , y ≤ 0)

C (0≤ y ≤ x)

N. Halbwachs (Verimag/CNRS) On the design of widening operators 22 / 46

Widening on convex polyhedra

Standard widening (2/3)

Problem: None of the representations is canonical

P = C (y = 0 , 0≤ x ≤ 1)

Q = C (0≤ y ≤ x ≤ 2)

P∇Q = C (0≤ y , 0≤ x)

C (0≤ y ≤ x ≤ 1 , y ≤ 0)

C (0≤ y ≤ x)

N. Halbwachs (Verimag/CNRS) On the design of widening operators 22 / 46

Widening on convex polyhedra

Standard widening (3/3)

Solution [Halbwachs, Thesis 1979]: keep for P∇Q the constraints
of Q which are mutually redundant with constraints of P

(i.e., can replace some constraints of P without changing it)
2 constraints are mutually redundant for P if they are saturated
by the same generators of P.

P = C (y = 0 , 0≤ x ≤ 1)

Q = C (0≤ y ≤ x ≤ 2)

0≤ y already in P
y ≤ x mut. red. with 0≤ x in P

P∇Q = C (0≤ y ≤ x)

Chain condition: either the number of constraints decreases, or
the dimension increases

N. Halbwachs (Verimag/CNRS) On the design of widening operators 23 / 46

Widening on convex polyhedra

Standard widening (3/3)

Solution [Halbwachs, Thesis 1979]: keep for P∇Q the constraints
of Q which are mutually redundant with constraints of P

(i.e., can replace some constraints of P without changing it)
2 constraints are mutually redundant for P if they are saturated
by the same generators of P.

P = C (y = 0 , 0≤ x ≤ 1)

Q = C (0≤ y ≤ x ≤ 2)

0≤ y already in P
y ≤ x mut. red. with 0≤ x in P

P∇Q = C (0≤ y ≤ x)

Chain condition: either the number of constraints decreases, or
the dimension increases

N. Halbwachs (Verimag/CNRS) On the design of widening operators 23 / 46

Widening on convex polyhedra

Standard widening (3/3)

Solution [Halbwachs, Thesis 1979]: keep for P∇Q the constraints
of Q which are mutually redundant with constraints of P

(i.e., can replace some constraints of P without changing it)
2 constraints are mutually redundant for P if they are saturated
by the same generators of P.

P = C (y = 0 , 0≤ x ≤ 1)

Q = C (0≤ y ≤ x ≤ 2)

0≤ y already in P
y ≤ x mut. red. with 0≤ x in P

P∇Q = C (0≤ y ≤ x)

Chain condition: either the number of constraints decreases, or
the dimension increases

N. Halbwachs (Verimag/CNRS) On the design of widening operators 23 / 46

Widening on convex polyhedra

Standard widening (3/3)

Solution [Halbwachs, Thesis 1979]: keep for P∇Q the constraints
of Q which are mutually redundant with constraints of P

(i.e., can replace some constraints of P without changing it)
2 constraints are mutually redundant for P if they are saturated
by the same generators of P.

P = C (y = 0 , 0≤ x ≤ 1)

Q = C (0≤ y ≤ x ≤ 2)

0≤ y already in P
y ≤ x mut. red. with 0≤ x in P

P∇Q = C (0≤ y ≤ x)

Chain condition: either the number of constraints decreases, or
the dimension increases

N. Halbwachs (Verimag/CNRS) On the design of widening operators 23 / 46

Improving the precision

Improving the precision

delaying the widening

improve the operator

take the program into account

N. Halbwachs (Verimag/CNRS) On the design of widening operators 24 / 46

Improving the precision

Delaying the widening (1/2)

[Folk!], [Halbwachs, CAV’93], [Goubault, SAS’01],
[Blanchet et al., PLDI’03]
Instead of computing

X0 =⊥,X1 = X0∇F (X0),X2 = X1∇F (X1) . . .Xn+1 = Xn∇F (Xn)

fix k > 0 and compute

Xn =


⊥ if n = 0
F (Xn−1) if n ≤ k
Xn−1∇F (Xn−1) if n > k

or, more generally, apply the widening sporadically but infinitely
often.

