
1. Write down a sequence of reduction steps reducing the term (λx.x(xy))(λu.u)
to normal form. In this problem reduction is allowed anywhere in a
term, including under a λ.

2. Define functions in untyped lambda calculus for:

(a) Identity: define the identity function id that simply returns its
argument

(b) Composition: define a function compose that takes two functions
f and g as arguments and returns the function f ◦ g.

(c) Fibonacci: define a function fib that computes the nth Fibonacci
number, Fn, where:

F0 = 1

F1 = 1

Fn = Fn−1 + Fn−2, n > 1

You may assume that integers, integer addition, subtraction, and
test for zero are defined, but you must use the combinator fix
given on page 68 of Pierce to accomplish recursion (i.e. recursion
is not natively provided by the language).

3. Repeat 2a and 2b in the simply typed lambda calculus F1. Assume
that there are only 2 types: Booleans and Integers. What goes wrong?

Hint: try this expression from the untyped lambda calculus where id is
the identity function from 2a and inc is the integer increment function:
λi.i + 1

(idinc)(id3)

What about the following generalization of the above?

(λf.λy.λz.((f y) (f z))) id inc 3

4. Give a type derivation in F1 for: y : T → T ` (λx.x(xy))(λu.u) : T →
T .

5. Repeat 2a and 2b in F2. Give types for your answers.

1



6. Type safety is often formulated as the conjunction of two properties:
progress and preservation. Progress means that a well-typed term is
either a primitive value or can be reduced by a step. Preservation
means that well-typed terms stay well-typed after being reduced by a
step. Sketch a proof of progress and preservation for F1, enriched with
a unit type and Booleans.

2


