
CSC2125
Type Qualifiers Homework with Solutions

1 CCured

Consider the following C program fragment.

char *foo () {

char A[10];

char *p;

p = A;

p = p + 20;

return p;

}

1. What type qualifier (SAFE, SEQ, or DYN) will CCured infer for p? Explain.

SEQ. The memory areas to which p can point, namely A, are of homogenous type (char), so
p isn’t DYN. Pointer arithmetic is performed on p, so p isn’t SAFE. Therefore, p is SEQ.

2. Will CCured insert any runtime checks into foo? Explain.

According to [2], no, since p is never dereferenced or cast to SAFE. (The CCured implemen-
tation does insert run-time checks, but this cannot be inferred from [2].)

3. Write a small function bar which calls foo, does not perform any checks on the value returned
by foo, and uses the return value in a way that violates memory safety.

void bar () {

char *q = foo ();

*q = ’a’;

}

Since q points to a local variable in foo, the statement *q = ’a’ is unsafe since foo is out
of scope. CCured does not insert an appropriate run-time check into bar to prevent this
operation.

2 Flow-Insensitive Type Qualifiers

Consider the program P , written in the functional language used in [1]:

let x = ref(nonzero 37) in

let y = x in

y := 0;

ni ni

Using the type-checking rules in [1], but with (Unsound) instead of (SubRef), show that this
program type-checks. Specifically, prove ∅ ` P : ⊥ unit , assuming nonzero int � ¬nonzero int .
Show that type-checking fails (as it should) using the correct rule, (SubRef), instead of (Unsound).



Using the (SubRef) rule would yield the premise ` nonzero int = ¬nonzero int , which is false
(not provable).

3 Flow-Sensitive Type Qualifiers

Consider the function declarations

void acquire (unlocked lock_t *l);

void release (locked lock_t *l);

where acquire changes the qualifier of its unlocked argument to locked and release changes the
qualifier of its locked argument to unlocked. The locked and unlocked qualifiers are incomparable
(incompatible). For each of the following program fragments, state whether it will pass cqual’s flow-
sensitive type-checking and, if not, whether the restrict construct could be used to make it pass
(without changing the semantics of the program). Briefly justify your answers.

1. if (...)

l = l1;

else

l = l2;

acquire (&l);

release (&l);

Where l1 and l2 are initially unlocked.

Pass, since l1 and l2 are both initially unlocked, l is inferred to be unlocked at the join point
following the if-then-else block.

2. if (x > 0)

acquire (&l);

if (x > 0)

release (&l);



Where l is initially unlocked.

Fail, since l is inferred to be potentially locked and unlocked at the join point following the
first if-block. Restrict doesn’t enable type-checking here since the cause of the failure is cqual’s
path-insensitivity, not its imprecise alias analysis.

3. for (i = 0; i < N; i++)

{

acquire (&L[i]);

release (&L[i]);

}

Where L is an array of N distinct locks, each initially unlocked.

Fail, since cqual does not infer that both occurrences of L[i] refer to the same lock. Replacing
the body of the for loop with

restrict l = L[i] in

{

acquire (&l);

release (&l);

}

enables the program to pass.

4. struct locknode {

lock_t *lock;

struct locknode *next;

};

while (L != NULL)

{

acquire (L->lock);

release (L->lock);

L = L->next;

}

Where L initially points to the head of a list of locknodes, each with an initially unlocked

lock.

Pass; the cqual implementation infers that both occurences of L->lock refer to the same lock,
which seems to be inconsistent with the paper and cqual’s behaviour on the previous program.

References

[1] Jeffrey S. Foster, Manuel Fahndrich, and Alexander Aiken. ”A Theory of Type Qualifiers.” In
ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’99),
Atlanta, Georgia, May 1999. http://citeseer.ist.psu.edu/foster99theory.html.



[2] G. C. Necula, S. McPeak, and W. Weimer. CCured: Type-safe retrofitting of legacy code. In
Twenty-Ninth ACM Symposium on Principles of Programming Languages, Portland, OR, Jan.
2002.