N. Halbwachs (Verimag/CNRS) On the design of widening operators 25 / 46

Improving the precision

Delaying the widening (2/2)
Delay, loop unrolling

b

a

b

b

b
b

a
a

a

b

b

b

b

a

b

b

b

b

Easy, but often expensive.
The suitable number of delays or unrolling may depend on the
program.

N. Halbwachs (Verimag/CNRS) On the design of widening operators 26 / 46

Improving the precision

Delaying the widening (2/2)
Delay, loop unrolling

b

a

b

b

b
b

a
a

a

b

b

b

b

a

b

b

b

b

Easy, but often expensive.
The suitable number of delays or unrolling may depend on the
program.

N. Halbwachs (Verimag/CNRS) On the design of widening operators 26 / 46

Improving the precision

Delaying the widening (2/2)
Delay, loop unrolling

b

a

b

b

b
b

a
a

a

b

b

b

b

a

b

b

b

b

Easy, but often expensive.
The suitable number of delays or unrolling may depend on the
program.

N. Halbwachs (Verimag/CNRS) On the design of widening operators 26 / 46

Improving the precision

Delaying the widening (2/2)
Delay, loop unrolling

b

a

b

b

b
b

a
a

a

b

b

b

b

a

b

b

b

b

Easy, but often expensive.
The suitable number of delays or unrolling may depend on the
program.

N. Halbwachs (Verimag/CNRS) On the design of widening operators 26 / 46

Improving the widening operator

Improving the widening operator (1/4)
Correct and incorrect improvements of the standard widening on
polyhedra
[Bagnara-Hill-Ricci-Zaffanella, SAS’03 and SCP’05] Hint:

P∇Q =


P tQ


if dim(Q) > dim(P)
or codim(Q) > codim(P)
or]CP >]CPtQ
or]VP >]VPtQ
or . . .

P∇SQ otherwise

Correct widening

∀P,Q, P∇Q ⊆ P∇SQ

Generally better than the standard widening.

N. Halbwachs (Verimag/CNRS) On the design of widening operators 27 / 46

Improving the widening operator

Improving the widening operator (2/4)

The widening is generally not monotonic.

So, the fact that P∇1Q ⊆ P∇2Q does not imply that the
limit computed with ∇1 will be better that the one provided
by ∇2.

May slow down the convergence.

Ideal goal: Converge fast towards a precise limit.

N. Halbwachs (Verimag/CNRS) On the design of widening operators 28 / 46

Improving the widening operator

Improving the widening operator (3/4)

An attractive idea:
We look for the limit of the sequence (Xn)n>0.

Add a new variable k (loop counter)

Set X ′
n = Xn∧ (k = n)

express X ′
n as a function of k , and let k tend to ∞.

More precisely,

Compute X ′
1 = (X0∧k = 0)t (X1∧k = 1).

Forget the constraint k ≤ 1 in X ′
1

Eliminate k by existential quantification.

N. Halbwachs (Verimag/CNRS) On the design of widening operators 29 / 46

Improving the widening operator

Improving the widening operator (4/4)

Example:

x

y

x

y

k

N. Halbwachs (Verimag/CNRS) On the design of widening operators 30 / 46

Improving the widening operator

Improving the widening operator (4/4)

Example:

x

y

x

y

k

N. Halbwachs (Verimag/CNRS) On the design of widening operators 30 / 46

Improving the widening operator

Improving the widening operator (4/4)

Example:

x

y

x

y

k

N. Halbwachs (Verimag/CNRS) On the design of widening operators 30 / 46

Improving the widening operator

Improving the widening operator (4/4)

Example:

x

y

x

y

k

N. Halbwachs (Verimag/CNRS) On the design of widening operators 30 / 46

Improving the widening operator

Improving the widening operator (4/4)

Example:

x

y

x

y

k

N. Halbwachs (Verimag/CNRS) On the design of widening operators 30 / 46

Improving the widening operator

Improving the widening operator (4/4)

Example:

x

y

x

y

k

N. Halbwachs (Verimag/CNRS) On the design of widening operators 30 / 46

Improving the widening operator

Improving the widening operator (4/4)

Example:

x

y

x

y

k

N. Halbwachs (Verimag/CNRS) On the design of widening operators 30 / 46

Improving the widening operator

Improving the widening operator (4/5)

Unfortunately incorrect (does not fulfill the chain condition)

x

y

k

x

But adding loop counters often improves the precision of normal
widening.

N. Halbwachs (Verimag/CNRS) On the design of widening operators 31 / 46

Improving the widening operator

Improving the widening operator (4/5)

Unfortunately incorrect (does not fulfill the chain condition)

x

y k

x

But adding loop counters often improves the precision of normal
widening.

N. Halbwachs (Verimag/CNRS) On the design of widening operators 31 / 46

Improving the widening operator

Improving the widening operator (4/5)

Unfortunately incorrect (does not fulfill the chain condition)

x

y k

x

But adding loop counters often improves the precision of normal
widening.

N. Halbwachs (Verimag/CNRS) On the design of widening operators 31 / 46

Improving the widening operator

Improving the widening operator (4/5)

Unfortunately incorrect (does not fulfill the chain condition)

x

y k

x

But adding loop counters often improves the precision of normal
widening.

N. Halbwachs (Verimag/CNRS) On the design of widening operators 31 / 46

Improving the widening operator

Improving the widening operator (4/5)

Unfortunately incorrect (does not fulfill the chain condition)

x

y k

x

But adding loop counters often improves the precision of normal
widening.

N. Halbwachs (Verimag/CNRS) On the design of widening operators 31 / 46

Improving the widening operator

Improving the widening operator (4/5)

Unfortunately incorrect (does not fulfill the chain condition)

x

y k

x

But adding loop counters often improves the precision of normal
widening.

N. Halbwachs (Verimag/CNRS) On the design of widening operators 31 / 46

Taking the program into account

Taking the program into account

The widening X∇F (X) uses the result F (X) of F , but doesn’t
look into F .

Looking at F , i.e., at the program, can help in improving the
precision:

limited widening

new control path

(abstract) acceleration

N. Halbwachs (Verimag/CNRS) On the design of widening operators 32 / 46

Taking the program into account

Limited widening (1/2)
[Halbwachs, CAV’93], [Blanchet et al., PLDI’03]
Let C be a fixed finite set of linear constraints, then ∇L

C defined
by:

P∇L
CQ = (P∇Q)∩C ({c ∈ C | P |= c ∧ Q |= c})

is a widening

c?

b(c) ∈ C

Choice of limiting constraints:

f t

b

a

N. Halbwachs (Verimag/CNRS) On the design of widening operators 33 / 46

Taking the program into account

Limited widening (1/2)
[Halbwachs, CAV’93], [Blanchet et al., PLDI’03]
Let C be a fixed finite set of linear constraints, then ∇L

C defined
by:

P∇L
CQ = (P∇Q)∩C ({c ∈ C | P |= c ∧ Q |= c})

is a widening

c?

b(c) ∈ C

Choice of limiting constraints:

f t

b

a

N. Halbwachs (Verimag/CNRS) On the design of widening operators 33 / 46

Taking the program into account

Limited widening (1/2)
Example: speedometer

t := d := s := 0

second?
t := t +1;s := 0

meter and s ≤ 3?
d := d +1;s := s +1

meter and s > 3?

Limit the widening with [s := s +1](s ≤ 3) = (s ≤ 4).

Very efficient, often makes the descending sequence useless,
sometimes gives better results than the descending sequence.

N. Halbwachs (Verimag/CNRS) On the design of widening operators 34 / 46

Taking the program into account

Limited widening (1/2)
Example: speedometer

t := d := s := 0

second?
t := t +1;s := 0

meter and s ≤ 3?
d := d +1;s := s +1

meter and s > 3?

Limit the widening with [s := s +1](s ≤ 3) = (s ≤ 4).

Very efficient, often makes the descending sequence useless,
sometimes gives better results than the descending sequence.

N. Halbwachs (Verimag/CNRS) On the design of widening operators 34 / 46

Taking the program into account

New control path (1/3)

The basic assumption behind the widening is that “the program
behaves regularly” (inside a loop of the program)
Not true when some path in the loop is not feasible at first
iterations.

i := j := 0 := k := 0;
while i’<= 100 do

i := i+2; j := j+1;
if ? then k := k+1;
if j = 10 then

j := 0; k:= k+1;
end

i

k

0≤ i , 0≤ k

N. Halbwachs (Verimag/CNRS) On the design of widening operators 35 / 46

Taking the program into account

New control path (1/3)

The basic assumption behind the widening is that “the program
behaves regularly” (inside a loop of the program)
Not true when some path in the loop is not feasible at first
iterations.

i := j := 0 := k := 0;
while i’<= 100 do

i := i+2; j := j+1;
if ? then k := k+1;
if j = 10 then

j := 0; k:= k+1;
end

i

k

0≤ i , 0≤ k

N. Halbwachs (Verimag/CNRS) On the design of widening operators 35 / 46

Taking the program into account

New control path (1/3)

The basic assumption behind the widening is that “the program
behaves regularly” (inside a loop of the program)
Not true when some path in the loop is not feasible at first
iterations.

i := j := 0 := k := 0;
while i’<= 100 do

i := i+2; j := j+1;
if ? then k := k+1;
if j = 10 then

j := 0; k:= k+1;
end

i

k

0≤ i , 0≤ k

N. Halbwachs (Verimag/CNRS) On the design of widening operators 35 / 46

Taking the program into account

New control path (1/3)

The basic assumption behind the widening is that “the program
behaves regularly” (inside a loop of the program)
Not true when some path in the loop is not feasible at first
iterations.

i := j := 0 := k := 0;
while i’<= 100 do

i := i+2; j := j+1;
if ? then k := k+1;
if j = 10 then

j := 0; k:= k+1;
end

i

k

0≤ i , 0≤ k

N. Halbwachs (Verimag/CNRS) On the design of widening operators 35 / 46

Taking the program into account

New control path (1/3)

The basic assumption behind the widening is that “the program
behaves regularly” (inside a loop of the program)
Not true when some path in the loop is not feasible at first
iterations.

i := j := 0 := k := 0;
while i’<= 100 do

i := i+2; j := j+1;
if ? then k := k+1;
if j = 10 then

j := 0; k:= k+1;
end

i

k

0≤ i , 0≤ k

N. Halbwachs (Verimag/CNRS) On the design of widening operators 35 / 46

Taking the program into account

New control path (1/3)

The basic assumption behind the widening is that “the program
behaves regularly” (inside a loop of the program)
Not true when some path in the loop is not feasible at first
iterations.

i := j := 0 := k := 0;
while i’<= 100 do

i := i+2; j := j+1;
if ? then k := k+1;
if j = 10 then

j := 0; k:= k+1;
end

i

k

0≤ i , 0≤ k

N. Halbwachs (Verimag/CNRS) On the design of widening operators 35 / 46

Taking the program into account

New control path (2/3)

Solutions: If, at step n, a previously unfeasible path in the loop
becomes feasible,

either don’t widen at this step [Astrée]

or take X0∇Xn, instead of Xn−1∇Xn [Halbwachs, CAV’93]

Can occur only finitely many times!

N. Halbwachs (Verimag/CNRS) On the design of widening operators 36 / 46

Taking the program into account

New control path (3/3)

i := j := 0 := k := 0;
while i’<= 100 do

i := i+2; j := j+1;
if ? then k := k+1;
if j = 10 then

j := 0; k:= k+1;
end

i

k

0≤ k ≤ 11
20

i

N. Halbwachs (Verimag/CNRS) On the design of widening operators 37 / 46

Taking the program into account

New control path (3/3)

i := j := 0 := k := 0;
while i’<= 100 do

i := i+2; j := j+1;
if ? then k := k+1;
if j = 10 then

j := 0; k:= k+1;
end

i

k

0≤ k ≤ 11
20

i

N. Halbwachs (Verimag/CNRS) On the design of widening operators 37 / 46

Taking the program into account

New control path (3/3)

i := j := 0 := k := 0;
while i’<= 100 do

i := i+2; j := j+1;
if ? then k := k+1;
if j = 10 then

j := 0; k:= k+1;
end

i

k

0≤ k ≤ 11
20

i

N. Halbwachs (Verimag/CNRS) On the design of widening operators 37 / 46

Taking the program into account

New control path (3/3)

i := j := 0 := k := 0;
while i’<= 100 do

i := i+2; j := j+1;
if ? then k := k+1;
if j = 10 then

j := 0; k:= k+1;
end

i

k

0≤ k ≤ 11
20

i

N. Halbwachs (Verimag/CNRS) On the design of widening operators 37 / 46

Taking the program into account

New control path (3/3)

i := j := 0 := k := 0;
while i’<= 100 do

i := i+2; j := j+1;
if ? then k := k+1;
if j = 10 then

j := 0; k:= k+1;
end

i

k

0≤ k ≤ 11
20

i

N. Halbwachs (Verimag/CNRS) On the design of widening operators 37 / 46

Taking the program into account

New control path (3/3)

i := j := 0 := k := 0;
while i’<= 100 do

i := i+2; j := j+1;
if ? then k := k+1;
if j = 10 then

j := 0; k:= k+1;
end

i

k

0≤ k ≤ 11
20

i

N. Halbwachs (Verimag/CNRS) On the design of widening operators 37 / 46

Exact abstract computations

Exact computations

Are there cases where the effect of a loop can be computed
exactly?

loop acceleration

exact abstract computation

N. Halbwachs (Verimag/CNRS) On the design of widening operators 38 / 46

Exact abstract computations

Loop acceleration (1/3)

Exact computations in Presburger arithmetic (for a widening in
Presburger arithmetic, see [Bultan-Gerber-Pugh, CAV’97])

Convergence using loop acceleration
[Boigelot-Wolper, CAV’94 and CAV’98], [Common-Jurski, CAV’98],
[Finkel-Sutre, MFCS’00], [Bardin et al., CAV’03]

τ being a relation in Nn×Nn, in which cases can we compute
exactly τ∗ =

⋃
k∈N τk or τ∗(X0)?

τ

N. Halbwachs (Verimag/CNRS) On the design of widening operators 39 / 46

Exact abstract computations

Loop acceleration (2/3)

Restrictions on τ (e.g., `(X)∧X ′ = X +B, or
`(X)∧X ′]X +B,] ∈ {≤,=≥}), flat automata (without nested
loops), . . .
−→ exact computation in Presburger arithmetic

Semi-algorithms for more general cases [FAST]

But,

Exact computation does not scale up

What to do with programs which don’t meet the restrictions?

N. Halbwachs (Verimag/CNRS) On the design of widening operators 40 / 46

Exact abstract computations

Loop acceleration (3/3)

`?X := X +B

τ∗(X0) = `(X0) ∧ ∃i ≥ 0, X = X0 + iB ∧ `(X0 +(i−1)B)

is a Presburger formula

`′?X := X +B′

Not true for interleaving of transitions

N. Halbwachs (Verimag/CNRS) On the design of widening operators 41 / 46

Exact abstract computations

Loop acceleration (3/3)

`?X := X +B

τ∗(X0) = `(X0) ∧ ∃i ≥ 0, X = X0 + iB ∧ `(X0 +(i−1)B)

is a Presburger formula

`′?X := X +B′

Not true for interleaving of transitions

N. Halbwachs (Verimag/CNRS) On the design of widening operators 41 / 46

Exact abstract computations

Loop acceleration (3/3)

`?X := X +B

τ∗(X0) = `(X0) ∧ ∃i ≥ 0, X = X0 + iB ∧ `(X0 +(i−1)B)

is a Presburger formula

`′?X := X +B′

Not true for interleaving of transitions

N. Halbwachs (Verimag/CNRS) On the design of widening operators 41 / 46

Exact abstract computations

Exact abstract computations (1/3)

In which cases can we solve exactly the abstract fixpoint
equation?

[Su-Wagner, TACAS’04]: Exact computation of the least fixpoint in
interval analysis (in polynomial time)

using, basically, a suitable limited widening

N. Halbwachs (Verimag/CNRS) On the design of widening operators 42 / 46

Exact abstract computations

Exact abstract computations (2/3)

Abstract acceleration on polyhedra [Gonnord-Halbwachs06]

Example: the speedometer in one abstract acceleration:

t := d := s := 0

second?
t := t +1;s := 0

meter and s ≤ 3?
d := d +1;s := s +1

meter and s > 3?

N. Halbwachs (Verimag/CNRS) On the design of widening operators 43 / 46

Exact abstract computations

Exact abstract computations (3/3)
The speedometer in one abstract acceleration:

s

d

t:=d:=s:=0;
while true do

s≤3 : s++; d++
2

true: t++; s:=0
end

t

P = ({(0,0,0)}↗ {(1,0,0),(0,1,1),(1,4,0)})∩ (s ≤ 4)
= (t ≥ 0,0≤ s ≤ 4,0≤ d ≤ 4t +s)

N. Halbwachs (Verimag/CNRS) On the design of widening operators 44 / 46

Exact abstract computations

Exact abstract computations (3/3)
The speedometer in one abstract acceleration:

s

d

t:=d:=s:=0;
while true do

s≤3 : s++; d++
2

true: t++; s:=0
end

t

P = ({(0,0,0)}↗ {(1,0,0),(0,1,1),(1,4,0)})∩ (s ≤ 4)
= (t ≥ 0,0≤ s ≤ 4,0≤ d ≤ 4t +s)

N. Halbwachs (Verimag/CNRS) On the design of widening operators 44 / 46

Exact abstract computations

Exact abstract computations (3/3)
The speedometer in one abstract acceleration:

s

d

t:=d:=s:=0;
while true do

s≤3 : s++; d++
2

true: t++; s:=0
end

t

P = ({(0,0,0)}↗ {(1,0,0),(0,1,1),(1,4,0)})∩ (s ≤ 4)
= (t ≥ 0,0≤ s ≤ 4,0≤ d ≤ 4t +s)

N. Halbwachs (Verimag/CNRS) On the design of widening operators 44 / 46

Exact abstract computations

Exact abstract computations (3/3)
The speedometer in one abstract acceleration:

s

d

t:=d:=s:=0;
while true do

s≤3 : s++; d++
2

true: t++; s:=0
end

t

P = ({(0,0,0)}↗ {(1,0,0),(0,1,1),(1,4,0)})∩ (s ≤ 4)
= (t ≥ 0,0≤ s ≤ 4,0≤ d ≤ 4t +s)

N. Halbwachs (Verimag/CNRS) On the design of widening operators 44 / 46

Exact abstract computations

Exact abstract computations (3/3)
The speedometer in one abstract acceleration:

s

d

t:=d:=s:=0;
while true do

s≤3 : s++; d++
2

true: t++; s:=0
end

t

P = ({(0,0,0)}↗ {(1,0,0),(0,1,1),(1,4,0)})∩ (s ≤ 4)
= (t ≥ 0,0≤ s ≤ 4,0≤ d ≤ 4t +s)

N. Halbwachs (Verimag/CNRS) On the design of widening operators 44 / 46

Exact abstract computations

Exact abstract computations (3/3)
The speedometer in one abstract acceleration:

s

d

t:=d:=s:=0;
while true do

s≤3 : s++; d++
2

true: t++; s:=0
end

t

P = ({(0,0,0)}↗ {(1,0,0),(0,1,1),(1,4,0)})∩ (s ≤ 4)
= (t ≥ 0,0≤ s ≤ 4,0≤ d ≤ 4t +s)

N. Halbwachs (Verimag/CNRS) On the design of widening operators 44 / 46

Exact abstract computations

Exact abstract computations (3/3)
The speedometer in one abstract acceleration:

s

d

t:=d:=s:=0;
while true do

s≤3 : s++; d++
2

true: t++; s:=0
end

t

P = ({(0,0,0)}↗ {(1,0,0),(0,1,1),(1,4,0)})∩ (s ≤ 4)
= (t ≥ 0,0≤ s ≤ 4,0≤ d ≤ 4t +s)

N. Halbwachs (Verimag/CNRS) On the design of widening operators 44 / 46

Exact abstract computations

Exact abstract computations (4/3)

Obvious advantages:

when it applies, it is both more precise and more efficient

easy to combine with widening

N. Halbwachs (Verimag/CNRS) On the design of widening operators 45 / 46

Exact abstract computations

Conclusions

Widening is more than a dirty heuristic
it is based on a reasonable hypothesis:

Regular, foreseeable programs should be easy to analyse
It allows to work in quite expressive lattices.
It allows general programs to be analysed.

It may be more effective to use well-chosen application
strategies, (e.g., limited widening, specific cases when new
pathes are discovered), than to endlessly look for “better”
widening.

Looking at the program can lead to significant
improvements.

N. Halbwachs (Verimag/CNRS) On the design of widening operators 46 / 46

	Introduction
	Reminders about widening
	Widening on convex polyhedra
	Improving the precision
	Improving the widening operator
	Taking the program into account
	Exact abstract computations

